Supporting information

Singlet Oxygen-Promoted One-Pot Synthesis of Highly Ordered Mesoporous Silica Materials via the Radical Route

Tingting Lu, Wenfu Yan, Guodong Feng, Xiaolin Luo, Yueqiao Hu, Jiale Guo, Zhan Yu, Zhen Zhao and Shujiang Ding

* Xi’an Key Laboratory of Sustainable Energy Materials Chemistry, College of Chemistry, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
b Institute of Catalysis for Energy and Environment, College of Chemistry and Chemical Engineering, Shenyang Normal University, Shenyang 110034, People’s Republic of China
c State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, People’s Republic of China
d Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, People’s Republic of China

Corresponding Author Email:
*fengguodong00805@163.com, zhenzhao@cup.edu.cn, dingsj@mail.xjtu.edu.cn
Contents

1. Experimental section
 1.1 Reagents
 1.2 One-pot Synthesis of samples
 (NH₄)₂Ce(NO₃)₆ system:
 Fenton reagents system:
 Na₂S₂O₈ system:
 1.3 Release experiment
 1.4 Calculation of samples yields
 1.5 Theoretical calculation

2. Characterizations
 3. Supplementary Figures and Table

 Fig. S1 SEM images of the samples one-pot synthesized without addition of acid by adding
 (NH₄)₂Ce(NO₃)₆ (A), adding the Fenton reagent (B), and adding Na₂S₂O₈ (C)
 Fig. S2 TEM image and EDS mapping (Ce: Cyan, O: red, Si: orange) of the Ce-SBA-15 sample
 synthesized by the one-pot route
 Fig. S3 UV-vis spectra (A) and Ce 3d XPS spectra (B) of the Ce-SBA-15 sample synthesized by the
 one-pot route
 Fig. S4 The Ce/Si molar ratio (A) and XRD patterns (B) of the as-synthesized Ce-SBA-15 sample
 and acid-treated Ce-SBA-15 sample
 Fig. S5 The images of TEOS hydrolysed by adding (NH₄)₂Ce(NO₃)₆ (A), Fenton reagent (B), and
 Na₂S₂O₈ (C) at different time under the same conditions
 Fig. S6 Time-resolved PESI-MS results of the hydrolysis reaction of TEOS promoted by
 (NH₄)₂Ce(NO₃)₆
 Fig. S7 Time-resolved PESI-MS results of the hydrolysis reaction of TEOS promoted by the 2 mol/L
 HCl
 Fig. S8 Time-resolved PESI-MS results of the hydrolysis reaction of TEOS promoted by Na₂S₂O₈
 Fig. S9 Time-resolved PESI-MS results of the hydrolysis reaction of TEOS promoted by Fenton
 reagent
 Fig. S10 Intensity of the ion at m/z 209 (black) and m/z 93 (red) as a function of time in the
 hydrolysis reaction promoted by (NH₄)₂Ce(NO₃)₆
 Fig. S11 Intensity of the ion at m/z 209 (black) and m/z 93 (red) as a function of time in the
 hydrolysis reaction promoted by 2 mol/L HCl
 Fig. S12 Intensity of the ion at m/z 209, m/z 231 (black) and m/z 93 (red) as a function of time in
 the hydrolysis reaction promoted by Na₂S₂O₈
 Fig. S13 Intensity of the ion at m/z 209 (black) and m/z 93 (red) as a function of time in the
 hydrolysis reaction promoted by Fenton reagent
Fig. S14 XRD patterns of the samples one-pot synthesized in the (NH$_4$)$_2$Ce(NO$_3$)$_6$ system (A) and Fenton reagent system (B) with the addition of H$_2$O (blue), CH$_3$OH (red), and L-histidine (black).

Fig. S15 The hydrolysis rate of TEOS in different system at identical pH value of 3.1.

Fig. S16 XRD patterns of the samples one-pot synthesized in the (NH$_4$)$_2$Ce(NO$_3$)$_6$ system and Na$_2$S$_2$O$_8$ system at identical pH value of 3.1.

Fig. S17 The TEM image and EDS mapping (Fe: red, O: yellow, Si: green) of the Fe-SBA-15 sample synthesized by the one-pot route.

Fig. S18 UV-vis spectra (A) and Fe 2p XPS spectra (B) of the Fe-SBA-15 sample synthesized by the one-pot route.

Fig. S19 The Fe/Si molar ratio (A) and XRD patterns (B) of the as-synthesized Fe-SBA-15 sample and acid-treated Ce-SBA-15 sample.

Fig. S20 The low-angle XRD pattern (A), SEM image (B), nitrogen adsorption-desorption isotherm (C) and the pore size distribution (D) of the MSU-4 materials one-pot synthesized in the (NH$_4$)$_2$Ce(NO$_3$)$_6$ system.

Fig. S21 The low-angle XRD pattern (A), SEM image (B), nitrogen adsorption-desorption isotherm (C), the pore size distribution (D), and EDS mapping (E) of the MSU-4 materials one-pot synthesized in the Fenton reagent system.

Fig. S22 Gibbs free energy profile and optimized geometry of the structures involved in the incorporation of Ce and/or Fe within the mesoporous silica materials.

Table S1. Physicochemical properties of calcined samples prepared using different methods.
1. Experimental section

1.1 Reagents

Tetraethyl orthosilicate (TEOS, 98%, Tianjin Fuchen Chemical Reagents Factory)
Polyethylene oxide-polypropylene oxide-polyethylene oxide triblock copolymers (P123, average Mn~5800, Sigma-Aldrich Co.)
Hydrochloric acid (HCl, AR, wt.%:36.0~38.0, Beijing Chemical Works)
Ferrous sulfate heptahydrate (99%, Sinopharm Chemical Reagent Co., Ltd.)
H₂O₂ (30% (v/v), Beijing Chemical Works)
Sodium persulfate (98%, Sinopharm Chemical Reagent Co., Ltd)
5,5-Dimethylpyrroline-N-oxide (DMPO, Sigma-Aldrich Co.)
2,2,6,6-tetramethyl-4-piperidinol-N-oxyl (TMPN, Sigma-Aldrich Co.)
Ceric ammonium nitrate (CAN, Sinopharm Chemical Reagent Co., Ltd)
L-histidine (Sinopharm Chemical Reagent Co., Ltd)
Tween 60 (Sinopharm Chemical Reagent Co., Ltd)

1.2 One-pot synthesis of samples

(NH₄)₂Ce(NO₃)₆ system:

1 g of P₁₂₃ was dissolved in 50 g of deionized water and TEOS (4.5 g) was mixed with a different amounts (0.005 g, 0.02 g, 0.08 g, 0.1 g, 0.16 g, 0.2 g) of (NH₄)₂Ce(NO₃)₆. The mixture was stirred vigorously for 24 h at 313 K (precursor) and then was transferred into an autoclave, aged for 72 h at 373 K. The resultant solid was filtered, washed, and dried at 333 K for 15 h. After calcined at 823 K for 10 h, the samples1-6 were obtained.

0.78 g of Tween 60 was dissolved in 50 g of deionized water and TEOS (1.43 g) was mixed with a trace amount (0.0125 g) of (NH₄)₂Ce(NO₃)₆. The mixture was stirred vigorously for 24 h at 318 K (precursor) and then was transferred into an autoclave, aged for 24 h at 373 K. The resultant solid was filtered, washed, and dried at 333 K for 15 h. After calcined at 823 K for 10 h, the sample 9 was obtained.

Fenton reagents system:

1 g of P₁₂₃ was dissolved in 50 g of deionized water and TEOS (4.5 g) was mixed with a trace amount (0.01 g) of FeSO₄·7H₂O and 300μL 30wt%H₂O₂. The mixture was stirred vigorously for 24 h at 313 K (precursor) and then was transferred into an autoclave, aged for 72 h at 373 K. The resultant solid was filtered, washed, and dried at 333 K for 15 h.
After calcined at 823 K for 10 h, the sample 7 (Fe-SBA-15) was obtained.

0.78 g of Tween 60 was dissolved in 50 g of deionized water and TEOS (1.43 g) was mixed with a trace amount (0.02 g) of FeSO$_4$$\cdot$7H$_2$O and 300 μL 30 wt% H$_2O_2$. The mixture was stirred vigorously for 24 h at 318 K (precursor) and then was transferred into an autoclave, aged for 24 h at 373 K. The resultant solid was filtered, washed, and dried at 333 K for 15 h. After calcined at 823 K for 10 h, the sample 10 was obtained.

Na$_2$S$_2$O$_8$ system:

1 g of P$_{123}$ was dissolved in 50 g of deionized water and TEOS (4.5 g) was mixed with a trace amount (0.0087 g) of Na$_2$S$_2$O$_8$. The mixture was stirred vigorously for 24 h at 313 K (precursor) and then was transferred into an autoclave, aged for 72 h at 373 K. The resultant solid was filtered, washed, and dried at 333 K for 15 h. After calcined at 823 K for 10 h, the sample 8 (disordered structure material) was obtained.

1.3 Release experiment

Ce-SBA-15: 10 ml of 20% hydrochloric acid was added to 0.2 g of Ce-SBA-15 sample and stirred at room temperature for 5 minutes. After that, the sample was centrifuged and dried. ICP and small angle XRD detection were used to compare the difference between the acquired sample and the original Ce-SBA-15 sample.

Fe-SBA-15: 10 ml of 20% hydrochloric acid was added to 0.2 g of Fe-SBA-15 sample and stirred at room temperature for 5 minutes. After that, the sample was centrifuged and dried. ICP and small angle XRD detection were used to compare the difference between the acquired sample and the original Fe-SBA-15 sample.

1.4 Calculation of samples yields

The yields were calculated by the formula below based on the SiO$_2$:

$$\text{Yield} = \frac{\text{Weight of calcined sample}}{\text{Theoretical weight of SBA-15/MSU-4}}$$

The theoretical weight of SBA-15/MSU-4 was calculated according to the mole of SiO$_2$ from TEOS.

1.5 Theoretical calculation

In this work, we used Gaussian 16 software$^{[1]}$ for all calculations within the framework of DFT. All the molecular structures were computed with the B3LYP (Becke, three-parameter, Lee-Yang-Parr) hybrid functional$^{[2]}$ to describe the exchange–
correlation energies. Basis sets were employed for high-level B3LYP calculations at 6-31+G(d,p) was adopted for atoms including C, O, Si, and H \cite{3}. Vibrational frequency calculations were performed on all minima states, and each minimum was identified to have no imaginary frequencies.

The reaction pathway is as follow: TEOS interacts with the $^{1}\text{O}_2$ leading to a Gibbs free energy of 3.35 kcal/mol. The first transition states ascribed by formation of OOH group for $^{2}\text{O}_2$ via obtaining a H atom from the CH$_2$ group. The second transition state is contributed by formation of OH and CH$_3$CHO-O-Si group (dissociation of O-O bond in the OOH). The C atom only bonded with the O atom obtains the H atom, forming CH$_3$COOH. The OH group interacts with the Si atom, leading to the final products. The rate-determining step is break of the O-O bond.

2. Characterizations

XRD patterns were recorded on a Bruker D8 Advance diffractometer using Cu Kα radiation ($\lambda = 1.5406$ Å) (40 kV and 40 mA) over the range 0.5-5°. By means of a JEM-2100Plus (JEOL, Japan) instrument, transmission electron microscopic (TEM) images of the samples were obtained. The Scanning electron micrographs (SEM) were taken on HITACHI UHR FE-SEM SU8010 electron microscope. Nitrogen adsorption/desorption measurements were carried out on a McKesson ASAP-2460 analyzer at 77.2 K after the samples were degassed at 350 °C under vacuum. The pore size distribution curves were calculated from the analysis of desorption branch of the isotherm by the BJH (Barrett-Joyner-Halenda) method. The Fe concentration in solution was measured by an inductively coupled plasma (ICP) emission spectrometer (Prodigy).

All MS measurements were carried out on a quadrupole time-of-flight (Q-TOF) mass spectrometer (6545B, Agilent Technologies, USA). The original ESI source was removed and the interlock was overridden. A typical DC high voltage of 2.7 kV was applied between the PESI probe and the ion sampling orifice of the mass spectrometer for electrospraying. Full-scan positive ion spectra were acquired and processed using the default Mass Hunter Workstation package. The capillary temperature was maintained at 275 °C. The dry gas flow rate was set to 2 L min$^{-1}$. The fragmentor voltage, skimmer voltage and oct rf V_{pp} voltage were set at 60, 10 and 400 V, respectively. The collision voltage was adjusted at 0 V to avoid the generation of in-source fragmentation products which might be misinterpreted to be degradation products of the precursor.
The EPR spectra were recorded on a Brookhaven FA300 EPR spectrometer equipped with a UV lamp (center wave length: 365nm). The detailed instrumental parameters were as follows: scanning frequency: 9.8 GHz; central field: 3510 G; scanning width: 100 G; scanning power: 6 mW; scanning temperature: 293 K.

DMPO trappings are shown in the following reaction:

\[
\text{N}^\cdot\text{O} + \text{R} \rightarrow \text{N}_\alpha\text{H}_\beta.
\]

The hyperfine coupling constants \((hfc\text{s})\) of the nitrogen and \(\beta\)-proton \((a_N\text{ and } a_{H\beta})\) were given in the main text when referred.

Detection of \(\bullet\text{OH/DMPO}:\)

200 \(\mu\text{L}\) of initial reaction mixture was added into 200 \(\mu\text{L}\) of aqueous DMPO solution with the concentration of 80 mM. The mixture was shaken by hand for 1 minute and transferred into a quartz cell. Then, the solution was transferred into an aqueous cell and the EPR data collection was started.

TMPN trappings are shown in the following reaction:

\[
\text{H}\text{O} + \text{N}^\cdot\text{O} \rightarrow \text{N}^\cdot\text{O}.
\]

Detection of \(^1\text{O}_2/\text{TMPN}:\)

200 \(\mu\text{L}\) of initial reaction mixture was added into 200 \(\mu\text{L}\) of aqueous TMPN solution with the concentration of 80 mM. The mixture was shaken by hand for 1 minute and transferred into a quartz cell. Then, the solution was transferred into an aqueous cell and the EPR data collection was started.

Ref:

3. Supplementary Figures and Table

![Figure S1](image1.png)
Fig. S1 SEM images of the samples one-pot synthesized without addition of acid by adding (NH$_4$)$_2$Ce(NO$_3$)$_6$ (A), adding the Fenton reagent (B), and adding Na$_2$S$_2$O$_8$ (C)

![Figure S2](image2.png)
Fig. S2 TEM image and EDS mapping (Ce: Cyan, O: red, Si: orange) of the Ce-SBA-15 sample synthesized by the one-pot route
Fig. S3 UV-vis spectra (A) and Ce 3d XPS spectra (B) of the Ce-SBA-15 sample synthesized by the one-pot route

Fig. S4 The Ce/Si molar ratio (A) and XRD patterns (B) of the as-synthesized Ce-SBA-15 sample and acid-treated Ce-SBA-15 sample

Fig. S5 The images of TEOS hydrolysed by adding \((\text{NH}_4)_2\text{Ce(NO}_3\text{)}_6\) (A), Fenton reagent (B), and \(\text{Na}_2\text{S}_2\text{O}_8\) (C) at different time under the same conditions
Fig. S6 Time-resolved PESI-MS results of the hydrolysis reaction of TEOS promoted by (NH$_4$)$_2$Ce(NO$_3$)$_6$

Fig. S7 Time-resolved PESI-MS results of the hydrolysis reaction of TEOS promoted by 2 mol/L HCl
Fig. S8 Time-resolved PESI-MS results of the hydrolysis reaction of TEOS promoted by Na$_2$S$_2$O$_8$

Fig. S9 Time-resolved PESI-MS results of the hydrolysis reaction of TEOS promoted by the Fenton reagent
Fig. S10 Intensity of the ion at m/z 209 (black) and m/z 93 (red) as a function of time in the hydrolysis reaction promoted by (NH₄)₂Ce(NO₃)₆

Fig. S11 Intensity of the ion at m/z 209 (black) and m/z 93 (red) as a function of time in the hydrolysis reaction promoted by 2 mol/L HCl

Fig. S12 Intensity of the ion at m/z 209, m/z 231 (black) and m/z 93 (red) as a function of time in the hydrolysis reaction promoted by Na₂S₂O₈
Fig. S13 Intensity of the ion at m/z 209 (black) and m/z 93 (red) as a function of time in the hydrolysis reaction promoted by Fenton reagent.

Fig. S14 XRD patterns of the samples one-pot synthesized in the $(\text{NH}_4)_2\text{Ce(NO}_3)_6$ system (A) and Fenton reagent system (B) with the addition of H$_2$O (blue), CH$_3$OH (red), and L-histidine (black).

Fig. S15 The hydrolysis rate of TEOS in different systems at identical pH value of 3.1.
Fig. S16 XRD patterns of the samples one-pot synthesized in the (NH₄)₂Ce(NO₃)₆ system and Na₂S₂O₈ system at identical pH value of 3.1

Fig. S17 The TEM image and EDS mapping (Fe: red, O: yellow, Si: green) of the Fe-SBA-15 sample synthesized by the one-pot route

Fig. S18 UV-vis spectra (A) and Fe 2p XPS spectra (B) of the Fe-SBA-15 sample synthesized by the one-pot route
Fig. S19 The Fe/Si molar ratio (A) and XRD patterns (B) of the as-synthesized Fe-SBA-15 sample and acid-treated Ce-SBA-15 sample.

Fig. S20 The low-angle XRD pattern (A), SEM image (B), nitrogen adsorption-desorption isotherm (C) and the pore size distribution (D) and EDS mapping (E) of the MSU-4 materials one-pot synthesized in the (NH$_4$)$_2$Ce(NO$_3$)$_6$ system.
Fig. S21 The low-angle XRD pattern (A), SEM image (B), nitrogen adsorption-desorption isotherm (C), the pore size distribution (D), and EDS mapping (E) of the MSU-4 materials one-pot synthesized in the Fenton reagent system.

Fig. S22 Gibbs free energy profile and optimized geometry of the structures involved in the incorporation of Ce and/or Fe within the mesoporous silica materials.
Table S1. Physicochemical properties of calcined samples prepared using different methods

<table>
<thead>
<tr>
<th>Sam</th>
<th>Reaction system</th>
<th>Initiator</th>
<th>Products</th>
<th>Metal /Si molar ratio(^a) (%)</th>
<th>(d^b) (nm)</th>
<th>(S_{\text{BET}}) (m(^2)g(^{-1}))</th>
<th>Pore volume (cm(^3)g(^{-1}))</th>
<th>Pore diameter (nm)</th>
<th>Wall thickness (nm)</th>
<th>Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TEOS-P(_{123})-(NH(_4))(_2)Ce(NO(_3))_6(-)H(_2)O</td>
<td>(NH(_4))(_2)Ce(NO(_3))_6/ mmol</td>
<td>0.009</td>
<td>Ce-SBA-15</td>
<td>10.3</td>
<td>447</td>
<td>1.37</td>
<td>9.4</td>
<td>2.4</td>
<td>36</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>0.036</td>
<td>Ce-SBA-15</td>
<td>0.15</td>
<td>9.9</td>
<td>0.98</td>
<td>6.2</td>
<td>5.2</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>0.144</td>
<td>Ce-SBA-15</td>
<td>0.101</td>
<td>879</td>
<td>0.87</td>
<td>5.8</td>
<td>5.9</td>
<td>85</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>0.182</td>
<td>Ce-SBA-15</td>
<td>-</td>
<td>9.2</td>
<td>0.967</td>
<td>6.06</td>
<td>5.6</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>0.29</td>
<td>Ce-SBA-15</td>
<td>0.87</td>
<td>748</td>
<td>0.5</td>
<td>4.9</td>
<td>6.4</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>0.36</td>
<td>Ce-SBA-15</td>
<td>9.5</td>
<td>0.967</td>
<td>6.06</td>
<td>5.6</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>TEOS-P(_{123})-Fenton-H(_2)O</td>
<td>300µL 30wt%H(_2)O(_2)+FeSO(_4)-7H(_2)O/ mmol</td>
<td>0.036</td>
<td>Fe-SBA-15</td>
<td>0.13</td>
<td>10.1</td>
<td>0.967</td>
<td>6.06</td>
<td>5.6</td>
<td>95</td>
</tr>
<tr>
<td>8</td>
<td>TEOS-P(_{123})-Na(_2)S(_2)O(_4)-H(_2)O</td>
<td>Na(_2)S(_2)O(_4)/ mmol</td>
<td>0.036</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>TEOS-Tween60- (NH(_4))(_2)Ce(NO(_3))_6-H(_2)O</td>
<td>(NH(_4))(_2)Ce(NO(_3))_6/ mmol</td>
<td>0.036</td>
<td>Ce-MSU-4</td>
<td>0.28</td>
<td>5.53</td>
<td>0.895</td>
<td>3.26</td>
<td>3.13</td>
<td>86</td>
</tr>
<tr>
<td>10</td>
<td>TEOS-Tween 60-Fenton-H(_2)O</td>
<td>300µL 30wt% H(_2)O(_2)+FeSO(_4)-7H(_2)O/ mmol</td>
<td>0.072</td>
<td>Fe-MSU-4</td>
<td>0.36</td>
<td>5.64</td>
<td>1.016</td>
<td>3.77</td>
<td>2.74</td>
<td>84</td>
</tr>
</tbody>
</table>

\(^a\)The Metal/Si ratios in the calcined materials were calculated by the ICPAES method. \(^b\)\(d_{\text{100}}\) spacing or \(d\) value of characteristic reflection of the as-synthesized products after calcination at 550 °C for 6 h. \(^c\)The pore diameters were calculated by the desorption branch of the isotherms according the BJH method. \(^d\)Calculated by \(a^d = 2d_{\text{100}} / 3^{1/2}\)