SUPPORTING INFORMATIONDecomposition of Lignin Models Enabled by Copper-BasedPhotocatalysis Under Biphasic Conditions

Cédric Bertin, + Corentin Cruché, † Franklin Chacón-Huete, † \ddagger Pat Forgione \ddagger * and Shawn K. Collins +*
† Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, QC H2V OB3 CANADA
\ddagger Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St W., Montreal, QC H4B 1R6, CANADA.

Table of Contents

\qquadTable of Contents .1
GENERAL : 1
SYNTHESIS OF LIGANDS AND CATALYSTS. 2
General Comments/Procedures for Ligands: 2
SUBSTRATE SYNTHESIS 3
General procedure for the photochemical decomposition of lignin models 8
Tabular Data from Screening 10
Decomposition of Lignin Models 11
Reaction Scale-up using Flow Chemistry 14
Synthesis and degradation of the model polymer 14
Stern-Volmer experiments. 15
Deuteration Experiment. 19
NMR Spectra 20
Lignin Models 20
References 42

GENERAL :

All reactions that were carried out under anhydrous conditions were performed under an inert argon or nitrogen atmosphere in glassware that had previously been dried overnight at $120^{\circ} \mathrm{C}$ or had been flame dried and cooled under a stream of argon or nitrogen. All chemical products were obtained from Sigma-Aldrich Chemical Company, Oakwood Chemical or Alfa Aesar and were reagent quality. Technical solvents were obtained from VWR International Co. Anhydrous solvents $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Et} 2 \mathrm{O}, \mathrm{THF}, \mathrm{DMF}\right.$, toluene, and n-hexane) were dried and deoxygenated using a GlassContour system (Irvine, CA). Isolated yields reflect the mass obtained following flash column silica gel chromatography. Organic compounds were purified using silica gel obtained from Silicycle Chemical division (40-63 nm; 230-240 mesh). Analytical thin-layer chromatography (TLC) was performed on glassbacked silica gel 60 coated with a fluorescence indicator (Silicycle Chemical division, 0.25 mm , F254.). Visualization of TLC plate was performed by UV (254 nm), KMnO_{4} or p-anisaldehyde stains. All mixed solvent eluents are reported
as v / v solutions. Concentration refers to removal of volatiles at low pressure on a rotary evaporator. All reported compounds were homogeneous by thin layer chromatography (TLC) and by ${ }^{1} \mathrm{H}$ NMR. NMR spectra were taken in deuterated CDCl_{3} using Bruker AV-300 and AV-400 instruments unless otherwise noted. Signals due to the solvent served as the internal standard $\left(\mathrm{CHCl}_{3}: \delta 7.27\right.$ for $1 \mathrm{H}, \delta 77.0$ for 13 C$)$. The acquisition parameters are shown on all spectra. The ${ }^{1} \mathrm{H}$ NMR chemical shifts and coupling constants were determined assuming first-order behavior. Multiplicity is indicated by one or more of the following: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad); the list of couplings constants (J) corresponds to the order of the multiplicity assignment. High resolution mass spectroscopy (HRMS) was done by the Centre régional de spectrométrie de masse at the Département de Chimie, Université de Montréal from an Agilent LC-MSD TOF system using ESI mode of ionization unless otherwise noted.

SYNTHESIS OF LIGANDS AND CATALYSTS

General Comments/Procedures for Ligands:

Commercially available diimines include: 1,10-phenanthroline (phen), 2,9-dimethyl-1,10-phenanthroline (dmp), 3,4,7,8-tetramethyl-1,10-phenanthroline (tmp), 4-4'-dimethoxy-2-2'-bipyridine (dmbp), 4,4'-di-tert-butyl-2,2'dipyridyl (dtbbp), 4,4'-di-tert-butyl-2,2'-dipyridyl (batho), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocup) 2,2'-biquinoline (dq). Previously synthesized diimines ${ }^{1-4}$ include: 2-(1-(p-tolyl)-1H-1,2,3-triazol-4yl)pyridine (pytri), 2-(1-(p-tolyl)-1H-1,2,3-triazol-4-yl)quinoline (quintri), 1-(1-(p-tolyl)-1H-1,2,3-triazol-4yl) isoquinoline (iquintri), 3,6-dimethyl-dipyrido[3,2-f:2', 3^{\prime}-h]-quinoxaline (ddpq), 3,6-dimethyldipyrido[3,2-a:2', 3'c]phenazine (ddppz), 3,6-dimethylbenzo[i]dipyrido[3,2-a:2', $\left.3^{\prime}-c\right]$ phenazine (dbdppz), di(pyridin-3-yl)amine (dpa), 2,9-dibutyl-1,10-phenanthroline (bphen) and 1,10-phenanthroline-5,6-dione (dmop).

The optimized catalyst $\mathrm{Cu}($ batho $)\left(\right.$ XantPhos) BF_{4} was prepared using a reported procedure. ${ }^{4}$ The photophysical properties have been investigated by several groups. A summary is provided below:

Abs max (nm)	Em max (nm)	Lifetime $(\mu \mathrm{s})$	$\mathrm{ET}(\mathrm{eV})$	E* red vs SCE	E^{*} ox vs SCE
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{4}$	$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{4}$	$\left(\mathrm{DME}: \mathrm{H}_{2} \mathrm{O}\right)$	$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)^{4}$	$(\mathrm{MeCN})^{5}$	$(\mathrm{MeCN})^{5}$
397	441	2.6	2.66	$-1,37 \mathrm{~V}$	$+1,05 \mathrm{~V}$

SUBSTRATE SYNTHESIS

2-Bromo-1-(4-methoxyphenyl)ethan-1-one (2aS): To a solution of 1-(4-methoxyphenyl)ethan-1-one (1.50 g, 9.99 mmol) in EtOAc ($30 \mathrm{~mL}, 333 \mathrm{mM}$) is added $\mathrm{CuBr}_{2}(3.35 \mathrm{~g}, 15.0 \mathrm{mmol})$. The reaction mixture was stirred overnight at $90^{\circ} \mathrm{C}$. The reaction was then allowed to cool to room temperature and filtered through a filter paper. The filtrate was added to a separatory funnel along with water (30 mL). It was then extracted three times with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by column chromatography with Hexanes/EtOAc (8:2) to give a pink solid ($1.48 \mathrm{~g}, 65 \%$). Spectral data were in accordance with previous report. ${ }^{6}{ }^{\mathbf{1}} \mathrm{H} \mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 8.00(\mathrm{dt}, 2 \mathrm{H}), 6.98(\mathrm{dt}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.

2-Bromo-1-(3,4-dimethoxyphenyl)ethan-1-one (1aS): To a solution of 1-(3,4-dimethoxyphenyl)ethan-1-one (1.80 g, 9.99 $\mathrm{mmol})$ in EtOAc ($30 \mathrm{~mL}, 333 \mathrm{mM}$) is added $\mathrm{CuBr}_{2}(3.35 \mathrm{~g}, 15.0 \mathrm{mmol})$. The reaction mixture was stirred overnight at $90^{\circ} \mathrm{C}$. The reaction was then allowed to cool to room temperature and filtered through a filter paper. The filtrate was added to a separatory funnel along with water $(30 \mathrm{~mL})$. It was then extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatography (Hexanes : EtOAc ; 8:2) to give a slightly yellow solid (1.33 g, 51\%). Spectral data were in accordance with previous report. ${ }^{6} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.65$ (dd, $J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.58(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$.

2-Bromo-1-(3,4,5-trimethoxyphenyl)ethan-1-one (10aS): To a solution of 1-(3,4,5-trimethoxyphenyl)ethan-1-one (2.10 g, 9.99 mmol$)$ in EtOAc ($30 \mathrm{~mL}, 333 \mathrm{mM}$) is added $\mathrm{CuBr}_{2}(3.35 \mathrm{~g}, 15.0 \mathrm{mmol})$. The reaction mixture was stirred overnight at $90^{\circ} \mathrm{C}$. The reaction was then allowed to cool to room temperature and filtered through a filter paper. The filtrate was added to a separatory funnel along with water (30 mL). It was then extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes: EtOAc ; 8:2) to give a yellow solid ($2.17 \mathrm{~g}, 75 \%$). Spectral data were in accordance with previous report. ${ }^{61} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.00(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.

2-(2,6-Dimethoxyphenoxy)-1-(4-methoxyphenyl)ethan-1-one (2): To a solution of 2,6-dimethoxyphenol (443 mg, 2.87 mmol) in acetone ($6.31 \mathrm{~mL}, 446 \mathrm{mM}$) is added cesium carbonate ($917 \mathrm{mg}, 2.82 \mathrm{mmol}$). The solution was stirred for 15 minutes before 2-bromo-1-(4-methoxyphenyl)ethan-1-one ($6.45 \mathrm{~g}, 2.82 \mathrm{mmol}$) was added. The solution was then stirred overnight at room temperature. The solvent was evaporated under vacuum. The reaction vessel was then washed with water (30 mL) and EtOAc (30 mL), both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatography (Hexanes : EtOAc ; 7:3) to give a white solid (800 mg , $94 \%)$. Spectral data were in accordance with previous report. ${ }^{7} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.10-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.04-$ $6.94(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.58(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H})$.

1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one (1): To a solution of 2-methoxyphenol ($605 \mathrm{uL}, 5.39 \mathrm{mmol}$) in acetone ($11.5 \mathrm{~mL}, 446 \mathrm{mM}$) is added cesium carbonate ($1.67 \mathrm{~g}, 5.13 \mathrm{mmol}$). The solution was stirred for 15 minutes before 2-bromo-1-(3,4-dimethoxyphenyl)ethan-1-one ($1.33 \mathrm{~g}, 5.13 \mathrm{mmol}$) was added. The solution was then stirred overnight at room temperature. The solvent was evaporated under vacuum. The reaction vessel was then washed with water (30 mL) and EtOAc (30 mL), both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes : EtOAc ; 7:3) to give a slightly pink powder (1.27 $\mathrm{g}, 82 \%)$. Spectral data were in accordance with previous report. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{dd}, \mathrm{J}=8.4,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.63(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.97$ $(\mathrm{s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.

2-(2,6-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethan-1-one (6): To a solution of 2,6-dimethoxyphenol (315 mg, 2.05 mmol) in acetone ($10 \mathrm{~mL}, 193 \mathrm{mM}$) is added cesium carbonate ($673 \mathrm{mg}, 2.06 \mathrm{mmol}$). The solution was stirred for 15 minutes before 2-bromo-1-(3,4-dimethoxyphenyl)ethan-1-one ($500 \mathrm{mg}, 1.93 \mathrm{mmol}$) was added. The solution was then stirred for 6 h at room temperature. The solvent was evaporated under vacuum. The reaction vessel was then washed with water (30 mL) and EtOAc (30 mL), both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The product was then purified by flash chromatography (Hexanes: EtOAc ; 7:3) to give a white solid ($601 \mathrm{mg}, 94 \%$). Spectral data were in accordance with previous report. ${ }^{7} 1 \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.73$ (dd, J = $8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}$, $2 \mathrm{H}), 3.95(\mathrm{~s}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H})$.

2-(2-methoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one (10): To a solution of 2-methoxyphenol (323 uL, 2.94 mmol) in acetone ($6.30 \mathrm{~mL}, 445 \mathrm{mM}$) is added cesium carbonate ($913 \mathrm{mg}, 2.80 \mathrm{mmol}$). The solution was stirred for 15 minutes before 2-bromo-1-(3,4,5-trimethoxyphenyl)ethan-1-one ($810 \mathrm{mg}, 2.80 \mathrm{mmol}$) was added. The solution was then stirred overnight at room temperature. The solvent was evaporated under vacuum. The reaction vessel was then washed with water $(30 \mathrm{~mL})$ and EtOAc (30 mL), both of which were added to a separatory funnel. The aqueous phase was
extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes : EtOAc ; 7:3) to give a white powder ($570 \mathrm{mg}, 61 \%$). Spectral data were in accordance with previous report. ${ }^{81} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~s}, 2 \mathrm{H})$, $7.05-6.86(\mathrm{~m}, 4 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H})$.

2-(2,6-Dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one (9): To a solution of 2,6-dimethoxyphenol (560 mg, 3.63 mmol) in acetone ($7.76 \mathrm{~mL}, 446 \mathrm{mM}$) is added cesium carbonate ($1.13 \mathrm{~g}, 3.46 \mathrm{mmol}$). The solution was stirred for 15 minutes before 2-bromo-1-(3,4,5-trimethoxyphenyl)ethan-1-one ($1.00 \mathrm{~g}, 3.46 \mathrm{mmol}$) was added. The solution was then stirred overnight at room temperature. The solvent was evaporated under vacuum. The reaction vessel was then washed with water (30 mL) and EtOAc (30 mL), both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes : EtOAc ; 7:3) to give a white fluffy solid ($1.07 \mathrm{~g}, 85 \%$). Spectral data were in accordance with previous report. ${ }^{8} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41(\mathrm{~s}$, $2 \mathrm{H}), 7.06(\mathrm{dd}, \mathrm{J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.63(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.16(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{bs}, 9 \mathrm{H}) 3.85(\mathrm{~s}, 6 \mathrm{H})$.

2-(3,5-Dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one (12S): To a solution of 3,5-dimethoxyphenol (544 $\mathrm{mg}, 3.46 \mathrm{mmol}$) in acetone ($7.76 \mathrm{~mL}, 446 \mathrm{mM}$) is added cesium carbonate ($1.13 \mathrm{~g}, 3.46 \mathrm{mmol}$). The solution was stirred for 15 minutes before 2-bromo-1-(3,4,5-trimethoxyphenyl)ethan-1-one ($1.00 \mathrm{~g}, 3.46 \mathrm{mmol}$) was added. The solution was then stirred overnight at room temperature. The solvent was evaporated under vacuum. The reaction vessel was then washed with water $(30 \mathrm{~mL})$ and EtOAc $(30 \mathrm{~mL})$, both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatography (Hexanes : EtOAc ; 7:3) to give a slightly yellow solid ($756 \mathrm{mg}, 60 \%$). Spectral data were in accordance with previous report. ${ }^{9}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.29$ $(\mathrm{s}, 2 \mathrm{H}), 6.18-6.12(\mathrm{~m}, 3 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 6 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$.

2-(2-Methoxyphenoxy)-1-(3-methoxyphenyl)ethan-1-one (4S): To a solution of 2-methoxyphenol ($509 \mu \mathrm{~L}, 4.63 \mathrm{mmol}$) in acetone ($9.70 \mathrm{~mL}, 446 \mathrm{mM}$) is added cesium carbonate ($1.52 \mathrm{~g}, 4.67 \mathrm{mmol}$). The solution was stirred for 15 minutes before 2-bromo-1-(3-methoxyphenyl)ethan-1-one ($1.00 \mathrm{~g}, 4.37 \mathrm{mmol}$) was added. The solution was then stirred for 3 h at room temperature. The solvent was evaporated under vacuum. The reaction vessel was then washed with water (30 mL) and EtOAc (30 mL), both of which were added to a separatory funnel. The aqueuous phase was extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The product was then purified by flash chromatography (Hexanes : EtOAc ; 7 : 3) to give a white solid (951 mg, 80\%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{dd}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18$ (ddd, J = 8.3, 2.7, 1.0 Hz, 1H), $7.04-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.90$ $-6.85(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 194.35,159.97,149.83,147.54,135.93$, $129.79,122.51,120.81,120.54,120.37,114.95,112.33,112.23,77.36,77.04,76.72,72.18,55.92,55.50$. HRMS (ESI) m / z calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$273.1121; found 273.1128.

2-(3,5-Dimethoxyphenoxy)-1-(3-methoxyphenyl)ethan-1-one (5): To a solution of 3,5-dimethoxyphenol (808 mg, 5.24 mmol) in acetone ($25 \mathrm{~mL}, 173 \mathrm{mM}$) is added cesium carbonate ($1.85 \mathrm{~g}, 5.68 \mathrm{mmol}$). The solution was stirred for 15 minutes before 2-bromo-1-(3-methoxyphenyl)ethan-1-one ($1 \mathrm{~g}, 4.37 \mathrm{mmol}$) was added. The solution was then stirred for 6 h at room temperature. The solvent was evaporated under vacuum. The reaction vessel was then washed with water and EtOAc , both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc and the combined organic phases was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The product was then purified by flash chromatography (Hexanes : EtOAc ; 7:3) to give a off-white solid ($1.10 \mathrm{~g}, 83 \%$). Spectral data were in accordance with previous report. ${ }^{10}{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.56$ (ddd, $\left.J=7.6,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.52$ (dd, J = 2.7, 1.5 Hz, 1H), 7.40 (dd, J = 7.9 Hz, 1H), 7.16 (ddd, J = 8.3, 2.7, 0.9 Hz, 1H), $6.15-6.09(\mathrm{~m}, 3 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H})$.

1-(3,4-Dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one (7): To a solution of 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one ($509 \mathrm{mg}, 1.68 \mathrm{mmol}$) in EtOH : acetone ($1: 1,8.42 \mathrm{~mL}, 200 \mathrm{mM}$) was added potassium carbonate ($249 \mathrm{mg}, 1.80 \mathrm{mmol}$). The solution was stirred for 15 minutes after which an aqueous formaldehyde solution was added (241 uL of a $37 \% \mathrm{w} . \mathrm{t}$. aqueous formaldehyde solution, 3.06 mmol). The resulting mixture was stirred at room temperature for 4 h . The solvents were evaporated under vacuum. The reaction vessel was washed with water (30 mL) and EtOAc (30 mL) both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes: EtOAc ; $5: 5$) to give a transparent oil ($406 \mathrm{mg}, 73 \%$). Spectral data were in accordance with previous report. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.85(\mathrm{~m}, 4 \mathrm{H}), 6.89-6.79(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}$, $3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$.

2-(2,6-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-3-hydroxypropan-1-one (8): To a solution of 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethan-1-one ($550 \mathrm{mg}, 1.65 \mathrm{mmol}$) in EtOH : acetone ($1: 1,16.5 \mathrm{~mL}, 100$ mM) was added potassium carbonate ($228 \mathrm{mg}, 1.65 \mathrm{mmol}$). The solution was stirred for 15 minutes after which an aqueous formaldehyde solution was added (201 uL of a 37% w.t. aqueous formaldehyde solution, 2.48 mmol). The resulting mixture was stirred at room temperature for 2 h . The solvents were evaporated under vacuum. The reaction vessel was washed with water $(30 \mathrm{~mL})$ and $\operatorname{EtOAc}(30 \mathrm{~mL})$ both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes : EtOAc ; 5:5) to give a
 7.73 (dd, J = 8.4, 2.0 Hz, 1H), $7.65(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 6 \mathrm{H})$.

2-(2,6-Dimethoxyphenoxy)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one (11): To a solution of 2-(2,6-dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one ($500 \mathrm{mg}, 1.38 \mathrm{mmol}$) in EtOH : acetone ($1: 1,6.90 \mathrm{~mL}, 200$ mM) was added potassium carbonate ($200 \mathrm{mg}, 1.45 \mathrm{mmol}$). The solution was stirred for 15 minutes after which an aqueous formaldehyde solution was added (196 uL of a 37% w.t. aqueous formaldehyde solution, 2.48 mmol). The resulting mixture was stirred at room temperature for 2 h . The solvents were evaporated under vacuum. The reaction vessel was washed with water $(30 \mathrm{~mL})$ and $\operatorname{EtOAc}(30 \mathrm{~mL})$ both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$
and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes : EtOAc ; 5:5) to give a transparent oil ($361 \mathrm{mg}, 67 \%$). Spectral data were in accordance with previous report. ${ }^{11}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.41$ $(\mathrm{s}, 2 \mathrm{H}), 7.07(\mathrm{dd}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{dd}, J=7.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=12.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.95$ (s, 3H), 3.92 (s, 6H), 3.86 (dd, 1H), 3.78 ($s, 6 \mathrm{H}$).

2-(3,5-Dimethoxyphenoxy)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one (12): To a solution of 2-(3,5-dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one ($500 \mathrm{mg}, 1.38 \mathrm{mmol}$) in EtOH : acetone ($1: 1,6.90 \mathrm{~mL}, 200$ mM) was added potassium carbonate ($200 \mathrm{mg}, 1.45 \mathrm{mmol}$). The solution was stirred for 15 minutes after which an aqueous formaldehyde solution was added (196 uL of a 37% w.t. aqueous formaldehyde solution, 2.48 mmol). The resulting mixture was stirred at room temperature for 2 h . The solvents were evaporated under vacuum. The reaction vessel was washed with water (30 mL) and EtOAc $(30 \mathrm{~mL})$ both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc $(3 \times 30 \mathrm{~mL})$ and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes : EtOAc ; 5:5) to give a transparent oil ($361 \mathrm{mg}, 67 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{~s}, 2 \mathrm{H}), 6.12(\mathrm{~s}, 3 \mathrm{H}), 5.47(\mathrm{dd}, \mathrm{J}=6.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-$ $4.08(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.34,161.83,159.24,153.28,143.61$, $129.76,106.53,94.30,94.13,81.02,63.42,61.11,56.41,55.50$. HRMS (ESI) m / z calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}[\mathrm{M}+\mathrm{Na}]^{+}$ 415.1363; found 415.1369.

3-Hydroxy-2-(2-methoxyphenoxy)-1-(3-methoxyphenyl)propan-1-one (4): To a solution of 2-(2-methoxyphenoxy)-1-(3-methoxyphenyl)ethan-1-one ($450 \mathrm{mg}, 1.65 \mathrm{mmol}$) in EtOH : acetone ($1: 1,16.5 \mathrm{~mL}, 100 \mathrm{mM}$) was added potassium carbonate ($228 \mathrm{mg}, 1.65 \mathrm{mmol}$). The solution was stirred for 15 minutes after which an aqueous formaldehyde solution was added (201 uL of a 37% w.t. aqueous formaldehyde solution, 2.48 mmol). The resulting mixture was stirred at room temperature for 2 h . The solvents were evaporated under vacuum. The reaction vessel was washed with water (30 mL) and EtOAc (30 mL) both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes : EtOAc ; $5: 5$) to give a transparent oil ($213 \mathrm{mg}, 43 \%$). Spectral data were in accordance with previous report. ${ }^{12}{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.63(\mathrm{ddd}, J=7.7,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=$ $2.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{ddd}, J=8.3,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=8.1,7.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ (ddd, $J=8.2,3.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{ddd}, J=8.0,7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=6.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H})$.

2-(3,5-Dimethoxyphenoxy)-3-hydroxy-1-(3-methoxyphenyl)propan-1-one (5): To a solution of 2-(3,5-dimethoxyphenoxy)-1-(3-methoxyphenyl)ethan-1-one ($500 \mathrm{mg}, 1.65 \mathrm{mmol}$) in EtOH : acetone ($1: 1,16.5 \mathrm{~mL}, 100 \mathrm{mM}$) was added potassium carbonate ($228 \mathrm{mg}, 1.65 \mathrm{mmol}$). The solution was stirred for 15 minutes after which an aqueous formaldehyde solution was added (201 uL of a 37% w.t. aqueous formaldehyde solution, 2.48 mmol). The resulting mixture was stirred at room temperature for 2 h . The solvents were evaporated under vacuum. The reaction vessel was washed with water (30 mL) and EtOAc (30 mL) both of which were added to a separatory funnel. The aqueous phase was extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatograph (Hexanes: EtOAc ; 5 : 5) to give a transparent oil ($315 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.62$ (ddd, J=7.7, 1.6, $0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $7.53(\mathrm{dd}, J=2.7,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 7.38$ (dd, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.15$ (ddd, $J=8.2,2.7,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.11-6.05(\mathrm{~m}, 3 \mathrm{H}), 5.54$ (dd, $J=6.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (dd, $J=12.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=12.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.2$,
161.7, 160.1, 159.2, 136.0, 130.0, 121.2, 120.9, 112.9, 94.3, 94.2, 80.9, 63.4, 55.6, 55.5; HRMS (ESI) m/z calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+} 355.1152$; found 355.1146 .

1-Benzyl-3-carbamoylpyridin-1-ium bromide (NABn): To a solution of nicotinamide ($2.00 \mathrm{~g}, 16.4 \mathrm{mmol}$) in acetonitrile ($49.6 \mathrm{~mL}, 0.33 \mathrm{M}$) was added benzyl chloride ($3.20 \mathrm{~mL}, 16.4 \mathrm{mmol}$). The solution was then refluxed for 4 h and allowed to cool to room temperature Diethyl ether (50 mL) was added to further precipitate the final product. The precipitate was recovered by filtration and washed with diethyl ether ($3 \times 10 \mathrm{~mL}$) to afford a white powder ($4.56 \mathrm{~g}, 95 \%$). Spectral data were in accordance with previous report. ${ }^{13}{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{dt}, J=6.2,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.84(\mathrm{dt}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.12$ (dd, J = 8.2, $6.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.83(\mathrm{~s}, 2 \mathrm{H})$.

1-Benzyl-1,4-dihydropyridine-3-carboxamide (NaBnH): To a solution of 1-benzyl-3-carbamoylpyridin-1-ium bromide $(2.93 \mathrm{~g}, 10 \mathrm{mmol})$ in water $(60 \mathrm{~mL})$ was added sodium bicarbonate $(4.20 \mathrm{~g}, 50 \mathrm{mmol})$ and sodium hydrosulfite $(8.71 \mathrm{~g}, 50$ $\mathrm{mmol})$. The reaction mixture was stirred at room temperature for 3 h in the dark. The precipitate was filtered, washed with cold water $(3 \times 10 \mathrm{~mL})$ and dried under vacuum to afford a bright yellow powder $(1.65,77 \%) .{ }^{13}{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.45-7.16(\mathrm{~m}, 6 \mathrm{H}), 5.77(\mathrm{dq}, J=8.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 2 \mathrm{H}), 4.78(\mathrm{dt}, J=8.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 2 \mathrm{H}), 3.20$ (dd, $J=3.5,1.7 \mathrm{~Hz}, 2 \mathrm{H}$).

General procedure for the photochemical decomposition of lignin models

Photochemistry: All the photochemical reactions were performed in 1-dram vials that were placed in the center of an aluminum cylinder the interior of which was lined with a light-emitting diode (LED) strip connected to a power source. The reactions media were thoroughly purged under a nitrogen stream prior to irradiation. LED strips were purchased from Creative Lightings (https://www.creativelightings.com/).

Representative Procedure of the in-situ optimization: To a 4 mL vial equipped with a cross-shaped stir bar was added $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{BF}_{4}(5 \mathrm{~mol} \%)$ and a diphosphine ($5 \mathrm{~mol} \%$). The vial was closed and N_{2} degassed dichloromethane (1.60 mL , 50 mM) was added. The solution was allowed to stir for 1 h before a diimine ($5 \mathrm{~mol} \%$) was added. The solution was allowed to stir again for 1 h at which point 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one ($24.2 \mathrm{mg}, 80.0$ $\mu \mathrm{mol})$, Hantzsch Ester ($30.4 \mathrm{mg}, 120 \mu \mathrm{~mol}$) and diphenyl phosphoric acid ($1.00 \mathrm{mg}, 5 \mathrm{~mol} \%$) were added. The solution was then degassed using N_{2} for 5 minutes. Additional N_{2} degassed dichloromethane was added to compensate for evaporated solvent during degassing. The vial was then stirred under blue LED irradiation for 24 h . The solution was filtered through celite into a 10 mL volumetric flask containing 15.0 mg of $1,3,5$-trimethoxybenzene (internal standard) and the volume was completed using EtOAc. The resulting solution was analysed by an Agilent 6890N-5973N GC-MS. Using the calibration curve below, the 1-(3,4-dimethoxyphenyl)ethan-1-one yield was determined.

Figure S1. Calibration curve of 1-(3,4-dimethoxyphenyl)ethan-1-one.
Table S1. Data used to build the 1-(3,4-dimethoxyphenyl)ethan-1-one calibration curve.

	IS added (mg)	$1-(3,4-$ dimethoxyphenyl)ethan-1one concentration ($\mathrm{mg} / \mathrm{mL}$)	1-(3,4- dimethoxyphenyl)ethan-1one area/IS area
Standard Solution 1	15.0	0.438	0.2438062
Standard Solution 2		0.876	0.53662017
Standard Solution 3		1.314	0.81504239
Standard Solution 4		1.752	1.071823
Standard Solution 5		2.19	1.33494341

Representative Procedure for isolated yield reactions (scope): To a 4 mL vial equipped with a cross-shaped stir bar was added Cu (bathocup)(Xantphos) $\mathrm{BF}_{4} \quad(1.70 \mathrm{mg}, 1.65 \mu \mathrm{~mol}), \mathrm{NaBnH}(7.1 \mathrm{mg}, 33 \mu \mathrm{~mol})$, 1-(3,4-dimethoxyphenyl)ethan-1-one ($50 \mathrm{mg}, 165 \mu \mathrm{~mol}$), $\mathrm{NaHCO}_{3}\left(16.6 \mathrm{mg}, 198 \mu \mathrm{~mol}\right.$), and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(40.6 \mathrm{mg}, 198 \mu \mathrm{~mol})$. The vial was closed and N_{2} degassed water $(830 \mu \mathrm{~L})$ and THF (2.48 mL) were added. The resulting solution was further degassed with N_{2} for 5 minutes. The vial was then stirred under blue LED irradiation for 24 h . The solution was transferred to a separatory funnel and the vial was washed with EtOAc ($3 \times 2 \mathrm{~mL}$). Water (30 mL) was added and extracted with EtOAc ($3 \times 30 \mathrm{~mL}$). The combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The desired products were purified by flash chromatography.

Tabular Data from Screening;

Table S2. Evaluation of Cu (quintri)(PP)BF B_{4}-Based Photocatalysts in a Model Lignin Decomposition Process.

	PP	τ (ns)	E_{T} (eV)	$\%$ XX^{a}
$\mathbf{1}$	NXantPhos	19	2.49	90
2	PhanePhos	1948	2.25	97
3	XantPhos	1133	2.21	99
4	DPEPhos	14300	2.17	0
5	dppf	1.5	2.17	0
6	dppn	1.43	2.15	0
7	BINAP	2188	1.94	65
8	SEGPhos	340	1.92	12
9	none	90	1.65	0

${ }^{a}$ Yield of the acetophenone by GC-MS analysis

Table S3. Evaluation of $\mathrm{Cu}(\mathbf{N N})$ (XantPhos) BF_{4}-Based Photocatalysts in a Model Lignin Decomposition Process; INSITU ONLY 5 mol \%

	NN	τ $(n s)$	E_{T} (eV)	In situ\% XX^{a}
1	phen	391	2.27	0
2	dmp	1133	2.21	99
3	tmp	1119	2.07	78
4	bphen	1798	2.61	99
5	dmbp	72	1.95	0
6	dtbbp	143	1.99	77
7	batho	3.2	2.50	0
8	bathocup	4	2.66	99
9	dq	393	1.89	0
10	pytri	752	2.26	0
11	quintri	3.6	2.59	99
12	iquintri	3.8	2.69	14
13	dpq	3	2.21	48
14	dppz	71	1.95	50
15	bdppz	75	2.19	45
16	dpa	3	2.88	0
17	dmop	4	2.55	22
		a Yield of the acetophenone by GC-MS analysis		

Decomposition of Lignin Models

2-(2,6-Dimethoxyphenoxy)-1-(4-methoxyphenyl)ethan-1-one: According to the general procedure, 1-(4-methoxyphenyl)ethan-1-one ($150 \mathrm{mg}, 495 \mu \mathrm{~mol}$) was converted to 1-(4-methoxyphenyl)ethan-1-one ($52.4 \mathrm{mg} 69 \%$) and 2,6-dimethoxyphenol ($51.4 \mathrm{mg}, 69 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 1-(4-methoxyphenyl)ethan-1-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.96(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}) ; 2,6-$ dimethoxyphenol : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.83(\mathrm{dd}, J=8.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, 6 H).

1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one: According to the general procedure, 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one (150 mg, $495 \mu \mathrm{~mol})$ was converted to 1-(3,4-dimethoxyphenyl)ethan-1-one ($66.0 \mathrm{mg} 74 \%$) and 2-methoxyphenol ($41.4 \mathrm{mg}, 67 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 3-Methoxyacetophenone : ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{dd}, \mathrm{J}=8.4,2.0,1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ; 2-\mathrm{Methoxyphenol}:{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.09-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 3 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.

2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)ethan-1-one: According to the general procedure, 1-(3,4-dimethoxyphenyl)ethan-1-one ($164.4 \mathrm{mg}, 495 \mathrm{mmol}$) was converted to 1-(3,4-dimethoxyphenyl)ethan-1-one (66.9 mg 75%) and 2,6-dimethoxyphenol ($54.9 \mathrm{mg}, 72 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 1-(3,4-Dimethoxyphenyl)ethan-1-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58$ (dd, J = 8.4, 2.0, 1H), $7.53(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}$ $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ; 2,6-$ Dimethoxyphenol : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.83$ (dd, J = 8.7, $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H})$.

2-(2,6-dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one: According to the general procedure, 2-(2,6-dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one (179.4 mg, $495 \mu \mathrm{~mol})$ was converted to 1-(3,4,5-trimethoxyphenyl)ethan-1-one ($91.6 \mathrm{mg} 88 \%$) and 2,6-dimethoxyphenol ($52.7 \mathrm{mg}, 69 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 2-(2,6-Dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one : ${ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.23(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}) ; 2,6$-dimethoxyphenol: ${ }^{1} \mathrm{H}$ NMR (400 MHz , CDCl_{3}): $\delta 6.83$ (dd, J = 8.7, $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.62(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H})$.

2-(3,5-dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one: According to the general procedure, 2-(3,5-dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one (179.4 mg, $495 \mu \mathrm{~mol}$) was converted to 1-(3,4,5-trimethoxyphenyl)ethan-1-one ($59.3 \mathrm{mg} 57 \%$) and 3,5 -dimethoxyphenol ($56.5 \mathrm{mg}, 74 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 2-(2,6-Dimethoxyphenoxy)-1-(3,4,5-trimethoxyphenyl)ethan-1-one : ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.23(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 6 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 1 \mathrm{H}) ; 3,5$-Dimethoxyphenol : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right)$: $\delta 6.14-6.04(\mathrm{~m}, 3 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$.

1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one: According to the general procedure, 1-(3,4-dimethoxyphenyl)-3-hydroxy-2-(2-methoxyphenoxy)propan-1-one (164.4 mg, $495 \mu \mathrm{~mol}$) was converted to 1-(3,4-dimethoxyphenyl)-3-hydroxypropan-1-one ($55.2 \mathrm{mg} 53 \%$) and 2-methoxyphenol ($36.9 \mathrm{mg}, 60 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 1-(3,4-dimethoxyphenyl)-3-hydroxypropan-1-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59$ (dd, J = 8.4, 2.0 Hz, 1H), $7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, $3.20(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H})$; 2-Methoxyphenol : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.09-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.90(\mathrm{~m}$, $3 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.

2-(2,6-Dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-3-hydroxypropan-1-one: According to the general procedure, 2-(2,6-dimethoxyphenoxy)-1-(3,4-dimethoxyphenyl)-3-hydroxypropan-1-one ($179.4 \mathrm{mg}, 495 \mu \mathrm{~mol}$) was converted to 1-(3,4-dimethoxyphenyl)-3-hydroxypropan-1-one ($83.2 \mathrm{mg} 80 \%$) and 2,6-dimethoxyphenol ($65.6 \mathrm{mg}, 86 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 1-(3,4-Dimethoxyphenyl)-3-hydroxypropan-1-one : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.59(\mathrm{dd}, J=8.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{t}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}$, $3 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{~s}, 1 \mathrm{H}) ; 2,6-$ Dimethoxyphenol : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.83(\mathrm{dd}, J=8.7,7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.62(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 6 \mathrm{H})$.

2-(2,6-Dimethoxyphenoxy)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one: According to the general procedure, 2-(2,6-dimethoxyphenoxy)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one ($194.1 \mathrm{mg}, 495 \mu \mathrm{~mol}$) was converted to 3-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one ($64.2 \mathrm{mg} 53 \%$) and 2,6-dimethoxyphenol ($52.7 \mathrm{mg}, 69 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 3-Hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H}) ; 2,6-$ Dimethoxyphenol: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.83(\mathrm{dd}, J=8.7,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.54(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}$, 6 H).

2-(3,5-Dimethoxyphenoxy)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one: According to the general procedure, 2-(3,5-dimethoxyphenoxy)-3-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one ($194.1 \mathrm{mg}, 495 \mu \mathrm{~mol}$) was converted to 3-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one ($63.0 \mathrm{mg} 53 \%$) and 3,5-dimethoxyphenol ($57.2 \mathrm{mg}, 75 \%$). Spectral data were in accordance with previous report ${ }^{14}$; 3-Hydroxy-1-(3,4,5-trimethoxyphenyl)propan-1-one : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.22(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 6 \mathrm{H}), 3.20(\mathrm{t}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{~s}, 1 \mathrm{H}) ; 3,5-$ Dimethoxyphenol : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.14-6.04(\mathrm{~m}, 3 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$.

3-Hydroxy-2-(2-methoxyphenoxy)-1-(3-methoxyphenyl)propan-1-one: According to the general procedure, 3-hydroxy-2-(2-methoxyphenoxy)-1-(3-methoxyphenyl)propan-1-one ($150 \mathrm{mg}, 495 \mu \mathrm{~mol}$) was converted to 3-hydroxy-1-(3-methoxyphenyl)propan-1-one ($66.0 \mathrm{mg} 74 \%$) and 2-methoxyphenol (yield not determined). Spectral data were in accordance with previous report ${ }^{15}$; 3-Hydroxy-1-(3-methoxyphenyl)propan-1-one : ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 7.54$ (ddd, $J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ (dd, $J=2.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(d d, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(d d d, J=8.2,2.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ $(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.22(\mathrm{t}, \mathrm{J}=5.3 \mathrm{~Hz}, 2 \mathrm{H})$; 2-Methoxyphenol : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.09-7.01(\mathrm{~m}$, 1H), $7.01-6.90(\mathrm{~m}, 3 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H})$.

2-(3,5-Dimethoxyphenoxy)-3-hydroxy-1-(3-methoxyphenyl)propan-1-one: According to the general procedure, 2-(3,5-dimethoxyphenoxy)-3-hydroxy-1-(3-methoxyphenyl)propan-1-one ($164.4 \mathrm{mg}, 495 \mu \mathrm{~mol}$) was converted to 3-hydroxy-1-(3-methoxyphenyl)propan-1-one ($59.8 \mathrm{mg} 67 \%$) and 3,5-dimethoxyphenol ($47.3 \mathrm{mg}, 62 \%$). Spectral data were in accordance with previous report ${ }^{15}$; 3-Hydroxy-1-(3-methoxyphenyl)propan-1-one : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.95$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.79(\mathrm{~s}, 1 \mathrm{H}) ; 3,5-$ Dimethoxyphenol : ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.14-6.04(\mathrm{~m}, 3 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H})$.

Reaction Scale-up using Flow Chemistry

Representative procedure for the degradation of 1 using the continuous flow setup:
1-(3,4-Dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one ($1.0 \mathrm{~g}, 3.31 \mathrm{mmol}, 1 \mathrm{eq}$.), Cu(bathocup)(Xantphos) BF_{4} (34 $\mathrm{mg}, 33.1 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$), and NABnH ($142 \mathrm{mg}, 0.62 \mathrm{mmol}, 20 \mathrm{~mol} \%$) were dissolved in dimethoxyethane [66 mL, 25 mM]. $\mathrm{NaHCO}_{3}\left(333 \mathrm{mg}, 3,97 \mathrm{mmol}, 1.2 \mathrm{eq}\right.$.), and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}\left(691 \mathrm{mg}, 3.97 \mathrm{mmol}, 1.2\right.$ eq.) were dissolved in $\mathrm{H}_{2} \mathrm{O}$ [66 $\mathrm{mL}, 25 \mathrm{mM}$]. Both solutions were sparged with N_{2} for 15 minutes. With an Asia Syringe Pump, the solutions were mixed by a T-mixer, and pumped through a 13.6 mL PFA-coiled reactor. The coil was irradiated with 450 nm LED and two 450 nm Kessil Lamps, and the flow rate was calculated for a 3 -hour irradiation. The reaction mixture was then transferred to a separatory funnel. Water was added and extracted with EtOAc three times. The combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The desired products were purified by flash chromatography to give 2-methoxyphenol ($270 \mathrm{mg}, 71 \%$) and 1-(3,4-dimethoxyphenyl)ethan-1-one ($417 \mathrm{mg}, 70 \%$) as pure products. 3-Methoxyacetophenone : ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{dd}, J=8.4,2.0,1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}) ; 1$-(3,4-Dimethoxyphenyl)ethan-1-one : ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.58(\mathrm{dd}, J=8.4,2.0,1 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$;

Figure S2 : Continuous flow reactor set-up used for the scale-up reactions.
Synthesis and degradation of the model polymer

Scheme S1: Synthesis of the model polymer

2-B -1-(4-hydroxyphenyl)ethan-1-one (13S): To a solution of 1-(4-hydroxyphenyl)ethan-1-one ($1 \mathrm{~g}, 7.34 \mathrm{mmol}$) in EtOAc $(40 \mathrm{~mL}, 134 \mathrm{mM})$ and $\mathrm{CHCl}_{3}(15 \mathrm{~mL}, 134 \mathrm{mM})$ is added $\mathrm{CuBr}_{2}(3.28 \mathrm{~g}, 14.7 \mathrm{mmol})$. The reaction mixture was stirred 2 h 30 at $80^{\circ} \mathrm{C}$. The reaction was then allowed to cool to room temperature and filtered through a filter paper. The filtrate was
added to a separatory funnel along with water (30 mL). It was then extracted three times with EtOAc ($3 \times 30 \mathrm{~mL}$) and the combined organic phases were dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2 \mathrm{~g})$ and concentrated in vacuo. The product was then purified by flash chromatography (Hexanes : EtOAc ; 8:2) to give a white solid ($1.58 \mathrm{~g}, 82 \%$). Spectral data were in accordance with previous report ${ }^{16}$. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.98-7.91(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H})$.

Model polymer (13): To a solution of 2-bromo-1-(4-hydroxyphenyl)ethan-1-one ($400 \mathrm{mg}, 1.86 \mathrm{mmol}$) in DMF ($5 \mathrm{~mL}, 372$ $\mathrm{mM})$ is added $\mathrm{Cs}_{2} \mathrm{CO}_{3}(1.21 \mathrm{~g}, 3.72 \mathrm{mmol})$. The reaction mixture was stirred for 24 h at room temperature and 20 mL of $\mathrm{H}_{2} \mathrm{O}$ was added. The orange precipitate was then filtered and washed with 5 mL of DMF and 5 mL of $\mathrm{H}_{2} \mathrm{O}$. The solid was then lyophilized to remove traces of solvent to give the pure polymer as an orange solid ($345 \mathrm{mg}, 69 \%$). Characterisation of the polymer was done by HSQC.

Procedure for the degradation of the model polymer: To a 20 mL vial equipped with a cross-shaped stir bar was added $\mathrm{Cu}($ bathocup $)($ Xantphos $) \mathrm{BF}_{4}(1.9 \mathrm{mg}, 1.84 \mu \mathrm{~mol}), \mathrm{NABnH}(7.9 \mathrm{mg}, 37 \mu \mathrm{~mol})$, the polymer (25 mg), $\mathrm{NaHCO}_{3}(18.5 \mathrm{mg}, 220$ $\mu \mathrm{mol})$, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}(38.8 \mathrm{mg}, 220 \mu \mathrm{~mol})$. The vial was closed and N_{2} degassed water (4 mL) and DME (4 mL) were added. The resulting solution was further degassed with N_{2} for 5 minutes. The vial was then stirred under blue KESSIL® Lamp irradiation for 72 h . The solution was transferred to a separatory funnel and the vial was washed with EtOAc ($3 \times 2 \mathrm{~mL}$). Water (30 mL) was added and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic phase was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}(2$ g) and concentrated in vacuo. Purification by flash chromatography (80:20 Hexanes:EtOAc) gave the pure product 13a as a white solid ($15.1 \mathrm{mg}, 60 \%$). Spectral data were in accordance with previous report ${ }^{17}$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $7.95-7.88(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.89(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H})$.

Stern-Volmer Experiments

Quenching experiments were performed by examining the effect on the excited state lifetime of the copper complexes through the addition of each component of the reaction. Lifetime measurements were done with an Edinburgh Instruments FLS-920 fluorimeter with an EPL 405 laser (exciting at 405 nm). To ensure complete solubility and homogeneous conditions, a 1:1 mix of DME: $\mathrm{H}_{2} \mathrm{O}$ was used. Solutions were purged with N_{2} for 5 min prior to measurement.

Table S4: Excited State Lifetime Quenching with NABnH

$[\mathbf{N A B n H}]$ $(\mathbf{m M})$	Excited State Lifetime $(\mathbf{n s})$
0	2551
0.1	2144
0.3	1850
0.6	1234
0.9	1086
1.2	614

Figure S3: Life-time spectra of Cu (bathocup)(Xantphos) BF_{4} with various concentrations of NABnH , excited at 405 nm , recorded at ambient temperature in 1:1 DME: $\mathrm{H}_{2} \mathrm{O}\left(1.10^{-4} \mathrm{M}\right)$.

Figure S4: Stern-Volmer plot of $\mathrm{Cu}($ bathocup $)($ Xantphos $) \mathrm{BF}_{4}$ with NABnH
Table S5: Excited State Lifetime Quenching with 1-(3,4-dimethoxyphenyl)-2-(2-methoxyphenoxy)ethan-1-one (1)

[1] (mM) Excited State

Lifetime (ns)
$0 \quad 2551$
0,3 2475
0,6 2478
1,2 2524
$2,4 \quad 2486$
4,8 2501

Figure S5: Life-time spectra of Cu (bathocup)(Xantphos) BF_{4} with various concentrations of 1 , excited at 405 nm , recorded at ambient temperature in 1:1 DME: $\mathrm{H}_{2} \mathrm{O}\left(1.10^{-4} \mathrm{M}\right)$.

Figure S6: Stern-Volmer plot of $\mathrm{Cu}\left(\right.$ Bathocup)(Xantphos) BF_{4} with 1
Table S6: Excited State Lifetime Quenching with NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$

$\left[\mathrm{NaHCO}_{3}\right] /\left[\mathrm{Na}_{\mathbf{2}} \mathrm{S}_{\mathbf{2}} \mathrm{O}_{\mathbf{4}}\right]$	Excited State Lifetime (ns)
(mM)	2551
$\mathbf{0}$	2431,93
$\mathbf{0 , 6}$	2411,69
$\mathbf{1 , 2}$	2442,23

Figure S7: Life-time spectra of Cu (bathocup)(Xantphos) BF_{4} with various concentrations of NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$, excited at 405 nm , recorded at ambient temperature in 1:1 DME: $\mathrm{H}_{2} \mathrm{O}\left(1.10^{-4} \mathrm{M}\right)$.

Figure S8: Stern-Volmer plot of $\mathrm{Cu}($ bathocup $)\left(\right.$ Xantphos) BF_{4} with NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$.
Table S7: Bimolecular quenching constant k_{q}

Quench	k_{q} $\left(\mathrm{M}^{-1} \cdot \mathrm{~s}^{-1}\right)$
NABnH	$8,34 \mathrm{E}+09$
1	$2,54 \mathrm{E}+06$
NaHCO_{3} and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{4}$	$1,70 \mathrm{E}+06$

Deuteration Experiment

Deuteration experiment was carried out in a solvent mixture of $3: 1 \mathrm{THF}: \mathrm{D}_{2} \mathrm{O}$.

NMR Spectra

Lignin Models

For previously reported compounds only the ${ }^{1} \mathrm{H}$ NMR is shown. For new compounds both the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra are provided:

References

1. Minozzi, C.; Caron, A.; Grenier-Petel, J.-C.; Santandrea, J.; Collins, S. K., Heteroleptic Copper(I)Based Complexes for Photocatalysis: Combinatorial Assembly, Discovery, and Optimization. Angew. Chem., Int. Ed. 2018, 57 (19), 5477-5481.
2. Sosoe, J.; Cruché, C.; Morin, É.; Collins, S. K., Evaluating heteroleptic copper(I)-based complexes bearing π-extended diimines in different photocatalytic processes. Can. J. Chem. 2020, 98 (9), 461-465.
3. Caron, A.; Morin, É.; Collins, S. K., Bifunctional Copper-Based Photocatalyst for Reductive Pinacol-Type Couplings. ACS Catal. 2019, 9 (10), 9458-9464.
4. Cruché, C.; Neiderer, W.; Collins, S. K., Heteroleptic Copper-Based Complexes for EnergyTransfer Processes: E \rightarrow Z Isomerization and Tandem Photocatalytic Sequences. ACS Catalysis 2021, 11 (14), 8829-8836.
5. Zheng, L.; Jiang, Q.; Bao, H.; Zhou, B.; Luo, S.-P.; Jin, H.; Wu, H.; Liu, Y., Tertiary Amines Acting as Alkyl Radical Equivalents Enabled by a P/N Heteroleptic Cu(I) Photosensitizer. Org. Lett. 2020, 22 (22), 8888-8893.
6. Zuleta, E. C.; Bozell, J. J., Alkylation of monomeric, dimeric, and polymeric lignin models through carbon-hydrogen activation using Ru-catalyzed Murai reaction. Tetrahedron 2021, 100, 132475.
7. Guo, T.; Liu, T.; He, J.; Zhang, Y., One-Pot Transformation of Lignin and Lignin Model Compounds into Benzimidazoles. European Journal of Organic Chemistry 2022, 2022 (2), e202101152.
8. Biannic, B.; Bozell, J. J., Efficient Cobalt-Catalyzed Oxidative Conversion of Lignin Models to Benzoquinones. Organic Letters 2013, 15 (11), 2730-2733.
9. Arias, L.; Vara, Y.; Cossío, F. P., Regioselective Preparation of Benzo[b]furans from Phenols and α-Bromoketones. The Journal of Organic Chemistry 2012, 77 (1), 266-275.
10. Lee, J. H.; Kim, M.; Kim, I., Palladium-Catalyzed α-Arylation of Aryloxyketones for the Synthesis of 2,3-Disubstituted Benzofurans. J. Org. Chem. 2014, 79 (13), 6153-6163.
11. Hofmann, L. E.; Hofmann, D.; Prusko, L.; Altmann, L.-M.; Heinrich, M. R., Sequential Cleavage of Lignin Systems by Nitrogen Monoxide and Hydrazine. Advanced Synthesis \& Catalysis 2020, 362 (7), 1485-1489.
12. Dias, K. d. A.; Pereira Junior, M. V. P.; Andrade, L. H., Benzoic acid resin (BAR): a heterogeneous redox organocatalyst for continuous flow synthesis of benzoquinones from $\beta-0-4$ lignin models. Green Chemistry 2021, 23 (6), 2308-2316.
13. Tan, Z.; Han, Y.; Fu, Y.; Zhang, X.; Xu, M.; Na, Q.; Zhuang, W.; Qu, X.; Ying, H.; Zhu, C., Investigating the Structure-Reactivity Relationships Between Nicotinamide Coenzyme Biomimetics and Pentaerythritol Tetranitrate Reductase. Advanced Synthesis \& Catalysis 2022, 364 (1), 103-113.
14. Bosque, I.; Magallanes, G.; Rigoulet, M.; Kärkäs, M. D.; Stephenson, C. R. J., Redox Catalysis Facilitates Lignin Depolymerization. ACS Central Science 2017, 3 (6), 621-628.
15. Yun, J.-J.; Liu, X.-Y.; Deng, W.; Chu, X.-Q.; Shen, Z.-L.; Loh, T.-P., Chromium(III)-Catalyzed Addition of Water and Alcohol to α, β-Unsaturated Ketones for the Synthesis of β-Hydroxyl and β-Alkoxyl Ketones in Aqueous Media. The Journal of Organic Chemistry 2018, 83 (18), 10898-10907.
16. Damodar, K.; Shin, S.; Jeon, S. H.; Lee, J. T., First synthesis of tabamides A-C and their derivatives: In vitro nitric oxide inhibitory activity. Tetrahedron Letters 2021, 85, 153482.
17. Zhu, C.; Wang, R.; Falck, J. R., Mild and Rapid Hydroxylation of Aryl/Heteroaryl Boronic Acids and Boronate Esters with N-Oxides. Org. Lett. 2012, 14 (13), 3494-3497.
