SUPPLEMENTARY INFORMATION

Visible-Light Photocatalytic Metal-Free Multicomponent Ugi-like Chemistry

Camilla Russo,^a Giulia Graziani,^a Rolando Cannalire,^a Gian Cesare Tron,^b and Mariateresa Giustiniano^{*a}

a) Department of Pharmacy, University of Naples Federico II, via D. Montesano 49, 80131, Napoli, Italy b) Department of Drug Science, University of Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy

Contents:

- Synthetic procedure for the synthesis of isocyanide 30	S2	
- Characterization data for products 5 and 15		
- Copies of ¹ H and ¹³ C spectra	S4	

Synthetic procedure for the synthesis of isocyanide 30

In a 50 mL round bottom flask equipped with a magnetic stir bar, 2-aminobenzylamine *S1* (500.0 mg, 4.1 mmol) was dissolved in dichloromethane (16.4 mL, 0.25 M) and di-*tert*-butyl dicarbonate (893.2 mg, 1 equiv.) was added to the solution. The resulting mixture was stirred at 50° C overnight, until the completion of the reaction, as monitored by TLC. Then the solvent was removed under vacuum and the crude mixture was purified by silica gel chromatography (*n*-hexane/ethyl acetate 97:3) to afford *tert*-butyl (2-aminobenzyl)carbamate *S2* as a white solid (829.5 mg, 91% yield).

In a 50 mL two-necked round bottom flask, a mixture of formic acid (362.0 μ L, 9.6 mmol, 2.7 equiv.) and acetic anhydride (771.2 μ L, 8.2 mmol, 2.3 equiv.,) was stirred at 55°C for 2 h. After the reaction was cooled at room temperature, the crude mixture was added dropwise to a solution of *S2* (790.0 mg, 3.5 mmol, 1 equiv.) in THF (5.8 mL, 0.6 M), at 0° C. The resulting mixture was stirred at room temperature for additional 2 h, until the completion of the reaction, as monitored by TLC. Then the reaction was cooled to 0° C and a saturated aqueous solution of NaHCO₃ was added slowly under vigorous stirring, until neutral pH was reached. EtOAc was added, and the two phases were separated; the aqueous layer was further extracted with EtOAc (x2), then the combined organic extracts were washed with brine, dried over sodium sulfate, and concentrated under reduced pressure to give *S3* in a quantitative yield. The crude material was used in the next step without further purification.

In a 100 ml round bottom flask equipped whit a magnetic stir bar, *tert*-butyl (2-formamidobenzyl)carbamate *S3* (876.1 mg, 3.5 mmol) was dissolved in dichloromethane (50 mL, 0.07 M), and diisopropylamine (3.0 mL, 21 mmol, 6 equiv.) was added to the solution. After cooling to 0°C, phosphorus oxychloride (687 µL, 7.3 mmol, 2.1 equiv.) was added dropwise to the reaction mixture, which was stirred at room temperature for 2 h. After the completion of the reaction, as monitored by TLC, the mixture was cooled to 0° C and a saturated aqueous solution of NaHCO₃ was added slowly under vigorous stirring, until pH ~ 9. Then CH_2Cl_2 was added, and the two phases were separated; the organic layer was further washed with a saturated aqueous solution of NaHCO₃ (x2), brine (x1),

dried over sodium sulfate, and concentrated under vacuum. The crude mixture was purified by silica gel chromatography (*n*-hexane/ethyl acetate 95:5) to afford *tert*-butyl (2-isocyanobenzyl)carbamate **30** as a yellow solid (510.5 mg, 63% yield).

N-(N-methyl-N-phenylglycyl)-N-(tosylmethyl)benzamide (**5**).¹ The crude material (reaction time: 20 h) was purified by column chromatography (*n*-hexane/ethyl acetate 93:7) to give the product as a yellow amorphous solid (19.6 mg, 56% yield). ¹H NMR (700 MHz, CDCl₃) δ 7.76 (d, *J* = 8.2 Hz, 2H), 7.57 (t, *J* = 7.4 Hz, 1H), 7.54 (d, *J* = 7.3 Hz, 2H), 7.42 (t, *J* = 7.8 Hz, 2H), 7.33 (d, *J* = 8.0 Hz, 2H), 7.17 – 7.15 (m, 2H), 6.77 (t, *J* = 7.3 Hz, 1H), 6.46 (d, *J* = 8.2 Hz, 2H), 5.09 (s, 2H), 4.13 (s, 2H), 2.72 (s, 3H), 2.44 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 173.1, 171.7, 148.4, 145.6, 134.4, 133.3, 132.6, 129.9, 129.2, 129.2, 129.0, 129.0, 118.3, 112.8, 65.1, 57.5, 40.01, 21.8; HRMS (ESI) *m/z:* calcd [M + H]⁺ for C₂₄H₂₅N₂O₄S⁺ 437.1530; found [M + H]⁺ 437.1532.

Methyl 2-(5-((methyl(phenyl)amino)methyl)-1H-tetrazol-1-yl)acetate (**15**).² The crude material was purified by column chromatography (*n*-hexane/ethyl acetate 88:12) to give the product as a pale-yellow solid (77.7 mg, 99% yield). ¹H NMR (700 MHz, CDCl₃) δ 7.26 – 7.24 (m, 2H), 6.87 (t, *J* = 7.3 Hz, 1H), 6.79 (d, *J* = 8.1 Hz, 2H), 5.10 (s, 2H), 4.78 (s, 2H), 3.66 (s, 3H), 2.88 (s, 3H); ¹³C NMR (176 MHz, CDCl₃) δ 165.9, 153.6, 148.8, 129.6, 120.0, 114.6, 53.0, 48.5, 48.0, 40.1; HRMS (ESI) *m/z:* calcd [M + H]⁺ for C₁₂H₁₆N₅O₂⁺ 262.1299; found [M + H]⁺ 262.1305; m.p. 96-97°C.

References

1) X. Ye, C. Xie, Y. Pan, L. Han and T. Xie, Org. Lett. 2010, 12, 4240-4243.

2) D. Li and J. Lei, *Tetrahedron Lett.* 2020, **61** (38), 152345.

ppm 12.0 11.5 11.0 10.5 10.0 7.0 6.5 5.5 4.0 9.5 9.0 7.5 5.0 3.5 2.0 8.5 8.0 1.5 -0.0 1.0 0.5

ppm 11.5 11.0 10.5 10.0 3.0 2.0 1.5 9.5 4.5 9.0 8.5 8.0 6.0 5.5 5.0 1.0 0.5 -0.0

S53

7.0 4.0 1.5 0.0 ppm 12.0 11.5 9.5 9.0 3.5 2.5 2.0 1.0 0.5 11.0 10.0 8.5 6.0 5.5 5.0 4.5

