Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Sustainable synthesis of bio-based PTMEG and methane beyond the Reppe method

Yue Zhu,^{ab} Bolong Li,^{ab} Yuan Fang,^{ab} Chen Zhao^{*ab}

^a Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of

Chemistry and Molecular Engineering, East China Normal University, Shanghai,

China, 200062.

^b Institute of Ecochongming, Shanghai 202162, China Email: czhao@chem.ecnu.edu.cn

Table of Contents

Chemicals
Catalyst synthesis
Synthesis of silica hollow spheres (SiO ₂) support
Synthesis of Ni/SiO ₂ and other supported metal catalysts with deposition-
precipitation method4
Synthesis of Cu-K/SiO ₂ catalyst with hydrothermal method5
Synthesis of Rh, Pd, Ru catalysts supported on activated carbon5
Synthesis of the polymerization solid acid catalysts
Activity tests
Furfural hydrogenation to tetrahydrofurfuryl alcohol6
Hydrodeoxygenation of tetrahydrofurfuryl alcohol over nickel-based catalyst6
Polymerization of tetrahydrofuran over phosphotungstic acid
Catalyst characterization
DFT calculation details
Supplemental Figures and Tables9
Figure S1: Six-run recycling tests on furfural hydrogenation over Ni/SiO2 and Cu-
K/SiO ₂ catalyst9
Figure S2: Characterization analysis of Cu-K/SiO ₂ catalyst10
Figure S3: Characterization analysis of Ni/SiO ₂ catalyst11
Figure S4: Possible reaction pathway for THFA dehydrogenation and
decarbonylation12
Figure S5: Effect of temperatures and the H ₂ flow speed on dehydrogenation and
decarbonylation of tetrahydrofurfuryl alcohol over Ni/silica spheres catalyst 14
Figure S6: The Arrhenius curve of THFA conversion with Ni/silica spheres catalyst
at selected temperatures (523-583 K)15
Figure S7: N_2 adsorption and desorption isotherms and the pore size distribution of
silica spheres sample16
Figure S8: SEM and TEM images of the used Ni/silica spheres
Figure S9: FTIR spectra of THF and THFA18
Figure S10: The results for dehydrogenation and decarbonylation of
cyclohexanemethanol and dodecanol over Ni/silica sphere catalyst
Figure S11: Configurations and corresponding adsorption energies of (a)
tetrahydrofurfuryl alcohol, (b) tetrahydrofurfural, (c) 2,3-dihydrofuran, (d)
tetrahydrofuran21
Figure S12: Results of polymerization of THF over PMA, PMA/SiO ₂ and PWA,
PWA/SiO ₂ with different reaction temperatures
Figure S13: Possible mechanism for polymerization of THF to PTMEG23
Figure S14: GPC spectrogram of PTMEG in comparison to blank24
Figure S15: The IR spectra of adsorbed pyridine on (a) PWA and (b) PMA25
Figure S16: FT-IR spectra of PWA at different activated temperatures26

	Table S1: Hydrogenation of furfural over different supported catalysts	26
	Table S2: Physical Properties of Cu-K/SiO ₂ and Ni/SiO ₂ catalysts	28
	Table S3: The thermodynamic constant at different temperature	of
	tetrahydrofurfuryl alcohol hydrodeoxygenation reaction	28
	Table S4: Physical Properties of Ni/ silica spheres catalysts	29
	Table S5: List of economic parameters of Reppe method	31
	Table S6: List of economic parameters of Furfural method	32
Ref	ference	33

Experimental Procedures

Chemicals

All chemicals and reagents were obtained from commercial suppliers and used without further purification: Furfural (C₅H₄O₂, Shanghai Aladdin Biochemical Technology Co., Ltd.), tetrahydrofurfuryl alcohol (C5H10O2, Shanghai Aladdin Biochemical Technology Co., Ltd.), tetrahydrofuran (C₄H₈O, Shanghai Aladdin Biochemical Technology Co., Ltd.), nickel nitrate (Ni(NO3)₂·6H₂O, Sinopharm Chemical Reagent Co., Ltd.), copper nitrate (Cu(NO₃)₂·3H₂O, Sinopharm Chemical Reagent Co., Ltd.), cobalt nitrate (Co(NO₃)₂·6H₂O, Sinopharm Chemical Reagent Co., Ltd.), niron nitrate (Fe(NO₃)₃·9H₂O, Sinopharm Chemical Reagent Co., Ltd.), urea (CO(NH₂)₂, Sinopharm Chemical Reagent Co., Ltd.), palladium chloride (PdCl₂, J&K, 59.5%), ruthenium chloride (RuCl₃·3H₂O, J&K, 59.5%), rhodium chloride (RhCl₃·3H₂O, J&K, 59.5%), platinum chloride (PtCl₄, J&K, 58%), fumed silica (SiO₂, Shanghai Maikun Chemical Co., Ltd.), activated carbon (C, Shanghai Aladdin Biochemical Technology Co., Ltd.), HZSM-5 (Nankai University, Si/Al ratio = 5), zirconia (ZrO₂, Sinopharm Chemical Reagent Co., Ltd.), aluminum oxide (Al₂O₃, Shanghai Maikun Chemical Co., Ltd.), ammonium hydroxide (NH₃·H₂O, Sinopharm Chemical Reagent Co., Ltd.), potassium chloride (KCl, Sinopharm Chemical Reagent Co., Ltd.), phosphotungstic acid ($H_6O_{80}P_2W_{24}$, Beijing Innochem Technology Co., Ltd.), phosphomolybdic acid (H₃P(Mo₃O₁₀)₄·xH₂O, Shanghai Meriel Chemical Technology Co., Ltd.), glycol ((CH₂OH)₂, Shanghai Aladdin Biochemical Technology Co., Ltd.), epoxy chloropropane (C3H5ClO, Shanghai Aladdin Biochemical Technology Co., Ltd.), ethanol (CH₃CH₂OH, Sinopharm Chemical Reagent Co., Ltd.), hydrogen (H₂, Shanghai Pujiang Specialty Gas Co., Ltd.), nitrogen (N₂, Shanghai Pujiang Specialty Gas Co., Ltd.).

Catalyst synthesis

Synthesis of silica hollow spheres (SiO₂) support

Mesoporous silica hollow spheres were synthesized by the Stöber synthesis method. In a typical experiment, resorcinol (1.5 g) and formaldehyde (37 wt %, 2.1 mL) were added to the solution composed of aqueous ammonia solution (28 wt%, 30 mL), ethanol (700 mL) and deionized water (100 mL). The mixture was vigorously stirred at room temperature for 6 h, and then 6 mL of tetraethyl orthosilicate (TEOS) was added into the solution and stirred for 8 minutes before another addition of resorcinol (4 g) and formaldehyde (37 wt %, 5.6 mL). The mixture was stirred for another 2 h at room temperature, and then was collected by centrifugation, ethanol washing and drying overnight in 60 °C oven. After drying, the sample was fully ground and calcined in a tubular furnace at 550 °C for 5 h (heating rate: 2 °C·min⁻¹, flowing rate: 150 mL·min⁻¹).

Synthesis of Ni/SiO₂ and other supported metal catalysts with depositionprecipitation method

In a typical experiment, the Ni/SiO₂ catalyst was synthesized by deposition precipitation method. Ni(NO₃)₂·6H₂O (10.2 g) was firstly dissolved in the deionized water (250 mL), and one part of this solution (200 mL) was suspended with SiO₂ (2.0 g) with stirring and then heated to 70 °C. The rest solution (50 mL) was dissolved with urea (6.3 g), and then drop-wise added into the former SiO₂ suspension. Afterwards, the mixture was held at 90 °C with stirring for different times (4, 6, 8, 10, 12, 16, 18, 24 h). After cooled down, the solid was separated by vacuum filtration, and the sample was washed serval time with deionized water until pH of the filtrate was 7. Finally, the samples were dried at 80 °C overnight. The ground sample was calcined at 450 °C for 4 h (flowing rate: 150 mL·min⁻¹, heating rate: 2 °C·min⁻¹).

Cu/SiO₂, Fe/SiO₂, Co/SiO₂, Pt/SiO₂, Ru/SiO₂, Ni/ASA, Ni/Al₂O₃, Ni/HZSM-5, Ni/ZrO₂ were synthesized by the same method.

Synthesis of Cu-K/SiO₂ catalyst with hydrothermal method

Cu(NO₃)₂·3H₂O (1.3413 g) was dissolved in deionized water (560 mL) with vigorous stirring. Then KCl (8.278 g) was added into the copper solution, followed by the addition of 10.192 g NH₃·H₂O. Finally, 0.7056 g SiO₂ was added into the above solution and stirred at ambient temperature for 30 min. Afterwards, the mixture was ultra-sonically treated for another 30 min, and then transferred into a Teflon-lined stainless steel autoclave for 3 h at 120 °C. After cooled down to room temperature, the solid was filtered and washed with deionized water until pH value decreased to 7. The precursor was dried at 60 °C overnight, calcined at 450 °C for 4 h (flowing rate: 150 mL·min⁻¹, heating rate: 2 °C·min⁻¹).

Synthesis of Rh, Pd, Ru catalysts supported on activated carbon

In a typical experiment, the corresponding catalysts were synthesized by impregnation method. Using Ru/C as an example, firstly a RuCl₃·3H₂O solution was prepared, and then was mixed with the activated carbon at continuous stirring at ambient temperature overnight. Afterwards, the sample was rotated to remove water and dried at 60 °C overnight. The ground sample was calcined at 350 °C for 4 h (flowing rate = 150 mL·min⁻¹, heating rate: 2 °C·min⁻¹) and reduced with hydrogen at 350 °C for 4 h (flowing rate = 150 mL·min⁻¹, heating rate: 2 °C·min⁻¹).

Synthesis of the polymerization solid acid catalysts

Phosphotungstic acid and phosphomolybdic acid were calcined at different temperatures (100, 120, 140, 170, 200, 230 °C) for 2 h (flowing rate = 100 mL·min⁻¹, heating rate: 2 °C·min⁻¹) before use.

Phosphotungstic acid and phosphomolybdic acid supported on SiO_2 were synthesized by impregnation method. Phosphotungstic acid (1.4060 g) or phosphomolybdic acid (1.7075 g) was mixed with SiO_2 at continuous stirring at ambient temperature overnight. Afterwards, the sample was rotated to remove water and dried at 60 °C overnight. The ground sample was calcined at 230 °C for 3 h (flowing rate: 150 mL·min⁻¹, heating rate: 2 °C·min⁻¹). The loading amounts of phosphotungstic acid and phosphomolybdic acid on SiO₂ were both 35 %.

Activity tests

Furfural hydrogenation to tetrahydrofurfuryl alcohol

First, add 3.0 g furfural, 27 g ethanol, 0.2 g Cu-K/SiO₂ and Ni/SiO₂ into the autoclave (Shanghai Rock Signature Experimental Instrument Co., Ltd). Before inflating, first introduce the gas three times with N₂, and then three times with H₂, then 6 MPa H₂ was purged into the reactor at ambient temperature, and then heated up to 140 °C, and the reaction started at a stirring speed of 900 rpm. After reaction, the liquid product was analyzed by a Shimadzu QP-2010 Ultra GC-MS and GC instruments with the column of Rtx-5Sil MS (30 m × 0.25 m × 0.25 µm).

Hydrodeoxygenation of tetrahydrofurfuryl alcohol over nickel-based catalyst

Reactions were carried out in a fixed bed reactor (Shanghai Rock Signature Experimental Instrument Co., Ltd). First, 2 g calcined catalyst (40–60 mesh) were diluted with 2 g quartz sand. Before reaction, the catalyst was reduced at 450 °C for 4 h under a pure H₂ atmosphere, and then adjusting the reaction conditions to 310 °C, H₂ flow 66.4 ml/min, 3 MPa H₂, the feeding rate of THFA was 0.07 mL/min. The liquid product and gas product were collected once an hour. The composition of the product gases was analyzed using an gas chromatograph (Shimadzu GC 2014, Japan) equipped with a TDX-1 packed column and a thermal conductivity detector. The liquid product was analyzed by a Shimadzu QP-2010 Ultra GC-MS instrument with the column of Rtx-5Sil MS (30 m × 0.25 m × 0.25 μ m).

Polymerization of tetrahydrofuran over phosphotungstic acid

Before the polymerization reaction, adding a certain amount of shredded sodium, THF and benzophenone as chromogenic reagent into 50 mL three-mouth flask with nitrogen protection. After a period of condensation reflux at 67 °C, water and oxygen was removed from THF when the system became blue. Then THF was distilled out and preserved with nitrogen. Then a certain amount of phosphotungstic acid, redistilled THF, and epichlorohydrin as accelerant were added into the round-bottomed flask with nitrogen as protective gas, and was then stirred strongly. It can be found that the viscosity of the polymerization system was increased with the polymerization reaction. After a period of reaction, water was added to the system to terminate the polymerization reaction, and the polymerization system became milky white. The reaction mixture liquid in the flask was transferred to the separating funnel and a certain amount of cyclohexane was added to extract the organic phase. Water was subsequently added to wash the organic phase until pH turned to be 7, and organic phase was then separated. Afterwards, the sample was rotated to remove water, and the organic layer was dried at 80 °C in vacuum drying chamber for 6 h.

Catalyst characterization

Powder X-ray diffraction (XRD) patterns were measured on Rigaku Ultima IV X-ray diffractometer utilizing Cu K_{α} radiation ($\lambda = 1.5405$ Å) operated at 35 kV and 25 mA.

The metal contents were analyzed by inductively coupled plasma atomic emission spectroscopy (ICP–AES) with a Thermo IRIS Intrepid II XSP emission spectrometer after dissolving the catalyst in a mixed HF and aqua regia solution.

The specific surface area and pore size distribution were performed by N_2 adsorption at 77 K on a Quantachrome Autosorb-3B instrument after activating the samples under vacuum at 573 K for 10h.

Scanning electron microscopy (SEM) images were performed with a Hitachi S-4800 microscope. Transmission electron microscopy (TEM) was detected on a Tecnai G2 f30 microscope at 300kV.

The temperature programmed reduction (H₂-TPR) analysis of catalysts was performed by Micromeritics tp5080 apparatus using a 3% H₂/He mixture (flowing rate: $30 \text{ mL}\cdot\text{min}^{-1}$) and at a heating rate of 10 °C·min⁻¹ with a thermal conductor detector (TCD).

In situ diffuse reflectance infrared Fourier transform spectra (DRIFTS) spectra were collected by a BRUKER TENSOR 27 spectrometer equipped with a MCT detector

and operated at a resolution of 4 cm⁻¹. Before the experiment, the samples in a powder form were reduced at 450 °C for 1 h with N₂ and aged at 310 °C for 1 h with He. The background spectrum was recorded at 310 °C and then THFA with H₂ gas was introduced into the reaction cell at a total flow rate of 25 mL·min⁻¹ at 310 °C. Then the spectra were collected every 5 min.

NMR spectra were recorded on a Bruker AM-400 spectrometer using tetramethylsilane as an internal standard in CDCl₃.

DFT calculation details

DFT calculations were performed using Vienna ab initio Simulation Package (VASP). The projector augmented wave (PAW) method combined with cutoff energy of 450 eV were adopted to describe the core and valence electrons. The exchange-correlation effects were described within the generalized gradient approximation with the use of Perdew-burke-Ernzehof (PBE) functional. Ni(111) is modeled by 4-layer slabs separated by 15 Å vacuum space, with the top two layers relaxed and bottom two layers fixed to simulate the Ni bulk. $p(4\times4)$ unit cells were chosen, which means a coverage of 1/16 monolayer for a single adsorbate on the surface The Brillouin zone of the systems were sampled with a $4 \times 4 \times 1$ Monkhorst-Pack grid. In this paper, adsorption energy E_{ad} of the adsorbed reactant and intermediates is defined as:

 $E_{ad} = E_{adsorbate/slab} - E_{slab} - E_{adsorbate}$

Where $E_{adsorbate/slab}$ is the total energy of interacting system of both slab and adsorbate after surface optimization. E_{slab} is the energy of the 4-layer slab with 15 Å vacuum space along z direction and $E_{adsorbate}$ is the energy of adsorbate in vacuum.

Supplemental Figures and Tables

Figure S1. Six-run recycling tests on furfural hydrogenation over Ni/SiO₂ and Cu-K/SiO₂ catalyst. Reaction conditions: FA 1.5 g, ethanol 28.5 g, Ni/SiO₂ (DP16 h) 0.2 g, Cu-K/SiO₂ 0.2 g, 140 °C, 6 MPa H₂, 3 h.

Figure S2. (a) N₂ adsorption and desorption isotherms of Cu-K/SiO₂ sample. (b) The pore size distribution of Cu-K/SiO₂ sample. (c-d) SEM and TEM images of the reduced Cu-K/SiO₂ catalyst. (e) H₂-TPR profiles of air calcined Cu-K/SiO₂ sample. (f) XRD patterns of Cu-K/SiO₂ sample. (g-h) SEM and TEM images of the used Cu-K/SiO₂.

Figure S3. (a) XRD patterns of Ni/SiO₂ sample. (b) H_2 -TPR profiles of air calcined Ni/SiO₂ sample. (c) N₂ adsorption and desorption isotherms of Ni/SiO₂ sample. (d) The pore size distribution of Ni/SiO₂ sample. (e-h) SEM and TEM images of as-prepared samples: the reduced Ni/SiO₂ and the used NiSiO₂ catalysts.

Figure S4. Possible reaction pathway for selective hydrodeoxygenation of THFA.

Figure S5. (a and b) Effect of temperatures on liquid and gas product distributions from selective hydrodeoxygenation of THFA. Reaction conditions: THFA 0.07 mL/min, 1 MPa, H₂ flow 66.4 mL/min, spherical Ni/silica 2.0 g. (c, d) The distribution of liquid and gas products with different H₂ flow speed on selective hydrodeoxygenation of THFA over spherical Ni/silica catalyst. Reaction conditions: THFA 0.07 mL/min, 310 °C, 1 MPa H₂, spherical Ni/silica 2.0 g.

Figure S6. The Arrhenius curve of THFA conversion with spherical Ni/silica catalyst at selected temperatures (523-583 K). Reaction conditions: THFA 0.07 mL/min, 1 MPa H₂, H₂ flow 66.4 ml/min, spherical Ni/silica 2.0 g.

Figure S7. N_2 adsorption and desorption isotherms and the pore size distribution of spherical silica sample.

Figure S8. (a) SEM and (b) TEM images of the used spherical Ni/silica catalysts.

Figure S9. FTIR spectra of THF and THFA.

Figure S10. The results for selective hydrodeoxygenation of cyclohexanemethanol and dodecanol over spherical Ni/silica catalyst.

Figure S11. The equations for gaseous reactions during the hydrodeoxygenation of THFA.

Figure S12. Configurations and corresponding adsorption energies of (a) tetrahydrofurfuryl alcohol, (b) tetrahydrofurfural, (c) 2,3-dihydrofuran, (d) tetrahydrofuran.

Figure S13. (a) Yield of polymerization of THF over PMA, PMA/SiO₂ and PWA, PWA/SiO₂ with different reaction temperatures. Reaction conditions: 0-2°C, THF 20 mL, ECH 3.13 mL, EG 0.25 mL, catalyst 0.23 g, 4 h. (b) Distribution of molecular weight and dispersity of PTMEG as synthesized by PMA, PMA/SiO₂ and PWA, PWA/SiO₂.

Figure S14. Possible mechanism for polymerization of THF to PTMEG.

Figure S15. GPC spectrogram of PTMEG in comparison to blank (THF used as mobile phase).

Figure S16. The IR spectra of adsorbed pyridine on (a) PWA and (b) PMA.

Figure S17. FT-IR spectra of PWA at different activated temperatures.

		Conv.			Yield (%)			Carbon balance
Entry	Catalyst	(%)	Сн2он	СН2ОН	$_{0}$	OCH2CH3		(%)
1	Pd/C ^a	100	98	0	0	0	0	98.0
2	Ru/C ^a	65	0	65	0	0	0	100
3	Rh/C ^a	54	0	54	0	0	0	100
4	Cu-K/SiO ₂ ^a	100	0	100	0	0	0	100
5	Ni/SiO ₂ ^b	100	80.2	0	0	19.7	0	95.8
6	Ni-Cu/SiO ₂ ^c	100	38.2	0	30.2	22.6	7.0	99.9
7	Ni/SiO2 ^d	100	99.6	0	0	0	0	99.6
8	Ni/SiO ₂ + Cu-K/SiO ₂ ^e	100	100	0	0	0	0	100
9	Ni/SiO ₂ + Cu-K/SiO ₂ ^e	100	99.4	0	0.6	0	0	94.1
10	Ni/SiO ₂ + Cu-K/SiO ₂ ^e	100	99.2	0	0.8	0	0	94.2
11	Ni/SiO ₂ + Cu-K/SiO ₂ ^e	100	99.2	0	0.8	0	0	94.2
12	Ni/SiO ₂ + Cu-K/SiO ₂ ^e	100	99.2	0	0.8	0	0	94.2
13	Ni/SiO ₂ + Cu-K/SiO ₂ ^e	100	99.2	0	0.8	0	0	94.2

Table S1. Hydrogenation of furfural over different supported catalysts.

^aReaction conditions: FA 1.5 g, ethanol 28.5 g, catalyst 0.2 g, 100°C, 6 MPa H₂, 2 h. ^bReaction conditions: FA 1.5 g, ethanol 28.5 g, 0.2 g Ni/SiO₂, 140°C, 6 MPa H₂, 2 h. ^cFA 3 g, ethanol 27 g, Ni-Cu/SiO₂ (preparation by hydrothermal method) 0.2 g, 140°C, 6 MPa H₂, 3 h. ^dFFA 3 g, ethanol 27 g, 140°C, 6 MPa H₂, 3 h. ^eSix-run recycling tests. Reaction conditions: FA 3 g, ethanol 27 g, 0.2 g Ni/SiO₂, 0.2 g Cu-K/SiO₂, 140°C, 6 MPa H₂, 3 h.

Catalyst		Metal Loading ICP	Particle size	Pore diameter	S _{meso}	Smicro	V _{meso}	Vmicro
		/wt%	/nm	/nm	$/m^2 \cdot g^{-1}$	$/m^2 \cdot g^{-1}$	$/cm^3 \cdot g^{-1}$	$/cm^3 \cdot g^{-1}$
Cu-K/SiO ₂	Reduction	71	4.3 ± 0.8	2.969	279	0	0.25	0
	Used	64	$4.1{\pm}0.9$	2.971	219	17	0.22	0
Ni/SiO ₂	Reduction	50	2.7 ± 0.4	2.974	219	0	0.52	0
	Used	43	2.6± 0.5	3.122	162	0	0.49	0

 Table S2. Physical Properties of Cu-K/SiO2 and Ni/SiO2 catalysts.

Т	$\triangle \mathrm{H}$	$\triangle \mathbf{S}$	$\triangle \mathbf{G}$	LogK
°C	kcal	cal/K	kcal	
280	14.712	54.549	-15.461	6.109
290	14.506	54.179	-16.005	6.212
300	14.294	53.805	-16.545	6.309
310	14.076	53.430	-17.081	6.402
320	13.854	53.052	-17.614	6.490
330	13.627	52.672	-18.142	6.574

Table S3. The thermodynamic constant at different temperature of tetrahydrofurfuryl alcohol hydrodeoxygenation reaction.

Cata	alyst	Metal Loading ICP /wt%	Particle size /nm	Pore diameter /nm	S_{meso} $/m^2 \cdot g^{-1}$	S_{micro} $/m^2 \cdot g^{-1}$	V_{meso} /cm ³ ·g ⁻¹	V_{micro} /cm ³ ·g ⁻¹
Si	O ₂	-	-	52.0	143.7	12.2	0.588	0.006
Ni/SiO ₂	Reduction	50	3.0±0.2	19.2	95.1	0	0.300	0
	Used	48	3.4±0.4	78.5	116.8	25.7	0.288	0.014

Table S4. Physical Properties of Ni/ silica spheres catalysts.

Entry		Consumption	Unit price	Total price
		$(ton/kwh/m^3)$	$(\text{/ton or kwh or } m^3)$	(\$)
	Acetylene	0.42	219.80 ^a	91.88
Raw feedstock cost	Formaldehyde	2.02	200.00 ^a	404.00
	Hydrogen	0.06	1255.20	79.00
	Ethynylation catalyst	0.028	1122.37	31.43
Catalyst cost	Hydrogenation catalyst	0.018	1247.22	22.45
	Natrium aceticum	0.025	391.94 ^a	9.80
	Sodium hydroxide	0.05	360.59 ^a	18.03
	Sulphuric acid	0.045	95.32 ^a	4.29
	Electricity	271.00 kwh	0.08	21.27
Jtility&Electricity costs	Process water	0.65 m^3	0.78	0.51
	Cooling water	0.58	0.78	0.46
	Steam	12.94	23.54	304.60
Fixed operating costs			-	11.36
Capital costs		-	-	173.50
Recycled product	Butanol	0.027	2039.7	-55.07
	Propynol	0.02	6087.72	-121.75
Total				995.76 \$/ton
Taken from reference pri	ce by MOLBASE ¹ .			

Table S5. List of economic parameters of Reppe method.

Entry		Consumption (ton/kwh/m ³)	Unit price (\$/ton or kwh or m ³)	Total price
		(ton/kwn/nn)	(\$/ton or kwn or m)	(\$)
Raw feedstock cost	Furfural	1.10	1183 ^a	1301
	Hydrogen	0.046	1255.2	57.74
	Copper nitrate	0.0054	3929.6 ^b	21.22
Catalyst cost	Nicker nitrate	0.0055	4079.4 ^b	22.44
	Silicon dioxide	0.011	94.14	1.04
	Ammonia water	0.003	117.58 ^a	0.35
	Electricity		0.08	25.12
Utility&Electricity cost	Process water	0.34 m^3	0.78	0.27
	Cooling water	0.43	0.78	0.34
	Steam	4	23.54	94.16
Fixed operating cost		-	-	11.36
Capital costs		-	-	173.50
Recycled product CH ₄		0.86	988.47	-850
Total				858.53\$/ton
^a Taken from reference pr	ice by MOLBASE ¹ .			
^b Taken from study by Co	nsensus Economics Inc ² .			

 Table S6. List of economic parameters of Furfural method.

Reference

[1] https://www.molbase.com/

[2] https://www.consensuseconomics.com/