Electronic Supplementary Information

Mobilization of platinum and palladium from exhausted catalytic converters using bio-cyanide and ionic-liquid as mass transport carriers[†]

Sadia Ilyas,^{*a} Rajiv Ranjan Srivastava ^{b,c} and Hyunjung Kim ^{*a}

^aDepartment of Earth Resources & Environmental Engineering, Hanyang University, 222-Wangsimni-ro, Seongdong-gu, Seoul-04763, Republic of Korea.

^bCenter for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Da Nang-550000, Vietnam.

^cFaculty of Natural Sciences, Duy Tan University, Da Nang-550000, Vietnam.

*Corresponding authors:

sadiailyas1@yahoo.com (S. Ilyas) kshjkim@hanyang.ac.kr (H. Kim)

Ionic liquid	Optimal Concentration	Important remarks	References
Polymerized	IL 20% yielded 86% Pt and 96% Pd	PSILP material demonstrated	[1]
supported IL	recovery of purity 99%.	excellent separation of PGMs	
		from major accompanying	
		interferences in a single	
		separation step.	
Aliquat-336	3 mg/L Aliquat-336 yielded >99%	The authors obtained a good	[2]
	extraction efficiency of PGMs,	selectivity over Au(III) over Pt	
	selective stripping of Pd in 1.0	and Pd in the extraction stage.	
	mol.L ^{-1} NaOH and Pt in 1.0 mol.L ^{-1}		
	thiourea was achieved.		
$[Tf_2N]^-$ IL	100% as such solvent used disulfide,	Cation ring structure showed a	[3]
	alkenyl, and nitrile group attached	large influence on the	
	ionic liquid exhibited high Pd-	extraction process.	
	extraction.		
Cyphos IL	Without dilution used IL yielded	Stripping was performed using	[4, 5]
104	selective Ru(III) with 70% efficacy,	$0.1 \text{ mol.} L^{-1}$ thiourea in 0.5	
	leaving all Rh(III) into raffinate.	$mol.L^{-1}$ HCl.	
Cyphos IL	0.6 g/L IL 101 used that yielded	Stoichiometry requirement of	[5, 6]
101	>99% Pt-Pd extraction over Rh. Co-	ionic liquid changes from 1 to	
	extracted Pt and Pd was separated by	3 times with differing acid	
	sequential stripping with NaSCN and	concentration from 0.1-4.0	
	$CH_4N_2S.$	mol.L ⁻¹ ; however, Pt did not	
		show any effect of acid	
		concentration.	

Table S1. Literature summary of PGMs' extraction using ionic liquids at different conditions and salient features.

Item description	TCLP	SPLP	TTLC
Leaching agents	$C_2H_4O_2, H_2O$	H_2SO_4, H_2O	HNO ₃ , HCl, H ₂ O ₂ , H ₂ O
Sample amount	100 g	100 g	1.0 g
Volume	2 L	2 L	100 mL
Duration	18 h	18 h	48 h
Analyte	Heavy metals	Heavy metals	Heavy metals
Instrument used	ICP-MS	ICP-MS	ICP-MS

Table S2. Summary of the test procedures adopted for toxicity assessment.

Milling type	Equation applied for power	Conditions
	consumption	
Gyratory	$\{W_i \times Q \ [\sqrt{f80} - \sqrt{P80}] \times$	Where, Wi is work index = 15 kWh.t^{-1} ; Q is
milling	$\sqrt{(100/P80)}/\sqrt{f80}$ (in kW)	capacity = 1 t.h ⁻¹ ; f_{80} is the size through
	where	which 80% of the mineral feed passes = 50
		mm; P_{80} is the size through which 80% of
		the product passes $= 5 \text{ mm}$
Ball milling	W= W _i × ((10/ \sqrt{P})-10/ \sqrt{F}))	Where, W is the energy consumption for grinding (in kWh.t ^{-1}); Wi is work index (in hWth t ^{-1}); D is the sense energy energy three
		which 80% of the material passes before
		grinding (in µm); F is the screen aperture
		size through which 80% of the material
		passes before grinding (in μ m)
	$W_i = 1.1 \times 44.5 / (Pk^{0.23}G^{0.82}((10/\sqrt{P})-$	Where, Wi is work index (in kWh.t ⁻¹); P is
	10/√F))	the screen aperture through which 80% of
		the material passes before grinding (in μ m);
		F is the screen aperture size through which
		80% of the material passes before grinding
		(in μ m); P _k is the aperture size of test screen
		used for determination of the work index (in
		μ m); G is the newly formed mass passing a
		test screen each mill revolution (in g).

Table S3. The conditions used for determining the energy consumption for milling of exhausted catalytic converters to size reduction up to $150 \mu m$.

Fig. S1. XRD pattern of exhausted catalytic converters.

Fig. S2. XPS analysis of the sample for full scan (a), Pt (b), and Pd (c) scan.

Fig. S3. FTIR spectrum of fresh ionic-liquid Cyphos IL101 (a) and (Pt,Pd)-loaded ionic-liquid phase (b).

Fig. S4. ¹H-NMR of fresh (a) and (Pt,Pd)-loaded (b) ionic liquid phase.

Fig. S5. ³¹P NMR of fresh (a) and (Pt,Pd)-loaded (b) ionic liquid phase.

References

- [1] O. Lanaridi, A.R. Sahoo, A. Limbeck, S. Naghdi, D. Eder, E. Eitenberger, Z. Csendes, M. Schnürch, K. Bica-Schröder, Toward the Recovery of Platinum Group Metals from a Spent Automotive Catalyst with Supported Ionic Liquid Phases, ACS Sustainable Chem. Eng. 9 (2021) 375–386.
- [2] W. Wei, C.W. Cho, S. Kim, M.H. Song, J.K. Bediako, Y.S. Yun, Selective recovery of Au(III), Pt(IV), and Pd(II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336, J. Mol. Liq. 216 (2016) 18–24.
- [3] J.M. Lee, Extraction of noble metal ions from aqueous solution by ionic liquids, Fluid Phase Equilib. 319 (2012) 30–36.
- [4] M. Rzelewska, M. Wiśniewski, M. Regel-Rosocka, Effect of composition and ageing of chloride solutions on extraction of Rh(III) and Ru(III) with phosphonium ionic liquids Cyphos IL 101 and IL 104, Sep. Sci. Technol. 53 (2018) 1249–1260.
- [5] M. Rzelewska-Piekut, M. Regel-Rosocka, Separation of Pt(IV), Pd(II), Ru(III) and Rh(III) from model chloride solutions by liquid-liquid extraction with phosphonium ionic liquids, Sep. Purif. Technol. 212 (2019) 791–801.
- [6] V.T. Nguyen, J. Lee, A. Chagnes, M. Kim, J. Jeong, G. Cote, Highly selective separation of individual platinum group metals (Pd, Pt, Rh) from acidic chloride media using phosphonium-based ionic liquid in aromatic diluents, RSC Adv. 67 (2016) 62717–62728.