Continuous organocatalytic flow synthesis of 2substituted oxazolidinones using carbon dioxide

Nicola Zanda, ${ }^{\dagger}$ Leijie Zhou, ${ }^{\dagger}$ Esther Alza, ${ }^{\dagger}$ Arjan W. Kleij ${ }^{\dagger}{ }^{\dagger, * *}$ and Miquel A. Pericàs ${ }^{\dagger, \S}{ }^{*}$

\dagger Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute for Science \& Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain.
\ddagger Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain; orcid.org/0000-0002-7402-4764 E-mail: akleij@iciq.es
§ Departament de Química Inorgànica i Orgànica, Universitat de Barcelona, 08028
Barcelona, Spain; orcid.org/0000-0003-0195-8846; E-mail: mapericas@iciq.es

SUPPORTING INFORMATION:

82 pages, 6 figures, 4 tables

Contents:

Page S3: 1. General considerations
Page S4: 2. Experimental flow setup
Page S5: 3. Experimental flow protocol
Page S6: 4. System stability test
Page S7: 5. First catalytic tests
Page S8: 6. Full Optimization Table
Page S10: 7. Example of crude mixture in a typical reaction under continuous flow
Page S11: 8. Example of crude with byproduct present
Page S12: 9. Scope and additional experiments
Page S13: 10. Sequential experiments
Page S14: 11. Catalyst synthesis
Page S15: 12. Analyses of the catalyst
Page S17: 13. Synthesis and characterization of oxazolidinones products
Page S21: 14. Synthesis and characterization of intermediate epoxy amines
Page S24: 15. Synthesis and characterization of intermediate halohydrins
Page S27: 16. Schematic illustration of the vent oven
Page S28: 17. Auto-collector programming
Page S30: 18. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and FT-IR spectra of oxazolidinones products
Page S63: 19. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and FT-IR spectra of intermediate epoxy amines
Page S75: 20. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR and FT-IR spectra of intermediate halohydrins

1. General considerations

All commercial reagents were used as received and all reactions were carried out under air unless stated otherwise. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were recorded at room temperature or at 398 K using Bruker Advance 300 Ultrashield spectrometer operating at 300 and 75 MHz respectively, a Bruker Advance 400 Ultrashield spectrometer operating at 400 and 100 MHz respectively, or Bruker Advance 500 Ultrashield spectrometeroperating at 500 and 125 MHz respectively.

All ${ }^{1} \mathrm{H}$ NMR spectra were reported in parts per million (ppm) downfield of TMS and were measured relative to the signal for $\mathrm{CHCl}_{3}(7.26 \mathrm{ppm})$ and DMSO (2.50 ppm). All ${ }^{13} \mathrm{C}$ NMR spectra were reported in parts per million (ppm) relative to residual $\mathrm{CHCl}_{3}(77.16 \mathrm{ppm})$ and DMSO (39.52 ppm) and were obtained with ${ }^{1} \mathrm{H}$ decoupling. Coupling constants, J, are reported in hertz. The spectra were recorded using samples of $20-40 \mathrm{mg}$ to facilitate sequential ${ }^{1} \mathrm{H}+{ }^{13} \mathrm{C}$ NMR analysis. ${ }^{1}$ IR spectra were recorded on a Bruker Tensor 27 / Diamond ATR FT-IR spectrometer or a Thermo Scientific iS50 FT-IR spectrometer. Elemental analyses of the PSSupported catalyst were performed on a LECO CHNS 932 micro-analyzer at the Universidad Complutense de Madrid, Spain and by MEDAC LTD, UK. Flash chromatography was performed using 60 mesh silica gel on a Combiflash RF TeledineISCO. Thin layer chromatography was carried out using Merck TLC Silica gel 60 F254 aluminum sheets. Components were visualized by UV light ($\lambda=254 \mathrm{~nm}$) and/or by phosphomolybdic acid, panisaldehyde, ninhydrin solution or KMNO_{4} solution.

[^0]
2. Experimental flow setup

The feed of starting material, the epoxy amine dissolved in a methylethyl ketone (MEK) and dimethyl sulfoxide (DMSO), was provided by a Thales nano micro HPLC pump. The feed was flowed through a Swagelok® check-valve (CV) ($1 / 3 \mathrm{psi}$) and joined the gas stream in a static Tee-mixer. The gas stream was provided by a Bronkhorst EL-Flow Prestige mass flow controller (MFC) and passed through two Swagelok® CV ($1 / 3 \mathrm{psi}$) before reaching the Tee.
After the mixer the mixed stream entered the Packed Bed Reactor (stainless steel, $\phi 0.46 \mathrm{~cm} \times$ $5 \mathrm{~cm}, 0.83 \mathrm{~mL}$, closed by a thin layer of glass wool or cotton). The PBR was located inside of a vent oven heated by a heating plack, the temperature was double-checked by a digital thermometer. The system was closed by a back-pressure regulator (BPR) from IDEX. Finally, the gas liquid stream was directed into an homemade autocollector (containing Bruphny Micro Servo Motor SG90 9G) and controlled by a Raspberry pi 4b programmed in Python3. The collection was performed into glass vials ($\phi 5.0 \mathrm{~cm}, 10 \mathrm{~mL}$) the outgassing was performed with a cut syringe Figure S1.g, or alternatively by a cotton thread located at the end of the tubing.

Figure S1. Pictures of the setup (a and b), PBR (c and d), the vented oven (e), auto-collector (f) and the degassing at the outlet of the system (g) in order to avoid spilling droplets.

3. Experimental flow protocol:

- MFC is turned on and connected to the PC
- The gas manometer is opened at the desired inlet pressure
- The gas flow is started
- A leak test is performed
- Calibration of the auto-collector is done
- HPLC pump is turned on and set at the desired flow rate (flows only solvent)
- Wait for system stabilization (usually 5 to 10 minutes)
- Solvent flask is exchanged for the reaction feed
- The heating plate is turned on
- The auto-collector is set to collect the desired fraction in the desired timeframe
- When the feed is about to end, the flask is rinsed with reaction solvent(s)
- Finally, the flask is exchanged for a clean one with reaction solvent and washed

4. System stability test

The flow setup described on page S4 was equipped with a Knauer Azura P4.1 pump with an integrated pressure sensor to determine the necessary pressure to efficiently flow the gas (5 to 24 hours long).

Selected Examples:

Flowing stream: MEK/DMSO $6.5 \%(0.1 \mathrm{~mL} / \mathrm{min})+\mathrm{CO}_{2}(5 \mathrm{~mL} / \mathrm{min})$
BPR: 5.17 Bar
Knauer pressure read: 8 bar
Necessary gas inlet pressure to achieve a stable flow: 9 bar
Flowing stream: 0.1 M solution of Toloxatone based epoxy amine precursor in MEK/DMSO $6.5 \%(0.1 \mathrm{~mL} / \mathrm{min})+\mathrm{CO}_{2}(5 \mathrm{~mL} / \mathrm{min})$
BPR: 5.17 Bar
Knauer pressure read: 9 bar
Necessary gas inlet pressure to achieve a stable flow: 10 bar
Considerations: The designed setup proved to be stable at several flow-rates if the inlet pressure was kept above 9 bar. During the reactions, we kept the inlet pressure at 10 bar to maintain a stable system and to avoid the influence of any possible variation of the pressure from the line. This was done mainly because the line is shared within the entire infrastructre and because the solution of different compounds could have properties that could influence the pressure in the reactor.

With regard to the PBR configuration, when the PBR was used in a horizontal position the output of the MFC was not stable, the same applies to the vertical up-flow configuration. The CO_{2} flow rate can be changed in a range between $2 \mathrm{~mL} / \mathrm{min}$ and $20 \mathrm{~mL} / \mathrm{min}$ and the stability of the system is not affected. The system was operated in blank tests at temperatures between 25 and $110^{\circ} \mathrm{C}$. Other kinds of supports were tested for the TBD derivative such as SBA15 and porous glass beads both with and without filler. The problem of these types of supports is that they lead to very high column pressure (>10 bar) under the reaction conditions and therefore the CO_{2} could not flow well with the inlet pressure provided by the infrastructure.

Note about the mixing of the liquid and gas: we could not see and control the segments at the mixing junction since the tubing was stainless steel. However, the tubing before the BPR is made from PTFE and we could observe a pattern reminiscent to a segmented flow. It has to be noted that this does not mean that inside the reactor this pattern is necessarily followed, as the catalyst itself could act as a mixing unit. Furthermore, inside the reactor there surely are multiple phases: the solid catalyst phase, the interphase between catalyst and liquid, the interphase between liquid and gas and the gas itself.

5. First catalytic tests

Table S1. General reaction conditions: the feed, substrate 0.1 M in MEK was flowed at the indicated flow rate and with $20 \mathrm{~mL} / \mathrm{min}$ of CO_{2} (10 bar inlet pressure), the PBR was heated at $70^{\circ} \mathrm{C}$, BPR 40 psi , catalyst amount was 270 mg . The crude was collected at intervals of 30 minutes and in the table is reported the conversion at the steady state (ss) and analyzed by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Entry	substrate	$\mathrm{mL} / \mathrm{min}$	Conversion at ss
1	Glycidol	0.1	75
2	Glycidol	0.05	100
3	Toloxatone precursor	0.1	25
4	Toloxatone precursor	0.05	40

These experiments showed a preliminary difference in the reactivity between glycidol and epoxy amines, and thus more demanding conditions were needed to achieve high yields with epoxy amines.

6. Full optimization table

Table S2. General reaction conditions unless stated otherwise: $p \mathrm{CO}_{2}$ (inlet pressure) 10 bar , MEK, 270 mg of catalyst, $f_{\text {exp }}=1.96 \mathrm{mmol} / \mathrm{g}$ (entry $6: f_{\text {exp }}=2.04 \mathrm{mmol} / \mathrm{g}$; entry $13: f_{\text {exp }}=1.55$ $\mathrm{mmol} / \mathrm{g}$), BPR 75 psi ($=5.17 \mathrm{bar}$), experiments were carried out for 3 h at the steady state (ss), then reactor was washed with the reaction solvent. Conv $=$ conversion at the steady state with fresh catalyst, determined by ${ }^{1} \mathrm{H}$ NMR collecting fractions at the steady state. Unless stated otherwise, the selectivity was $>99 \%$; $\mathrm{BPR}=$ back pressure regulator, $\mathrm{PBR}=$ packed back reactor. NA $=$ not assessed. The yield was calculated according to the fractions collected at the steady state. ${ }^{\text {a }}$ Reaction without DMSO as co-solvent, the reactor clogged. ${ }^{\text {b }}$ BPR 40 psi (2.76 bar).

Entry	Feed 1a (mL/min)	CO_{2} $\left(\mathrm{~mL}_{\mathrm{n}} / \mathrm{min}\right)$	$\begin{gathered} \mathrm{T} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Conc. ($\mathrm{mol} / \mathrm{L}$)	Conv. (\%)	Yield (\%)	$\begin{gathered} \hline \text { TBD@PS } \\ (\mathrm{mmol}) \end{gathered}$	$\begin{gathered} \mathbf{2 a} \\ \left(\mathrm{mmol} \cdot \mathrm{~h}^{-1}\right) \end{gathered}$	Productivity $\left(\mathrm{mmol} \cdot \mathrm{h}^{-1} \cdot \mathrm{mmol}^{2} \cdot \mathrm{cat}^{-1}\right)$
1	0.1	5	80	0.2	80	79	0.551	0.960	1.742
$2^{\text {a }}$	0.1	5	80	0.2	NA	NA	0.551	NA	NA
3	0.1	2	80	0.2	52	NA	0.551	0.624	1.132
4	0.05	5	80	0.2	96	90	0.487	0.622	1.277
5	0.05	5	80	0.1	96	93	0.487	0.311	0.639
6	0.1	5	80	0.15	85	84	0.573	0.765	1.335
7	0.1	5	25	0.15	5	NA	0.551	0.045	0.082
$8^{\text {a }}$	0.1	5	90	0.15	85	73	0.551	0.765	1.388
9	0.1	5	70	0.2	57	50	0.551	0.684	1.241
10	0.1	5	70	0.1	52	NA	0.551	0.312	0.566
11	0.1	20	70	0.1	20	NA	0.434	0.120	0.276
12	0.07	5	80	0.15	88	86	0.551	0.554	1.006
13	0.12	5	90	0.15	79	74	0.551	0.853	1.548
14	0.12	4	90	0.15	77	74	0.551	0.832	1.509
15	0.05	5	80	0.1	0	NA	0	NA	NA
16	0.1	10	70	0.2	48	NA	0.551	0.576	1.045
$17^{\text {b }}$	0.1	10	70	0.1	30	NA	0.434	0.180	0.415
$18^{\text {b }}$	0.1	10	80	0.1	26	NA	0.551	0.156	0.283
$19^{\text {b }}$	0.1	5	70	0.1	27	NA	0.434	0.162	0.373
$20^{\text {b }}$	0.1	20	70	0.1	45	NA	0.551	0.270	0.490

The "ss" did not depend on the gas flow rate but only on the feed flow rate, and was reached after 50 minutes at $0.1 \mathrm{~mL} / \mathrm{min}$ and at 100 minutes at $0.05 \mathrm{~mL} / \mathrm{min}$, respectively. In the latter case we determined by volumetric measurements that the real flow rate at which the HLPC pump was working was $0.0557 \mathrm{~mL} / \mathrm{min}$ and this value was considered in all the calculations. Both increasing the gas flow rate to 10 or $20 \mathrm{~mL} / \mathrm{min}$ or decreasing it to 4 or $2 \mathrm{~mL} / \mathrm{min}$ resulted in a reduced conversion when the epoxy amine precursor of Toloxatone was flowed at 0.1 $\mathrm{mL} / \mathrm{min}$.

During the optimisation we did not optimise the amount of gas that was employed, but surely it has to be present in excess. As indicated in the notes of Table 1 in the MS, we used 1.04 $\mathrm{mmol} / \mathrm{min}$ of CO_{2} in entry 5 . This amount was calculated using the ideal law of gases ($\mathrm{pV}=$ nRT) to make an estimation. Considering that 0.00557 mmol of substrate are being "flowed in" every minute the amount of CO_{2} that is consumed is clearly minimal.

The excess is probably needed to obtain a stable amount of gas in solution and is essentially caused by the limitation of pressure that we could use (max 10 bar). It might be possible that, without limitation of inlet pressure, it would be possible to increase the pressure (by a larger BPR) and thus decrease the flow-rate of the gas. Furthermore, as a future requisite for sustainable processing the recycling of the excess of CO_{2} utilized will be important.

Further notes: Inside the PBR there is likely a triphasic mixture present and it appears that the liquid and the gas have different interactions with the catalyst. In fact, considering the total flow rate (gas + liquid) and the volume of the catalyst, the results would be consistent with a very low residence time. This was clearly not the case, in fact no starting material and/or product was detectable in this time frame. A steady state was achieved after 50 minutes when $0.1 \mathrm{~mL} / \mathrm{min}$ was applied as feed, and after 100 minutes when $0.05 \mathrm{~mL} / \mathrm{min}$ was used as flowrate (see page S8). Regarding the reactor volume, this was filled with a weighed amount of catalyst but at the two termini, glass wool or cotton was used to seal the tube with a minor change of the reactor volume as these "stoppers" were $<1 \mathrm{~mm}$ thick.
7. Example of crude mixture in a typical reaction under continuous flow

Figure S2: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$ containing durene as standard, product (toloxatone) and starting material and selected integration values.

8. Example of a crude mixture with cyclic carbonate byproduct

Figure S3: ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right)$, it contains product (3-(4-chlorophenyl)-5-(hydroxymethyl)oxazolidin-2-one), starting material (4-chloro-N-(oxiran-2-ylmethyl)aniline) and carbonate byproduct (4-(((4-chlorophenyl)amino)methyl)-1,3-dioxolan-2-one). The latter was identified by comparison with reported spectra in literature.

The pattern and the displacement of the ${ }^{1} \mathrm{H}$ NMR signals of carbonates product are characteristic. Specially the multiplet, triplet, doublet of doublets which can be found between 4 ppm and 5 ppm .

9. Scope and additional experiments

Entry	Product identity	C $(\mathrm{mL} / \mathrm{min})$	Conv. (\%)	Yield (\%)	$\begin{gathered} \hline \text { TBD@PS } \\ (\mathrm{mmol}) \end{gathered}$	$\begin{gathered} \text { product } \\ \left(\mathrm{mmol} \cdot \mathrm{~h}^{-1}\right) \end{gathered}$	productivity $\left(\mathrm{mmol} \cdot \mathrm{h}^{-1} \cdot \mathrm{mmol} \cdot \mathrm{cat}^{-1}\right)$	T (h)	Yield (g)
1	2d	0.1	99	99	0.539	0.594	1.102	7.3	0.974
2	2 g	0.1	90	88	0.539	0.81	1.500	2.7	0.465
$3^{\text {a }}$	2 m	0.1	42*	NA	0.539	0.252	0.468	-	NA
$4^{\text {a }}$	2 m	0.05	77*	65	0.539	0.386	0.716	6	0.378
5	2 h	0.05	96	80	0.478	0.288	0.603	7.8	0.426
6	2 j	0.1	18	NA	0.478	0.108	0.226	-	NA
7	2 j	0.05	30	28	0.478	0.09	0.188	7.7	0.161
8	2 b	0.05	80	79	0.478	0.24	0.502	4.3	0.280
9	2 e	0.05	64	60	0.478	0.192	0.402	5.3	0.247
10	2k	0.05	84	79	0.478	0.252	0.527	6.8	0.330
11	2 i	0.05	93	86	0.478	0.279	0.584	5.2	0.368
12	2 c	0.1	80	NA	0.539	0.48	0.891	NA	NA
13	2 c	0.05	99	91	0.478	0.297	0.621	6.4	0.387
$14 *$	2 f	0.05	65*	49	0.478	0.195	0.408	5.6	0.228
15	2 n	0.02	93	NA	0.478	0.112	0.234	-	NA
16	2 n	0.05	67	60	0.478	0.21	0.439	-	NA
$17^{\text {b }}$	2 n	0.08	70	66	0.539	0.336	0.623	6	0.524
$18^{\text {b }}$	21	0.08	60	47	0.539	0.288	0.534	8.8	0.496
19	20	0.05	75	69	0.478	0.225	0.471	7	0.356
20	2p	0.05	74	74	0.478	0.222	0.464	7.3	0.356

Table S3: General reaction conditions unless stated otherwise: $p \mathrm{CO}_{2}$ (inlet pressure) $10 \mathrm{bar}, \mathrm{CO}_{2} \mathrm{~mL} / \mathrm{min}$ (=5.1 - HPLC flowrate), solvent MEK/DMSO $6.5 \% 0.1 \mathrm{M}$ (entry 20.15 M), PBR 270 mg catalyst, $f_{\text {exp }}=$ $1.77 \mathrm{mmol} / \mathrm{g}$ (entry 1-4, 17-18: $f_{\text {exp }}=1.96 \mathrm{mmol} / \mathrm{g}$), BPR 75 psi ($=5.17 \mathrm{bar}$). Conversion at the steady state (ss) with fresh catalyst as determined by ${ }^{1} \mathrm{H}$ NMR collecting fractions at the ss; unless stated otherwise the selectivity was $>99 \%$. For entry $3: 88 \%$. For entry $4: 95 \%$. For entry $14: 92 \%$. T refers to how long the reaction was carried out. Yield $(\mathrm{g})=$ overall yield in gram of the entire experiment. BPR $=$ back pressure regulator, $\mathrm{PBR}=$ packed back reactor. ${ }^{\text {a }}$ Solvent MEK. ${ }^{\mathrm{b}}$ Carried out at $75^{\circ} \mathrm{C}$.

10. Sequential experiments

In a typical experiment, the feed of the desired epoxy amine (0.1 M) dissolved in MEK/DMSO (DMSO 6.5 volume $\%$) was flowed at $0.05 \mathrm{~mL} / \mathrm{min}$ and the CO_{2} (10 bar inlet pressure) was flowed at $5 \mathrm{~mL} / \mathrm{min}$ inside the PBR containing 270 mg of catalyst, and the system heated at 80 ${ }^{\circ} \mathrm{C}$. The system was pressurized at 5 bar and fractions were collected every 20 minutes. Experiments were carried out for the desired time interval and under stable conditions. Then the reactor was washed with the reaction solvent. The collected products fractions were individually analyzed by ${ }^{1} \mathrm{H}$ NMR to determine the conversion, and the combined crude was also analyzed. After the system was washed adequately by the reaction solvent, the flask containing the feed was rinsed with the solvent mixture and finally exchanged for the solvent mixture in order to fully wash the system.

Comment on the washing: the reactor was extensively washed for 6 h to remove any possible trace of product in the reactor. The eluting phase was checked by TLC to ensure no product remained inside the reactor to avoid possible cross-contamination. An additional confirmation was obtained by comparing the FT-IR analysis of the fresh catalyst with the used one (see Figure S4 on page S14).

11. Catalyst synthesis

Freshly distilled oxiran-2-ylmethanol (37.55 mmol , 1 equiv) was added to a stirred solution of 1,3,4,6,7,8-hexahydro- 2 H -pyrimido [1,2-a] pyrimidine (37.55 mmol , 1 equiv) in toluene (100 mL) at $50^{\circ} \mathrm{C}$. The reaction mixture was stirred at $50^{\circ} \mathrm{C}$ for 24 h and filtered through a PTFE filter (0.45 micron), and the solvent was removed under reduced pressure. Then NaH ($95 \%, 3$ equiv) was added portion-wise to a stirred solution of 3-(3,4,7,8-tetrahydro- 2 H -pyrimido[1,2-a]-pyrimidin- $1(6 \mathrm{H})$-yl)propane-1,2-diol (1 equiv) at $0^{\circ} \mathrm{C}$ and under a N_{2} atmosphere. The resultant suspension was stirred for 15 min and then added through a cannula to a closed flask containing the respective resin support (porous polystyrene 5.5% DVB, Aldrich, 16-50 Mesh, $5.5 \mathrm{mmol} / \mathrm{g}, 0.5$ equiv) in DMF (100 mL) under N_{2}. Then, the reaction mixture was shaken for 2 days at rt. Hereafter, the catalyst was filtered and washed with water (200 mL), water:THF 1:4 (200 mL), MeOH (200 mL) and DCM (200 mL). The obtained heterogeneous catalyst was characterized by IR to assess the presence of $\mathrm{C}=\mathrm{N}$ "stretching" absorptions. Elemental analysis was additionally performed to quantify the number of active sites (functionalization degree, f) on the support.

Precursor 8-tetrahydro-2H-pyrimido[1,2-a]pyrimidin-1(6H)-yl)propane-1,2-diol:

Prepared according a reported procedure ${ }^{2}$, Yield: $99 \% .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta=1.75-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.89-1.98(\mathrm{~m}, 2 \mathrm{H}), 3.07-3.12(\mathrm{~m}, 4 \mathrm{H}), 3.15-$ 3.28 (m, 4H), 3.34-3.45 (dd, 2H), $3.48-3.49$ (d, 1H), $3.67-3.72(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}-$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=22.7,22.8,42.2,47.9,48.2,48.4,53.3,63.7$, 71.0, 152.7.

Synthesis of porous polystyrene supported catalyst: NaH 95\% (3 equiv) was added portion-wise to a stirred solution of 3-(3,4,7,8-tetrahydro-2H-pyrimido[1,2-a]-pyrimidin-1($6 H$)-yl)propane-1,2diol (1 equiv) at $0{ }^{\circ} \mathrm{C}$ and under a N_{2} atmosphere. The suspension was stirred for 15 min and then added through a cannula to a sealed flask containing (chloromethyl)polystyrene (porous polystyrene
 5.5% DVB, Aldrich, $16-50$ Mesh, $5.5 \mathrm{mmol} / \mathrm{g}$, SKU 63868-10G, CAS 55844-94-5, 0.5 equiv) in DMF (200 mL) under N_{2}. The suspension was shaken for 5 days at r.t. CHNO (\%) Analyses: C 69.62, H 7.43, N 7.47, O 3.02; $f_{\text {exp: }} 1.77 \mathrm{mmol} / \mathrm{g}$; FT-IR (neat, v in cm^{-1}): 3350, 2922, 1597, 1510, 1321, 1085, 813.

[^1]
12. Analyses of the catalyst

Figure S4: FT-IR spectroscopic analysis of the fresh catalyst (blue color) and the used one (red color). No significant difference was detected by comparison of the fresh and the used catalyst in the reaction. Thus, the product did not contaminate the catalyst in sequential runs.

Table S4: Elemental analysis of fresh and used catalyst.

Element \rightarrow	C	H	N	Cl	N / C	Cl / C
Fresh catalyst	69.62	7.43	7.47	2.19	0.107	0.0315
Used catalyst	67.21	7.56	7.08	2.04	0.105	0.0303

NB. The N/C and Cl / C ratios do not show any significant difference.

Figure S5. SEM pictures of polystyrene beads morphology of the Merrifield resin (5.5\% DVB) with $120,315 \mathrm{au}$.

The presence of crystals of NaCl could justify the decreased selectivity towards the oxazolidinone when the substrate is not well-dried, and, over time due, to water accumulation inside the reactor. Traces of water present can locally dissolve NaCl thus releasing the halogen nucleophile that can ring open the epoxide and catalyze the formation of a cyclic carbonate rather than the target carbamate.

In general, the presence of water favors the formation of the carbonate (4\% identified during the preparation of Toloxatone). This was determined by comparing known ${ }^{1} \mathrm{H}$ NMR spectra with the experimental one. It was not possible to fully remove the NaCl crystals by washing with water or water/organic solvent mixtures (water/dioxane and water/THF), with these crystals originating from the grafting of the TBD monomer. The intrinsic properties of the polymer made the removal of the salt difficult. However, this did not significantly affect the selectivity if the epoxy amine was well-dried.

13. Synthesis and characterization of oxazolidinones products

General procedure: In a typical experiment, the feed of the desired epoxy amine dissolved in MEK/DMSO (DMSO at $6.5 \mathrm{v} \%$) was flowed at $0.05 \mathrm{~mL} / \mathrm{min}$ and the CO_{2} (10 bar inlet pressure) was flowed at $5 \mathrm{~mL} / \mathrm{min}$ inside the PBR (containing 270 mg of catalyst) heated at 80 ${ }^{\circ} \mathrm{C}$. The system was pressurized at 75 psi . After the desired volume of substrate feed was flowed through the system, the flask containing the feed was rinsed with the solvent mixture and finally the feed was exchanged for the solvent mixture in order to fully wash the system. Then all the fractions were joined and the solvents removed. DMSO was then removed first by washing with water (3 times) and brine (1 time). The organic fractions were joined and the solvent removed under reduced pressure. Minor traces of DMSO were removed under vacuum and the crude purified by flash chromatography to get the desired oxazolidinone.

5-(hydroxymethyl)-3-(m-tolyl)oxazolidin-2-one (2a) (Toloxatone). ${ }^{3}$ Synthesized according
 the general procedure ($\left.0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 1.560 \mathrm{~g}$, White solid, 93% yield. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~s}, 1 \mathrm{H})$, $7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 1 \mathrm{H}), 4.76$ $-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.79-3.69(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.70$ $(\mathrm{m}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.77(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.9,139.0,138.0,128.9,125.1,119.1,115.5,72.9,62.8,46.5,21.6$. FT-IR (neat, $v \mathrm{in} \mathrm{cm}^{-}$ $\left.{ }^{1}\right): 1724(\mathrm{C}=\mathrm{O})$.

Methyl 3-(5-(hydroxymethyl)-2-oxooxazolidin-3yl)benzoate (2b). ${ }^{4}$ Synthesized according
 the general procedure ($0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}$) 0.280 g , white solid, 79% yield. ${ }^{1}$ H NMR (400 MHz , DMSO- d_{6}) $\delta 7.29(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=$ $8.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.70$ (ddd, $J=8.3,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.73-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}$, $J=8.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.61-$ $3.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- d_{6}) δ 166.0, 154.5, 139.0, 130.3, 129.4, 123.8, 122.1, 118.0, 73.4, 61.7, 52.3, 46.0. FT-IR (neat, v in cm^{-1}): 1711 (C=O) ESI-MS $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}_{5}\right]^{+}$: calcd, 274.0686; found, 274.0686.

5-(hydroxymethyl)-3-(3-methoxyphenyl)oxazolidin-2-one (2c). ${ }^{5}$ Synthesized according the
 general procedure $\left(0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 0.387 \mathrm{~g}$, white solid, 91% yield. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta 7.29$ (t, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{dd}, J=8.2,0.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.70(\mathrm{ddd}, J=8.3,2.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.73-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=8.9,6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.50(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO- d_{6})

[^2]5-(hydroxymethyl)-3-(4-methoxyphenyl)oxazolidin-2-one (2d). ${ }^{6}$ Synthetized according the general procedure ($\left.0.1 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 0.974 \mathrm{~g}$,
 white solid, 99% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}) \delta 7.51-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.89(\mathrm{~m}, 2 \mathrm{H})$, $5.22-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.59(\mathrm{~m}, 1 \mathrm{H}), 4.04(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) δ 155.4, 154.6, 131.8, 119.7, 114.1, 73.0, 61.7, 55.2, 46.4, 39.5 . FT-IR (neat, v in cm^{-1}): $1714(\mathrm{C}=\mathrm{O})$.

3-(4-acetylphenyl)-5-(hydroxymethyl)oxazolidin-2-one (2e). ${ }^{7}$ Synthesized according the
 general procedure $\left(0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 0.247 \mathrm{~g}$, white solid, 60% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.10$ $7.94(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.63(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{t}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.81$ $-4.72(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.75-$ $3.66(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.55(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- d_{6}) δ 196.6, 154.3, 142.6, 131.3, 129.4, 116.9, 73.4, 61.6, 45.9, 26.5. FT-IR (neat, v in cm^{-1}): 1738 (C=O), 1662.

Methyl 4-(5-(hydroxymethyl)-2-oxooxazolidin-3yl)benzoate (2f). Synthesized according
 the general procedure $\left(0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right)$ 0.228 g , White solid, 47% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSOd_{6}): $\delta 7.97$ (d, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.72$ (d, $\left.J=8.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.30-$ $5.19(\mathrm{~m}, 1 \mathrm{H}), 4.79-4.66(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.88$ (dd, $J=9.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 166.2,154 ., 143.2,130.7,124.3$, 117.5, 73.9, 62.1, 52.4, 46.4, 40.0. FT-IR (neat, v in cm^{-1}): 1739 (C=O), 1701 ESI-MS $\left[\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NNaO}_{5}+\mathrm{H}\right]^{+}$: calcd, 274.0686; found, 274.0695.

3-(4-fluorophenyl)-5-(hydroxymethyl)oxazolidin-2-one (2g). ${ }^{8}$ Synthesized according the
 general procedure ($\left.0.1 \mathrm{~mL} / \mathrm{min}, 0.15 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 0.465 \mathrm{~g}$, White solid, 88% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.64-$ 7.54 (m, 2H), $7.28-7.18$ (m, 2H), $5.20(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-$ $4.64(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=8.7,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.72-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.51(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO- d_{6}) δ 157.0, 154.6, 135.0, 119.8, 119.7, 115.6, 115.4, 73.1, 61.6, 46.2. FT-IR (neat, v in cm^{-1}): $1724(\mathrm{C}=\mathrm{O})$.

3-(4-chlorophenyl)-5-(hydroxymethyl)oxazolidin-2-one (2h). ${ }^{7}$ Synthesized according the
 general procedure ($\left.0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 0.426 \mathrm{~g}$, White solid, 80% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.64-$ $7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}, 2 \mathrm{H}), 5.27-5.16(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.64$ $(\mathrm{m}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=8.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.63$

[^3]$(\mathrm{m}, 1 \mathrm{H}), 3.63-3.50(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- d_{6}) δ 154.4, 137.5, 128.7, 127.1, 119.3, 73.2, 61.6, 45.9. FT-IR (neat, v in cm^{-1}): $1724(\mathrm{C}=\mathrm{O})$.

3-(4-bromophenyl)-5-(hydroxymethyl)oxazolidin-2-one (2i). ${ }^{9}$ Synthesized according the
 general procedure $\left(0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 0.368 \mathrm{~g}$, light yellow solid, 86% yield. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- d_{6}) δ $7.65-7.50(\mathrm{~m}, 4 \mathrm{H}), 5.27-5.13(\mathrm{~m}, 1 \mathrm{H}), 4.77-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.07$ $(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ 154.4, 138.0, 131.6, 119.7, 115.1, 73.2, 61.6, 45.9 FT-IR (neat, v in cm^{-1}): $1709(\mathrm{C}=0)$.

5-(hydroxymethyl)-3-(2-methoxyphenyl)oxazolidin-2-one (2j). Synthesized according the
 general procedure $\left(0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 0.161 \mathrm{~g}$, white solid, 28% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 7.34-7.24(\mathrm{~m}, 2 \mathrm{H})$, $7.15-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.91(\mathrm{~m}, 1 \mathrm{H}), 5.19(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65$ $(\mathrm{m}, 1 \mathrm{H}), 3.94-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.51(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 156.1,154.7,128.6,128.2,126.2,120.5$, 112.5, 74.0, 61.9, 55.7, 48.0. FT-IR (neat, v in cm^{-1}): 1709 (C=O) ESI-MS $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NNaO}_{4}+\mathrm{H}\right]^{+}$: calcd, 246.0737; found, 246.0736.

5-(hydroxymethyl)-3-(o-tolyl)oxazolidin-2-one (2k). ${ }^{7}$ Synthesized according the general procedure ($0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL}_{\mathrm{n}} / \mathrm{min} \mathrm{CO}_{2}$) 0.330 g , white solid,
 79% yield. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 7.35-7.18$ (m, 4H), 5.24 $(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.65(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.64$ $(\mathrm{m}, 2 \mathrm{H}), 3.61-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(101 \mathrm{MHz}$, DMSO- d_{6}) $\delta 155.6,136.6,135.7,130.9,127.6,126.7,126.7,73.9,61.8$, 48.5, 17.4. FT-IR (neat, v in cm^{-1}): $1736(\mathrm{C}=\mathrm{O})$.

5-(hydroxymethyl)-3-(naphthalen-1-yl)oxazolidin-2-one (21). ${ }^{7}$ Synthesized according the
 general procedure ($0.08 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}$) $75^{\circ} \mathrm{C}, 0.496$ g , pink solid, 47% yield. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 8.03-7.98$ $(\mathrm{m}, 2 \mathrm{H}), 7.98-7.93(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.53(\mathrm{~m}, 4 \mathrm{H}), 5.39(\mathrm{t}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.88-4.81(\mathrm{~m}, 1 \mathrm{H}), 4.15-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=8.4,5.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.70-3.61(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) δ 156.5, 134.5, 134.0, 129.8, 128.3, 128.1, 126.7, 126.5, 125.8, 124.9, 123.0, 74.2, 61.9, 49.6. FT-IR (neat, v in cm^{-1}):

5-(hydroxymethyl)-3-phenyloxazolidin-2-one (2 m). ${ }^{10}$ Synthesized according the general
 procedure ($0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}$) 0.378 g , white solid, 65% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.33$ $(\mathrm{m}, 2 \mathrm{H}), 7.11(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{t}, J=5.7,1 \mathrm{H}), 4.70(\mathrm{~m}, 1 \mathrm{H}), 4.08(\mathrm{t}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H})$), $3.84(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.51$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- d_{6}) δ 154.9, 138.6, 128.9, 123.2, 117.7, 73.1, 61.6, 46.0. FT-IR (neat, v in cm^{-1}): 1709 ($\mathrm{C}=\mathrm{O}$).

[^4]
according the general procedure ($0.08 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}$) $75^{\circ} \mathrm{C}, 0.524 \mathrm{~g}$, White solid, 66% yield. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 2 \mathrm{H}), 4.86-4.76(\mathrm{~m}, 1 \mathrm{H})$, $4.06-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.66(\mathrm{~m}, 3 \mathrm{H}), 3.13-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.65-$ $2.55(\mathrm{~m}, 1 \mathrm{H}), 1.35-1.15(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , DMSO- d_{6}) $\delta 156.6,147.4,147.2,131.9,129.0,124.0,123.9,73.8,61.5,49.2,30.7$, 28.0, 27.6, 24.3, 24.2, 23.9, 23.7. FT-IR (neat, v in cm^{-1}): 1720 (C=O)

ESI-MS $\left[\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3}+\mathrm{H}\right]^{+}$: calcd, 278.1757; found, 278.1751.
3-(2,4-dimethylphenyl)-5-(hydroxymethyl)oxazolidin-2-one (20). Synthesized according
 the general procedure $\left(0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min} \mathrm{CO}_{2}\right) 0.356 \mathrm{~g}$, White solid, 69% yield. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 7.17(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.17(\mathrm{~m}$, $1 \mathrm{H}), 4.74-4.60(\mathrm{~m}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 1 \mathrm{H}), 3.72-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.61-$ $3.51(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, DMSO- d_{6}) δ 155.6, 137.0, 135.3, 134.0, 131.3, 127.2, 126.6, 73., 61.8, 48.6, 20.5, 17.3. FTIR (neat, v in cm^{-1}): $1723(\mathrm{C}=\mathrm{O})$ ESI-MS $\left[\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NNaO}_{3}+\mathrm{H}\right]^{+}$: calcd, 244.0944; found, 244.0956.

3-(5-(hydroxymethyl)-2-oxooxazolidin-3-yl)benzonitrile (2p). Synthesized according the
 general procedure ($0.05 \mathrm{~mL} / \mathrm{min}, 0.1 \mathrm{M}, 5 \mathrm{~mL} / \mathrm{min}_{\mathrm{CO}}^{2}$) 0.356 g , white solid, 74% yield. ${ }^{1} \mathbf{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 8.00$ (s, $1 \mathrm{H}), 7.95-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.51(\mathrm{~m}, 2 \mathrm{H}), 5.29-5.17(\mathrm{~m}, 1 \mathrm{H})$, $4.81-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=6.1,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.53(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101
MHz, DMSO- d_{6}) δ 154.4, 139.4, 130.3, 126.6, 122.1, 120.5, 118.6, 111.8, 73.5, 61.6, 45.8. FT-IR (neat, v in cm^{-1}): $1708(\mathrm{C}=\mathrm{O})$ ESI-MS $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{NaO}_{3}\right]^{+}$: calcd, 241.0584; found, 241.0584.

14. Synthesis and characterization of intermediate epoxy amines

General Procedure: ${ }^{11} \mathrm{NaH}\left(95 \%, 1.1\right.$ equiv) was added at $0{ }^{\circ} \mathrm{C}$ to a stirred solution of the desired starting material (1 equiv, 0.5 M) and imidazole (0.03 equiv) in dry THF. Then the suspension was warmed up to r.t. and stirred at the same temperature for 30 min . EtOAc was added to this mixture, after which it was washed with water (3 times). The organic fractions were joined and dried over $\mathrm{Na}_{2} \mathrm{SO} 4$, then filtered and the solvents removed under vacuum. The sample was further dried overnight under vacuum to get the epoxy amine target.

3-methyl-N-(oxiran-2-ylmethyl)aniline (1a). ${ }^{2}$ Yellow oil, 1.320 g , 89% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.56(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-$ $6.42(\mathrm{~m}, 2 \mathrm{H}), 3.80(\mathrm{bs}, 1 \mathrm{H}), 3.56-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.14(\mathrm{~m}, 2 \mathrm{H})$, $2.85-2.76(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13}$ C NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 148.0, 139.1, 129.3, 118.9, 113.9, 110.2, 51.1, 45.4, 45.1, 21.7.

Methyl 3-((oxiran-2-ylmethyl)amino)benzoate (1b). Yellow oil, $0.273 \mathrm{~g}, 91 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39(\mathrm{dt}, J=7.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.28(\mathrm{~m}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81$ (ddd, $J=8.1,2.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 1 \mathrm{H})$, $3.29-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 167.5,148.0,131.3,129.4,119.2$, 117.8, 113.4, 52.2, 50.9, 45.4, 45.0. FT-IR (neat, v in cm^{-1}): 3390, 2951, 1712, 1605, 1234, 751 ESI-MS $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NNaO}_{3}\right]^{+}$: calcd, 230.0788; found, 230.0782.

3-Methoxy-N-(oxiran-2-ylmethyl)aniline (1c). ${ }^{12}$ Brown oil, $0.820 \mathrm{~g}, 99 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR

$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{ddd}, J=8.2,2.4$, $0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{ddd}, J=8.0,2.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{t}, J=2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.89(\mathrm{bs}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.58-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.17(\mathrm{~m}$, 2H), $2.84-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 160.9,149.3,130.1,106.1,103.0,99.1,55.1,51.0,45.4,45.0$.

4-Methoxy-N-(oxiran-2-ylmethyl)aniline (1d). ${ }^{13}$ Brown oil, $0.794 \mathrm{~g}, 95 \%$ yield. ${ }^{1} \mathbf{H}$ NMR
 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.85-6.70(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.55(\mathrm{~m}, 1 \mathrm{H}), 3.74$ (s, 3H), $3.66-3.55$ (bs, 1H), $3.54-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.10(\mathrm{~m}, 2 \mathrm{H})$, $2.83-2.77(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 154.0,140.2,115.6,113.8,54.8,51.9,47.6,45.6$.

[^5]1-(4-((Oxiran-2-ylmethyl)amino)phenyl)ethan-1-one (1e). ${ }^{8}$ White solid, $0.401 \mathrm{~g} \mathrm{93} \mathrm{\%}$ yield.
 ${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95-7.79(\mathrm{~m}, 2 \mathrm{H}), 6.73-6.57(\mathrm{~m}$, $2 \mathrm{H}), 4.41(\mathrm{bs}, 1 \mathrm{H}), 3.72-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.18(\mathrm{~m}, 2 \mathrm{H}), 2.92-$ $2.81(\mathrm{~m}, 1 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 1 \mathrm{H}), 5.54(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 196.5,151.9,130.9,127.4,111.8,50.7,45.3,44.3,26.2$.

Methyl 4-((oxiran-2-ylmethyl)amino)benzoate (1f). White solid, $0.837 \mathrm{~g}, 98 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$
 NMR (400 MHz, DMSO- d_{6}) $\delta 7.73-7.61(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.70(\mathrm{~m}$, $1 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 2 \mathrm{H}), 3.74(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.49-3.40(\mathrm{~m}$, $1 \mathrm{H}), 3.18-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.54(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C NMR (101 MHz, DMSO- d_{6}) δ 204.0, 190.5, 168.6, 153.8, $148.8,88.9,88.2,82.3,81.8,77.8,77.6,77.4,77.2,77.0,76.7,76.5$. FT-IR (neat, v in cm^{-1}): 3362, 2946, 1679, 1600, 1278 ESI-MS $\left[\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NNaO}_{3}\right]^{+}$: calcd, 230.0788; found, 230.0784.

4-Fluoro-N-(oxiran-2-ylmethyl)aniline (1g). ${ }^{8}$ Violet oil, $0.824,99 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.93-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.54(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{bs}, 1 \mathrm{H})$, $3.56-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.73-$ $2.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 116.0,115.8,114.1,114.0$, 77.5, 77.2, 76.8, 51.1, 45.9, 45.5.

4-chloro-N-(oxiran-2-ylmethyl)aniline (1h). ${ }^{13}$ Yellow oil, $0.257 \mathrm{~g} 68 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.52(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{bs}, 1 \mathrm{H})$, $3.58-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.14(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ $2.65(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.6,129.3,122.6,114.2$, 51.0, 45.0, 45.2.

4-Bromo-N-(oxiran-2-ylmethyl)aniline (1i). ${ }^{8}$ Yellow oil, $0.416 \mathrm{~g}, 90 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.59-6.45(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{bs}, 1 \mathrm{H})$, $3.58-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.78(\mathrm{~m}, 1 \mathrm{H}), 2.71-$ $2.63(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0,132.1,114.7,109.6$, 50.9, 45.4, 45.1.

2-Methoxy-N-(oxiran-2-ylmethyl)aniline (1j). ${ }^{14}$ Dark oil, $99 \% 0.850 \mathrm{~g}, 98 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.88(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{dd}, J=7.9,1.5$
 $\mathrm{Hz}, 1 \mathrm{H}), 6.73-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{bs}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.48(\mathrm{~m}$, $1 \mathrm{H}), 3.31-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.0,137.8,121.2,117.1,110.0,109.6,55.4$, 51.1, 45.5, 45.1. FT-IR (neat, v in cm^{-1}): 3413, 2936, 1061, 1511, 1220. ESI-MS $\left[\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NO}_{2}\right]^{+}$: calcd, 180.1019; found, 180.1019

[^6]2-Methyl-N-(oxiran-2-ylmethyl)aniline (1k). ${ }^{8}$ Violet oil, $0.494 \mathrm{~g}, 82 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400
 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.72-6.67$ $(\mathrm{m}, 1 \mathrm{H}), 6.67-6.62(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{bs}, 1 \mathrm{H}), 3.63-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.33-$ $3.22(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\delta 145.9,130.1,127.3,122.50,117.7,110.0,77.5$ 77.2, 76.8, 51.1, 45.6, 45.1, 17.6.
\mathbf{N}-(oxiran-2-ylmethyl)naphthalen-1-amine (11). ${ }^{8}$ Brownish solid, $1.01 \mathrm{~g}, 94 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$
 NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.38$ $-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{bs}, 1 \mathrm{H}), 3.77-3.64(\mathrm{~m}, 1 \mathrm{H})$, $3.45-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dd}, J=3.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79-2.74(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.2,134.5,128.8,126.6,126.0,125.0$, 123.7, 120.1, 118.2, 104.8, 51.0, 45.7, 45.2.
\mathbf{N}-(oxiran-2-ylmethyl)aniline (1m). ${ }^{8,13}$ Transparent oil, $0.777 \mathrm{~g}, 97 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.74(\mathrm{tt}, J=7.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.68-$
 $6.62(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{bs}, 1 \mathrm{H}), 3.58-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 3.24$ $-3.18(\mathrm{~m}, 1 \mathrm{H}), 2.85-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.67(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.0,129.5,118.1,113.1,77.5,77.2,76.8,51.1,45.5$, 45.1.

2,6-Di-iso-propyl-N-(oxiran-2-ylmethyl)aniline (1n). Orange oil, 0.373 g , 99% yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.04(\mathrm{~m}, 3 \mathrm{H}), 3.37-3.17(\mathrm{~m}, 4 \mathrm{H}), 2.91$ (dd, $J=12.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=5.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.76(\mathrm{~m}$, $1 \mathrm{H}), 1.29-1.22(\mathrm{~m}, 12 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.9,142.4$, 124.2, 123.8, 53.2, 51.7, 45.6, 27.7, 24.4, 24.4. FT-IR (neat, v in cm^{-1}): 2960, 1447, 1255, 752 ESI-MS $\left[\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}+\mathrm{H}\right]^{+}$: calcd, 234.1863; found, 234.1852.

2,4-Dimethyl-N-(oxiran-2-ylmethyl)aniline (10). Dark oil, $0.382 \mathrm{~g}, 90 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR
 $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.61$ $-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.20(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.73-2.69(\mathrm{~m}$, $1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 143.6$, 131.3, 127.5, 126.8, 122.7, 110.3, 51.2, 45.6, 45.4, 20.4, 17.5. FT-IR (neat, v in cm^{-1}): 3409, 2917, 1618, 1513 ESI-MS $\left[\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NO}\right]^{+}$: calcd,178.1226; found, 178.1218.

3-((Oxiran-2-ylmethyl)amino)benzonitrile (1p). Yellow oil, $0.310 \mathrm{~g}, 75 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.86-$
 $6.80(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{bs}, 1 \mathrm{H}), 3.63-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 2 \mathrm{H})$, $2.84(\mathrm{dd}, J=4.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.64(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.2,130.1,121.5,119.5,117.6,115.2,50.7,45.3$, 44.7. FT-IR (neat, v in cm^{-1}): 3380, 2919, 2226, 1601, 1491, 780 ESIMS $\left[\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}\right]^{+}$: calcd, 175.0866; found, 175.0874.

15. Synthesis and characterization of intermediate halohydrins

General procedure: ${ }^{2}$ To a stirred solution of the respective aniline (25.0 mmol) in isopropanol ($6.4 \mathrm{~mL}, 2 \mathrm{M}$) at $0^{\circ} \mathrm{C}$ was slowly added epichlorohydrin (50.0 mmol) and then the reaction mixture was further stirred at r.t. for 16 h . The solvent was evaporated and the mixture was purified by column chromatography over silica to obtain the crude halohydrin product.

3-Methyl-N-(oxiran-2-ylmethyl)aniline (1'a). ${ }^{2}$ Orange oil, $5.77 \mathrm{~g}, 57 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR
 $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(\mathrm{~m}, 1 \mathrm{H}), 6.64(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~m}, 2 \mathrm{H}), 3.89$ (bs, 1H), $3.61-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{~m}$, $1 \mathrm{H}), 2.40-2.33(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0$, 139.1, 129.3, 118.9, 113.9, 110.2, 51.1, 45.4, 45.1, 21.7.

Methyl 3-((3-chloro-2-hydroxypropyl)amino)benzoate (1'b). Yellowish oil, $2.05 \mathrm{~g}, 51 \%$
 yield. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{ddd}, J=7.6,1.6,1.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.87$ (ddd, J $=8.1,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.62$ $(\mathrm{m}, 2 \mathrm{H}), 3.44(\mathrm{dd}, J=13.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=13.2,7.3$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 167.6, 147.90, 131.3, 129.5, 119.5, 118.1, 113.9, 77.5, 77.2, 76.8, 69.9, 52.3, 47.8, 47.2. FT-IR (neat, v in cm^{-1}): 3393, 1702, 1604, 1437, 1282. ESI-MS $\left[\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NO}+\mathrm{H}\right]^{+}$: calcd, 244.0735; found, 244.0731.

1-Chloro-3-((3-methoxyphenyl)amino)propan-2-ol (1'c). ${ }^{15}$ Dark oil, $0.996 \mathrm{~g}, 26 \%$ Yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.30$ (dddd,
 $J=16.8,8.0,2.3,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.22(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{dd}, J=13.3,4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.24 (dd, $J=13.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (bs, 1H). ${ }^{13}$ C NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 130.1,106.1,103.2,99.2,69.6,54.7,47.6,46.9$.

1-Chloro-3-((4-methoxyphenyl)amino)propan-2-ol (1'd). ${ }^{13}$ Dark oil, $2.63 \mathrm{~g} 50 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.82-6.77(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.61$ (m, $2 \mathrm{H}), 4.11-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.71-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.34$ (dd, $J=13.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.19 (dd, $J=13.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.07-$ $2.33(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.9,142.0,115.1$, 115.0, 70.00 55.9, 48.4, 47.8.

1-(4-((3-Chloro-2-hydroxypropyl)amino)phenyl)ethan-1-one (1'e). Transparent oil 2.05 g , (

[^7]26.2. FT-IR (neat, v in cm ${ }^{-1}$): $3300,1644,1587,1279,1174$. ESI-MS $\left[\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClNO}_{2}\right]^{+}$: calcd, 228.0786; found, 228.0790.

Methyl 4-((3-chloro-2-hydroxypropyl)amino)benzoate (1'f). White solid. $2.05 \mathrm{~g} 45 \%$ Yield
 ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99-7.78(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.55$ $(\mathrm{m}, 2 \mathrm{H}), 4.56-4.48(\mathrm{bs}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $3.74-3.61$ (m, 2H), 3.46 (ddd, $J=13.4,6.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ (ddd, $J=13.4,7.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,151.8,131.8,119.2,112 .$, 69.9, 51.8, 47.6, 46.4. FT-IR (neat, v in cm^{-1}): 3354, 2947, 1678, 1607, 1280, 1107. ESI-MS $\left[\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{ClNNaO}_{3}\right]^{+}$: calcd, 266.0554; found, 266.0551.

1-Chloro-3-((4-fluorophenyl)amino)propan-2-ol (1'g). ${ }^{16}$ Violet oil, 2.62 g 51\% Yield. ${ }^{\mathbf{1}} \mathbf{H}$
 NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95-6.87(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.64(\mathrm{~m}$, $2 \mathrm{H}), 4.13-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.70(\mathrm{bs}, 1 \mathrm{H}), 3.70-3.59(\mathrm{~m}, 2 \mathrm{H})$, $3.34(\mathrm{dd}, J=13.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=13.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.8,144.2,116.2,115.9,115.2,115.2$, 69.7, 48.61, 47.7, 31.0.

1-Chloro-3-((4-chlorophenyl)amino)propan-2-ol (1'h). ${ }^{13}$ Yellow oil, $3.9 \mathrm{~g}, 45 \%$ Yield. ${ }^{\mathbf{1}} \mathbf{H}$
 Cl NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.54(\mathrm{~m}$, $2 \mathrm{H}), 4.11-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=13.2$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 146.4,129.3,123.1,114.6,69.9,47.8,47.4$.

1-chloro-3-((4-bromophenyl)amino)propan-2-ol (1'i). ${ }^{17}$ Yellow oil, $2.1 \mathrm{~g}, 54 \%$ yield. ${ }^{\mathbf{1}} \mathbf{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31$ - 7.21 (m, 2H), $6.56-6.48$ (m, $2 \mathrm{H}), 4.09-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.33$ (dd, $J=13.2$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.19$ (dd, $J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.06-2.21(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.9,132.2,115.0,110.0,69.9$, 47.8, 47.2.

1-Chloro-3-((2-methoxyphenyl)amino)propan-2-ol (1'j). ${ }^{18}$ Dark oil, $2.62 \mathrm{~g}, 49 \%$ Yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.88(\mathrm{td}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (dd, $J=8.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.53(\mathrm{bs}, 1 \mathrm{H}), 4.15-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.61(\mathrm{~m}$, $2 \mathrm{H}), 3.45-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{bs}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 121.4,117.5,110.4,109.8,70.1,55.6,47.9,47.1$.

1-Chloro-3-(o-tolyl-amino)propan-2-ol (1'k). ${ }^{19}$ Dark oil, $1.79 \mathrm{~g}, 19 \%$ Yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.74-6.68$ $(\mathrm{m}, 1 \mathrm{H}), 6.68-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{bs}, 1 \mathrm{H}), 3.76$ $-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.48-3.39(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13}$ C NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 130.5,127.3,118.0,109.8,67.8,48.0$, 47.2, 17.6.

[^8]1-Chloro-3-(naphthalen-1-ylamino)propan-2-ol (1'l). ${ }^{20}$ Violet oil, $1.26 \mathrm{~g}, \mathbf{2 6 \%}$ Yield. ${ }^{\mathbf{1}} \mathbf{H}$
 NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $87.90-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.42(\mathrm{~m}, 2 \mathrm{H})$, $7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.20(\mathrm{~m}, 1 \mathrm{H})$, $3.82-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.61$ (bs, 1H). ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 129.2,126.9,126.4,125.6$, 120.4, 119.1, 105.8, 77.8, 77.5, 77.2, 70.2, 48.4, 47.9.

1-Chloro-3-((2,6-di-iso-propylphenyl)amino)propan-2-ol (1'n). ${ }^{22}$ Reddish solid, 2.94 g ,
 44% Yield. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.15-7.03(\mathrm{~m}, 3 \mathrm{H}), 4.10-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.38-3.22(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.03(\mathrm{~m}$, $1 \mathrm{H}), 3.03-2.95(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{bs}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.0,142.2,124 ., 123.81,70.9,54.4,47.9$, 27.7, 24.4.

1-Chloro-3-((2,4-dimethylphenyl)amino)propan-2-ol (1'o). ${ }^{23}$ Dark oil, $2.54 \mathrm{~g}, 37 \%$
 Yield. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.95(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{s}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.62$ $(\mathrm{m}, 2 \mathrm{H}), 3.44-3.37(\mathrm{~m}, 1 \mathrm{H}), 3.16-2.50(\mathrm{bs}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.16$ $(\mathrm{s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.3,131.4,127.6,123.2$, 110.9, 69.9, 48.0, 47.7, 20.5, 17.6.

3-((3-Chloro-2-hydroxypropyl)amino)benzonitrile (1'p). Yellow oil, $3.20 \mathrm{~g}, \mathbf{3 6 \%}$ Yield. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{dt}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{bs}, 1 \mathrm{H}), 4.15-4.03(\mathrm{~m}$, $1 \mathrm{H}), 3.74-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.44-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.28-3.17(\mathrm{~m}, 1 \mathrm{H})$, $2.57(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.3$, 130.1, 121.4, 119.5, 117.8, 115.4, 112.9, 69.8, 47.4, 46.6. FT-IR (neat, v in cm $^{-1}$): 3387, 2228, 1724, 1601, 1268. ESI-MS $\left[\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{ClN}_{2} \mathrm{NaO}\right]^{+}$: calcd, 233.0452; found, 233.0443.

[^9]
16. Schematic illustration of the vent oven

Figure S6. The figure shows the schematic set up of the ventilating oven. A digital thermometer was used to measure the temperature at different heights (h) in order to decide where to position the reactor. The oven was heated by an IKA heating plate, the oven was located on the top of the plate and the IKA sensor placed close to the reactor and inserted from a hole in the oven roof. To ensure a homogeneous temperature, compressed air was flowed from a channel located at the lower part of the oven and kept at a low flow during the experiments. $\mathrm{d}=$ diameter.

17. Auto-collector programming

A raspberry pi 4 b was used as microcontroller, it was connected to a the Microservo SG90 (average price $\sim 3 €$ at Amazon). The Servo was located in a polystyrene platform covered with Aluminum tape to protect it from any possible solvent leakage. The servo was controlled by a code written in Python using Mu a simple python editor. The code was modified from the one that can be found at the following link:
https://www.explainingcomputers.com/pi_servos_video.html

Python3 code for homemade auto-collector

```
# Import libraries
import RPi.GPIO as GPIO
import time
```

\# Set GPIO numbering mode
GPIO.setmode(GPIO.BOARD)
\# f number of fractions to be collected
$\mathrm{f}=\operatorname{int}($ input('how many fractions (values between 1 and 10)?'))
\# col number of seconds in which the collector stays still until next impulse
col = int(input('how many seconds do you want to collect?'))
\# first fraction
f0 $=\operatorname{int}($ input('how long do you want to collect f0 ?'))
\# Set pin 15 as an output, and set servo1 as pin 11 as PWM
GPIO.setup(15, GPIO.OUT)
\# Note 15 is pin, $50=50 \mathrm{~Hz}$ pulse
servo1 $=\operatorname{GPIO} . \operatorname{PWM}(15,50)$
\# start PWM running, but with value of 0 (pulse off)
servo1.start(0)
f_str $=\operatorname{str}(\mathrm{f})$
print('collecting ' + f_str + ' fractions')
col_str = str(col)
print(col_str + ' seconds collecting in every vial')
f0_str $=\operatorname{str}(\mathrm{f} 0)$
print(f0_str + ' seconds collected in vial 0 ')
time.sleep(f0)
\# Let's move the servo!
print('starting collection')
\# Define variable duty
duty $=2$
\# Loop for duty values from 2 to 12 (0 to 180 degrees)
while duty <= 12:
servo1.ChangeDutyCycle(duty)
time.sleep (0.3)

```
servo1.ChangeDutyCycle(0)
time.sleep(col)
duty = duty + (10/f)
# Wait a couple of seconds
time.sleep(0.3)
# Turn back to 90 degrees
print('Turning back to initial position')
servo1.ChangeDutyCycle(2)
time.sleep(0.5)
servo1.ChangeDutyCycle(0)
time.sleep(1.5)
# turn back to 0 degrees
print('Turning back to 0 degrees')
servo1.ChangeDutyCycle(2)
time.sleep(0.5)
servo1.ChangeDutyCycle(0)
# Clean things up at the end
servo1.stop()
GPIO.cleanup()
print('Going back to position 0')
```

18. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, FT-IR spectra of the oxazolidinones products

5-(Hydroxymethyl)-3-(m-tolyl)oxazolidin-2-one (2a)

Ethyl 3-(5-(hydroxymethyl)-2-oxooxazolidin-3yl)benzoate (2b)

5-(Hydroxymethyl)-3-(3-methoxyphenyl)oxazolidin-2-one (2c)

5-(Hydroxymethyl)-3-(4-methoxyphenyl)oxazolidin-2-one (2d)

3-(4-Acetylphenyl)-5-(hydroxymethyl)oxazolidin-2-one (2e)

Methyl 4-(5-(hydroxymethyl)-2-oxooxazolidin-3yl)benzoate (2f)

3-(4-Fluorophenyl)-5-(hydroxymethyl)oxazolidin-2-one (2g)

3-(4-Chlorophenyl)-5-(hydroxymethyl)oxazolidin-2-one (2h)

3-(4-Bromophenyl)-5-(hydroxymethyl)oxazolidin-2-one (2i)

${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}) analysis of compound $\mathbf{2 i}(5 \mathrm{mg})$ at lower concentration and using 8 and 128 scans respectively:

5-(Hydroxymethyl)-3-(2-methoxyphenyl)oxazolidin-2-one (2j)

5-(Hydroxymethyl)-3-(o-tolyl)oxazolidin-2-one (2k)

\qquad -200

5-(hydroxymethyl)-3-(naphthalen-1-yl)oxazolidin-2-one (21)

5-(Hydroxymethyl)-3-phenyloxazolidin-2-one (2m)

3-(2,6-diisopropylphenyl)-5-(hydroxymethyl)oxazolidin-2-one (2n)

3-(2,4-dimethylphenyl)-5-(hydroxymethyl)oxazolidin-2-one (20)

3-(5-(Hydroxymethyl)-2-oxooxazolidin-3-yl)benzonitrile (2p)

19. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, FT-IR spectra of intermediate epoxy amines

Methyl 3-((oxiran-2-ylmethyl)amino)benzoate (1b)

Methyl 4-((oxiran-2-ylmethyl)amino)benzoate (1f)

2-Methoxy-N-(oxiran-2-ylmethyl)aniline (1j)

\qquad - -500

2,6-Di-iso-propyl-N-(oxiran-2-ylmethyl)aniline (1n)

\qquad -100

2,4-Dimethyl-N-(oxiran-2-ylmethyl)aniline (10)

3-((Oxiran-2-ylmethyl)amino)benzonitrile (1p)

20. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, FT-IR spectra of intermediate halohydrins

Methyl 3-((3-chloro-2-hydroxypropyl)amino)benzoate (1'b)

1-(4-((3-Chloro-2-hydroxypropyl)amino)phenyl)ethan-1-one (1'e)

Methyl 4-((3-chloro-2-hydroxypropyl)amino)benzoate (1'f)

3-((3-Chloro-2-hydroxypropyl)amino)benzonitrile (1'p)

[^0]: ${ }^{1}$ We used MestReNova v14.2.0-26256, architecture x86_64 released on 2020-09-25. The spectra were copied into a Word file and then printed as a PDF on a iOS based computer.

[^1]: 2 N. Zanda, A. Sobolewska, E. Alza, A. W. Kleij and M. A. Pericàs, ACS Sustainable Chem. Eng., 2021, 9, 4391-4397.

[^2]: 3 J. Rintjema, R. Epping, G. Fiorani, E. Martin, E. C. Escudero-Adan and A. W. Kleij, Angew. Chem. Int. Ed., 2016, 55, 3972-3976.
 4 World Intellectual Property Organization, WO2018212534 A1 2018-11-22
 5 A. Ali, K. K. Reddy, H. Cao, S. G. Anjum, M. N. L. Nalam, C. A. Schiffer and T. M. Rana, J. Med. Chem. 2006, 49, 7342-7356.

[^3]: 6 R. Ilg, C. Burschka, D. Schepmann, B. Wünsch and R. Tacke, Organometallics 2006, 25, 5396-5408.
 C. L. J. Wang, W. A. Gregory and M. A. Wuonola, Tetrahedron, 1989, 45, 1323-1326.

 8 Y. Lee, J. Choi and H. Kim, Org. Lett., 2018, 20, 5036-5039.

[^4]: 9 S. M. Kelly, C. Han, L. Tung and F. Gosselin Org. Lett. 2017, 19, 3021-3024.
 10 E. J. Brnardic, M. E. Fraley, R. M. Garbaccio, M. E. Layton, J. M. Sanders, C. Culberson, M. A Jacobson, B. C. Magliaro, P. H. Hutson, J. A. O’Brien, S. L. Huszar, J. M. Uslaner, K. L. Fillgrove, C. Tang; Y. Kuo, S. M. Sur and G. D. Hartman, Bioorg. Med. Chem. Lett. 2010, 20, 3129-3133.

[^5]: ${ }^{11}$ N. Tsiakopoulos, C. Damianakos, G. Karigiannis, D. Vahliotis, D. Papaioannou and G. Sindona Arkivoc, 2002, 13, 79-104.
 12 K. S. MacMillan, J. Naidoo, J. Liang, L. Melito, N. S. Williams, L. Morlock, P. J. Huntington, S. J. Estill, J. Longgood, G. L. Becker, S. L. McKnight, A. A. Pieper, J. K. Brabander and J. M. Ready, J. Am. Chem. Soc., 2011, 133, 1428-1437.
 13 D. Bradley and G. Williams, J. Org. Chem., 2009, 24, 9509-9512.

[^6]: 14 Patent, CN2021-10747869, CN113461629 A 2021-07-01, Preparation of the compound 5-hydroxymethyl-oxazolidin-2-one.

[^7]: 15 E. Raflee, S. Tangestaninejad, M. H. Habibi and V. Mirkhani, Synth. Commun., 2004, 20, 3673-3681.

[^8]: ${ }^{16}$ A. Kamal, B. R. Prasad, A. M. Reddy and M. N. A. Khan Catal. Comm., 2007, 8, 1876-1880.
 ${ }^{17}$ V. Mirkhani, S.Tangestaninejad, B. Yadollahi and L. Alipanah, Catal. Lett., 2005, 101, 93-97.
 18 A.V. Nakhate, A.M. Doke and G. D. Yadav Ind. Engin. Chem. Res., 2016, 41, 10829-10838.
 19 L. Saikia, J.K. Satyarthi, D. Srinivas and K. Ratnasamy, J. Catal., 2007, 252, 148-160.

[^9]: ${ }^{20}$ S. Bansal, Y. Kumar, P. Pippal, D. K. Das, P. Pramanik and P.P. New J. Chem., 2017, 41, 2668-2671.
 ${ }^{21}$ A. K. Chakraborti. S. Rudrawar and A. Kondaskar Eur. J. Org. Chem., 2004, 3597-3600
 22 Y. L. N. Murthy, B. S. Diwakar, B. Govindh, R. Venu and K. Nagalakshmi, Chem. Sci. Trans., 2013, 3, 805812.
 ${ }^{23}$ Z. Du, W. Zhang, Y. Zhang and Z. Wei, J. Chem. Res., 2011, 12, 726-728.

