Electronic Supplementary Information

An Environmentally Responsible Synthesis of the Antitumor Agent Lapatinib (Tykerb)

Julie Yu, Karthik S. Iyer, and Bruce H. Lipshutz*

Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106 USA

Table of Contents

1.	General information	S3
2.	Procedures for the synthesis of lapatinib	S4
/	A. S _N Ar reaction	S4
	Screening of base	S4
ł	B. Nitro reduction	
(C. S _N Ar reaction	S6
	Screening of base	S6
[D. Suzuki-Miyaura coupling reaction	S7
	Screening of palladium catalysts	S7
	Screening of catalyst loading	S8
	Reductive amination	S9
	• Procedures for the 5-step, 3-pot synthesis of lapatinib	
3.	E Factor calculations	S12
4.	Compound characterization data	S13
5.	NMR spectra	S14
6.	HRMS	S16
7.	Purity analysis by HPLC	

1. General information

Reagents and chemicals were purchased from Sigma-Aldrich, Combi-Blocks, Alfa Aesar, Acros Organics, or TCI Chemicals and used without further purification. Carbonyl iron powder (CIP) used for reductions was 99.9% purity, R10 grade, with average particle size of 2.5-3.5 μm. This material was stored in air with no special precautions. Deuterated solvents were purchased from Cambridge Isotopes Laboratories. TPGS-750-M is either prepared or supplied by PHT International (also available from Sigma-Aldrich catalog #733857). The desired 2 wt % of surfactant solution in HPLC water was prepared by dissolving 2 g of surfactant to 98 g of HPLC water (which was degassed with argon prior to use) and stored under argon. Thin-layer chromatography (TLC) was performed using Silica Gel 60 F254 plates (Merck, 0.25 mm thick). Flash chromatography is performed either manually or in an automated Biotage system using Silica Gel 60 (Silicycle, 40-63 nm). GCMS data were recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on either a Bruker Avance III HD 400 MHz (400 MHz for ¹H, 100 MHz for ¹³C), a Bruker Avance NEO 500 MHz (500 MHz for ¹H, 125 MHz for ¹³C, 470 MHz for ¹⁹F) or on a Varian Unity Inova 500 MHz (500 MHz for ¹H, 125 MHz for ¹³C); DMSO-d₆, CDCl₃, or CD₃OD was used as NMR solvent. Residual peaks for DMSO in DMSO-d₆ (1 H = 2.50 ppm, 13 C = 39.51 ppm), CHCl₃ in $CDCl_3$ (¹H = 7.26 ppm, 13C = 77.00 ppm), CH₃OH in CD₃OD (¹H = 3.31 ppm, ¹³C = 49.00 ppm) have been assigned. The chemical shifts are reported in parts per million (ppm), the coupling constants J values are given in Hertz (Hz). The peak patterns are indicated as follows: bs, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet. HRMS were recorded on a Waters Micromass LCT TOF ES+ Premier mass spectrometer using ESI ionization.

2. Procedures for the synthesis of lapatinib

A. S_NAr reaction

• Screening of base

^aReaction conditions: 0.25 mmol **1**, 0.275 mmol of **2**, 0.375 mmol of base, stirred at 55 °C for 4.5 h; ^b conversion was determined by GC-MS.

In a 1 dram vial equipped with a magnetic stir bar, 2-chloro-1-fluoro-4-nitrobenzene **1** (0.25 mmol), (3-fluorophenyl)methanol **2** (0.275 mmol), and base (0.375 mmol) were added. Aqueous 2 wt % TPGS-750-M solution (0.5 mL) was then added. The resulting mixture was stirred at 55 °C until completion (as monitored by TLC or GC-MS). The desired product was isolated by silica plug filtration and dried under vacuum to give a light-yellow powder in 98% yield.

B. Nitro reduction

	Cl O ₂ N <i>Reductant</i> 2 wt% TPGS-750-M/H ₂ O 55 °C			
Entry	Conditions	Conversion to 4 (%) ^c		
1	1% Pd/C (1 mol %), Et ₃ SiH (1.5 equiv)	0		
2	1% Pd/C (1 mol %), H_2 balloon	~20		
3	10% Pd/C (1 mol %), H ₂ balloon	~90		
4	CIP (5 equiv), ^d NH ₄ Cl (3 equiv)	100		

^cConversion was determined by NMR; ^dCIP – Carbonyl Iron Powder.

In a 1 dram vial equipped with a magnetic stir bar, 2-chloro-1-((3-fluorobenzyl)oxy)-4nitrobenzene **3** (0.25 mmol) and the reducing agents were added. Aqueous 2 wt % TPGS-750-M (0.5 mL) solution was added, and the vial was stirred at 55 °C until completion (as monitored by TLC or GC-MS). The reaction mixture was filtered through cotton and then washed with EtOAc or Et₂O (3 x 1 mL). The combined organic layers were evaporated to give the crude product as a brown colored oil, which was analyzed by GC-MS or crude NMR and used subsequently without further purification.

C. S_NAr reaction

• Screening of base

Reaction conditions: 0.25 mmol **4**, 0.25 mmol **5** and base stirred at 55 °C; ^econversion was determined by crude NMR.

In a 1 dram vial with a magnetic stir bar, the crude product from the previous step (**4**; 0.25 mmol) was used along with 0.25 mmol **5**. Aqueous 2 wt % TPGS-750-M (0.5 mL) solution was then added, and the reaction was stirred at 55 °C until completion (as monitored by TLC or GC-MS). The product was then separated by vacuum filtration to give a light-yellow powder, **6**.

D. Suzuki-Miyaura coupling reaction

• Screening of palladium catalysts

Entry	Catalyst	Base	Solvent	Conversion to 8 (%) ^f
1	Pd(dtbpf)Cl ₂ (1 mol %)	Et₃N (3 equiv)	2 wt % TPGS-750-M	<3
2	Pd(dtbpf)Cl ₂ (3 mol %)	Et₃N (3 equiv)	2 wt % TPGS-750-M	<50
3	Pd(dppf)Cl ₂ ·DCM (4 mol %)	Et₃N (5 equiv)	2 wt % TPGS-750-M	~50
4 ^g	Pd(dppf)Cl₂DCM (4 mol %)	Et₃N (5 equiv)	EtOH (reflux)	100
5	Pd(dppf)Cl₂ [.] DCM (4 mol %)	Et₃N (5 equiv)	2 wt % TPGS-750-M, 20 v/v% EtOH	<40
6	Pd(dppf)Cl₂ [.] DCM (4 mol %)	Et₃N (5 equiv)	50:50 2 wt % TPGS- 750-M: EtOH	<50
7	10 wt% Pd/C (3 mol %)	Et₃N (5 equiv)	EtOH (reflux)	>90

Reaction conditions: 0.25 mmol **6**, 0.5 mmol **7** and base, stirred at 55 ^oC (with TPGS-750-M) or under reflux conditions (with EtOH) overnight. ^fConversion was determined by crude NMR or GC-MS. ^gReaction time = 2 h.

In a 2 dram vial with a magnetic stir bar, 0.25 mmol **6**, 0.5 mmol **7**, Pd catalyst and base (1.25 mmol) were added. Aqueous 2 wt % TPGS-750-M solution (0.5 mL) or EtOH (2.5 mL) was subsequently added, and the reaction was allowed to stir at 55 °C (TPGS-750-M) or at 80 °C (EtOH) until completion (as monitored by TLC or GC-MS). The crude product was used for the subsequent reaction without further purification.

• Screening of catalyst loading

Reaction conditions: 0.25 mmol **6**, 0.5 mmol **7**, 1.25 mmol Et₃N, stirred at 80 °C for 2 h; ^hDetermined by crude NMR or GC-MS.

In a 2 dram vial with a magnetic stir bar, 0.25 mmol **6**, 0.5 mmol **7**, Pd(dppf)Cl₂.DCM and base (1.25 mmol) were added. Aqueous 2 wt % TPGS-750-M solution (0.5 mL) or EtOH (2.5 mL) was subsequently added, and the reaction was allowed to stir at 55 $^{\circ}$ C (in aqueous TPGS-750-M) or at 80 $^{\circ}$ C (EtOH) until completion (as monitored by TLC or GC-MS).

In the same 2 dram vial from the previous reaction was added 2-(methylsulfonyl)ethan-1-amine hydrochloride **9** (1.2 equiv) and 2-picolineborane (1.5 equiv) and the reaction mixture was allowed to stir at 55 °C until completion (as monitored by crude NMR or GC-MS). The resulting product was purified by column chromatography using DCM : EtOAc (3:1) + 2% MeOH + 1% Et₃N as the mobile phase to yield lapatinib free base **10** as a light brown oil.

• Procedures for the 5-step, 3-pot synthesis of lapatinib

Step 1: S_NAr reaction

In a 1 dram vial with a magnetic stir bar, 2-chloro-1-fluoro-4-nitrobenzene **1** (0.15 mmol, 1 equiv), (3-fluorophenyl)methanol **2** (1.1 equiv) and KOH (1.5 equiv) were added. Aqueous 2 wt % TPGS-750-M solution (0.5 M global concentration) was then added. The reaction was stirred at 55 °C until completion (as monitored by TLC or GC-MS).

Step 2: Reduction of nitro group

Once step 1 (S_NAr) was completed, CIP (carbonyl iron powder; 5 equiv) and NH₄Cl (3 equiv) were added. 20 v/v% EtOAc (0.1 mL) was added to enhance solubility and stirring. The pH of the system

was adjusted to neutral or slightly acidic (pH 6 – 7) by adding a few drops of concentrated HCl if needed. Subsequently, the resulting mixture was allowed to stir at 55 °C until completion (as monitored by TLC or GC-MS). The reaction mixture was filtered through a silica plug and washed with EtOAc (~3 mL). The solvents were evaporated to give the crude product as a brown colored oil, which was analyzed by GC-MS or crude NMR and used subsequently without further purification.

Step 3: S_NAr reaction

In a 1 dram vial with a magnetic stir bar, the crude product from step 2 was used along with 4chloro-6-iodoquinazoline **5** (1 equiv). Aqueous 2 wt % TPGS-750-M (0.5 M global concentration) solution was then added, and the reaction was stirred at 55 °C until completion (as monitored by TLC or GC-MS). The product was then separated by vacuum filtration to give a light-yellow powder **6**.

Note: The presence of water is detrimental for the subsequent Suzuki-Miyaura coupling. Water can be removed by vacuum filtration. Alternatively, the Suzuki-Miyaura coupling can also be carried out in the same pot if the water is dried by placing the resulting reaction vial from step 3 in an oven at 120 °C for 2 h, or by placing it in a hot plate at 60 °C and attaching a high vacuum line overnight.

Step 4: Suzuki-Miyaura reaction

The product from step 3, **6** (1 equiv), was transferred to a 2 dram vial equipped with a magnetic stir bar. To the vial, 5-formyl furan-2-boronic acid **7** (2 equiv), Pd(dppf)Cl₂•DCM (500 ppm) and Et₃N (5 equiv) were added, followed by 95% ethanol (1.5 mL or 0.1 M global concentration). The reaction was allowed to stir at 80 °C until completion (as monitored by taking a crude NMR, TLC, or GC-MS). The crude product was analyzed by NMR (in DMSO-d₆) and was used in the subsequent step without further purification.

*Note: Pd(dppf)Cl₂•DCM (500 ppm) was added by preparing a stock solution of Pd(dppf)Cl₂•DCM in ethanol.

 $*Pd(dppf)Cl_2$ (with no DCM complex) failed to give the product under the same reaction conditions.

Step 5: Reductive amination

To the same 2 dram vial from the previous step was added 2-(methylsulfonyl)ethan-1-amine hydrochloride **9** (1.2 equiv) and 2-picolineborane (1.5 equiv). The reaction mixture was allowed to stir until completion (as monitored by NMR, TLC, or GC-MS). The resulting mixture was purified by recrystallization in EtOAc to yield lapatinib free base **10** as light-yellow solid, (49.7 mg, 0.086 mmol, 57% yield).

Alternatively, the resulting product was purified by column chromatography using DCM : EtOAc (3:1) + 2% MeOH + 1% Et₃N as the mobile phase to yield lapatinib free base **10** as a light brown oil (48.8 mg, 0.084 mmol, 56% yield).

3. E Factor calculations

grams of wastes E Factor =grams of product

• This work:

waste:

0.5 ml TPGS-750-M (aq) + 0.1 ml EtOAc + 3.0 ml EtOAc + 0.5 ml TPGS-750-M (aq) + 2.5 ml EtOH = 0.5 g TPGS-750-M (aq) + 0.1 g EtOAc + 3.3 ml EtOAc + 0.5 ml TPGS-750-M (aq) + 2.8 ml EtOH = 7.2 g wastes

(density of EtOAc = 0.902 kg/m³; density of EtOH = 0.789 kg/m³)

 $E Factor = \frac{7.2 \text{ grams of wastes}}{0.808 \text{ grams of product}} = 8.9$

• Literature: (US 8444988 B2) GSK, 2013

waste:

90.0 mL CH₃CN (aq) + 180.0 mL EtOH + 250.0 mL *i*-PrOH + 740.5 mL THF + x mL (unstated volume) dioxane and THF

= 114.5 g CH₃CN (aq) + 228.1 g EtOH + 318.1 g *i*-PrOH + 833.9 ml THF + x g dioxane and THF

= 1494.6 g + x waste

(density of $CH_3CN = 0.786 \text{ kg/m}^3$; density of $EtOH = 0.789 \text{ kg/m}^3$; density of *i*-PrOH = 0.786 kg/m³; density of THF = 0.888 kg/m³)

 $E Factor = \frac{1494.6 \text{ grams of wastes}}{10.0 \text{ grams of product}} > 149.5$

4. Compound characterization data

¹**H NMR** (600 MHz, CD₃OD) δ 8.75 (s, 1H), 8.51 (s, 1H), 8.23 (d, *J* = 8.5 Hz, 1H), 7.91 (dd, *J* = 2.7, 1.2 Hz, 1H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.66 – 7.61 (m, 1H), 7.42 – 7.36 (m, 1H), 7.30 (d, *J* = 7.7 Hz, 1H), 7.24 (dd, *J* = 9.9, 2.4 Hz, 1H), 7.17 (dd, *J* = 8.9, 1.1 Hz, 1H), 7.07 – 7.00 (m, 2H), 6.68 (s, 1H), 5.22 (s, 2H), 4.23 (s, 2H), 3.49 (d, *J* = 7.0 Hz, 2H), 3.43 (d, *J* = 8.2 Hz, 2H), 3.06 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 162.95 (d, J_{C-F} = 246.4), 157.82, 154.69, 153.26, 152.41, 150.75, 149.21, 139.14 (d, J_{C-F} = 7.1) 132.71, 130.1 (d, J_{C-F} = 8.1) 128.87, 128.69, 128.64, 124.85, 123.14, 122.44 (d, J_{C-F} = 3.0), 122.13, 115.59, 114.83 (d, J_{C-F} = 21.2), 114.26, 113.94 (d, J_{C-F} = 22.2), 109.63, 107.10, 70.36, 54.45, 45.40, 42.00, 41.83.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -112.66 (td, *J*_{F-H} = 9.1, 5.6 Hz).

HRMS TOF MS EI+ *m*/*z* calcd C₂₉H₂₆ClFN₄O₄SH [M+H]⁺: 581.1426; found 581.1405.

5. NMR spectra

6. HRMS

7. Purity analysis by HPLC

Column: InfinityLab Poroshell HPH-C18, 2.7 micron, 4.6 x 50 mm

Eluent: hexane/ *i*-PrOH = 90/10

Flow rate: 1 mL/min

Column temperature: 20 °C

Signal 6: DAD1 F, Sig=270, 4 Ref=off

Peak	Ret Time	Type	W/dth	Area	Height	Area
#	[min]		[min]	[mAU's]	[naAU]	%
1	0.382	BV	0.0545	5.91052	1. 70355	0. 1655
2	0.499	WR	0.0932	34. 15775	5. 44683	0.9564
3	0.824	BB	0.1479	30. 27498	3. 15671	0.8477
4	1.217	BV	0.0648	3. 24298e-1	8.08731e-2	9.080e-3
5	1.318	VB	0.0856	2.81078e-1	5. 32584e-2	7.870e-3
6	1.640	BV	0.1532	1.94257	1.83929e-1	0.0544
7	1.899	VB	0.0874	3. 13159e-1	5. 58503e-2	8.769e-3
8	2. 198	BV E	0.1127	7.74780e-1	1.09258e-1	0.0217
9	2.867	WR	0. 1953	3483. 06519	275. 81552	97. 5268
10	4. 299	VB E	0. 2295	2.02840	1. 18630e-1	0.0568
11	5.513	BB	0.2504	4.36215	2. 61799e-1	0. 1221
12	6.237	BB	0.3664	4. 30216	1. 47452e-1	0.1205
13	10. 723	BB	0. 3784	3. 65734	1. 16457e- 1	0. 1024

Tot al s :

3571.39438 287.25012