Formic acid-hydrogen peroxide treatment of furfural residue for production of nanocellulose, lignin, and nano-

scale lignin

Minmin Chang^{a,+}, Xiaohui Wang^{a,b,+}, Qixuan Lin^a, Rui Li^a, Lihong Zhao^a, Junli Ren^{a,*} Fengshan Zhang^c

^a State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China

University of Technology, Guangzhou 510640, China.

^b State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Jinan 250353,

China.

^c Shandong Huatai Paper Company limited, Dongying 257335, China.

⁺ These authors contributed equally to this work.

Ren:

Corresponding Author:

Junli

<u>renjunli@scut.edu.cn;</u>

Telephone:

+8620-8711186

Figure S1. Cellulose content and residual lignin of solid residue under different conditions (Temp., Time and FR load).

Figure S2. The reaction between formic acid and hydrogen peroxide.

Figure S3. FTIR spectra of EHL extracted from furfural residue and recovery lignin (S4).

Figure S4. DPPH radical scavenging ability (RSA) of EHL and S4 lignin.

Figure S5. High-resolution C 1s spectra of nanoscale lignin (S2~S6).

Figure S6. Stability of nano-scale lignin dispersion.

Figure S7. AFM images of nanocellulose with a concentration of 0.5 wt% (S2 $^{\circ}$ S6).

Samples	Glucan	Insoluble lignin	Soluble lignin	Ash	Total
1	29.6%	63.0%	1.12%	1.2%	94.92%
2	79.41%	1.32%	0.44%	5.36%	86.53%
3	88.73%	0.80%	0.50%	6.93%	97.17%
4	84.00%	1.76%	0.44%	6.05%	92.26%
5	81.30%	1.50%	0.47%	4.52%	87.80%
6	82.61%	1.24%	0.52%	3.75%	88.12%
7	82.71%	1.92%	0.40%	7.25%	92.29%
8	85.36%	1.58%	0.44%	6.28%	93.66%
9	81.29%	4.26%	0.47%	3.69%	88.71%
10	80.34%	1.55%	0.49%	4.43%	86.80%
11	85.38%	1.17%	0.44%	7.07%	94.06%
12	81.34%	1.31%	0.57%	5.15%	88.37%

 Table S1. Component analysis of solid residue after treatment by different conditions.

	Table S2.	Treatment conditions fo	r different reactio	ons.	
 Samples	FR-FA-H ₂ 0 ₂	Step1 Temp.	Step2	Step1 time	Step2 time
	(g-mL-mL)	(°C)	Temp.	(h)	(h)
			(°C)		
1	-	-	-	-	-
2	5-40-16	70	90	4	2
2	5 40 40	20	00	4	2
3	5-40-10	80	90	4	2
4	5-40-16	90	90	4	2
5	5-40-16	80	80	4	2
6	5-40-16	80	100	4	2
7	5-40-16	80	90	2	2
8	5-40-16	80	90	6	2
9	5-40-16	80	90	4	1
10	5-40-16	80	90	4	3
10	5 10 20		50	·	J
11	3-40-16	80	90	4	2
12	7–40–16	80	90	4	2

Table S2. Treatment conditions for different reactions.

	Lignin yields	Nano-scale lignin yields	Total yields
Samples	(%)	(%)	(%)
S2	37.14	6.55	43.69
S3	30.74	15.90	46.63
S4	28.04	11.89	39.93
S5	30.95	10.61	41.56
S6	24.59	9.33	33.82

Table S3. Yields of precipitated lignin and nano-scale lignin (Based on theoretical lignin value of FR).

Table S4. Assignment of $^{\rm 13}{\rm C}/^{\rm 1}{\rm H}$ correlation of signals in the 2D-NMR.

Label	$\delta_{\text{C}}/\delta_{\text{H}}$	Assignment
Lignin signals		
-OCH ₃	55.6/3.73	C/H in methoxyls
Aγ	59.4/3.72	C_{γ}/H_{γ} in normal (γ -hydroxylated) β -O-4' substructures (A)
A'γ	62.7/3.83-4.30	C_{ν}/H_{ν} in $\gamma\text{-acylated}\ \beta\text{-}\textit{O-4'}$ substructures (A')
lγ	60.54/4.53	Cγ-Hγ in spirdienone substructures (D)
$A_{\beta(s)}$	85.9/4.12	C_{β}/H_{β} in $\beta\mbox{-}0\mbox{-}4'$ substructures linked to a S unit (A)
S _{2,6}	103.8/6.69	C_2/H_2 and C_6/H_6 in etherified syringyl unites (S)
S' _{2,6}	106.4/7.19	C_2/H_2 and C_6/H_6 in $\alpha\text{-oxidized}$ syringyl unites (S')
PCA_{β}/FA_{β}	113.5/6.27	C_{β}/H_{β} in \emph{p} -coumarates (PCA) and ferulates (FA)
H _{3,5}	114.5/6.62	C_3/H_3 and C_5/H_5 in $\ensuremath{\textit{p}}\xspace$ -hydroxyphenyl units (H)
G ₆	118.7/6.77	C_6/H_6 in guaiacyl units (G)
PCA _{3,5}	115.5/6.77	C_3/H_3 and C_5/H_5 in $\ensuremath{\textit{p}}\xspace$ -coumarates (PCA)
H _{2,6}	128.0/7.20	C_2/H_2 and C_6/H_6 in p -hydroxyphenyl units (H)
PCA _{2,6}	130.8/7.46	C_2/H_2 and C_6/H_6 in <i>p</i> -coumarates (PCA)

P _{2,6}	131.5/7.91	C_2/H_2 and C_6/H_6 in <i>p</i> -hydroxybenoate (P)
PCA_{α}/FA_{α}	144.4/7.45	C_{α}/H_{α} in $\textit{p}\text{-counmarates}$ (PCA) and ferulates (FA)
Carbohydrate signals		
GI _{6(I+R)}	60.6/3.60 and 3.80	C_6/H_6 in (1 \rightarrow 4)- β -D-glucopyranoside (I+R)
GI _{G(NR)}	62.7/3.35 and 3.47	C_6/H_6 in β -D-glucopyranoside (NR)
GI _{4(NR)}	70.1/3.02	C_4/H_4 in β -D-glucopyranoside (NR)
GI ₂₍₁₎	73.2/3.05	C_2/H_2 in (1 \rightarrow 4)- β -D-glucopyranoside (I)
Gl _{3(I)}	74.6/3.35	C_3/H_3 in (1 \rightarrow 4)- β -D-glucopyranoside (I)
GI ₅₍₁₎	76.4/3.15	C_5/H_5 in (1 \rightarrow 4)- β -D-glucopyranoside (I)
GI _{4(I)}	80.5/3.32	C_4/H_4 in (1 \rightarrow 4)- β -D-glucopyranoside (I)
$\alpha GI_{1(R)}$	92.1/4.92	C_1/H_1 in α -D-glucopyranoside (R)
$\beta GI_{1(R)}$	96.5/4.25	C_1/H_1 in β -D-glucopyranoside (R)
GI _{1(I+NR)}	102.6/4.31	C_1/H_1 in (1→4)-β-D-glucopyranoside (I+NR)

Туре	Relative amount (%)	Compounds	Structure
		Mequinol	OH
н	69.72%	Butylated hydroxytoluene	С
		Phenol, 4,6-di(1,1-dimethylethyl)-2-methyl-	К
		Phenol, 4-ethyl-	HO
		Creosol	HO
G	27.73%	Phenol, 4-ethyl-2-methoxy-	CT ₀ -
		2-Methoxy-4-vinylphenol	U OH
S	2.53%	3,5-Dimethoxy-4-hydroxytoluene	°0 − 0− OH

Table S5. Pyrolysis products determined by PY-GC-MS from fast pyrolysis of EHL at 500 $^\circ \! \mathrm{C}.$

Compounds	Structure
Styrene	
Phenol	ОН
p-Cresol	OH OH
Formic acid phenyl ester	
Benzeneethanol, 2-hydroxy-	ОН
Benzaldehyde, 2-methyl-	
Phenol, 2-(1,1-dimethylethyl)-5-methyl-	ОН
Butylated Hydroxytoluene	CH CH

Table S6. Pyrolysis products determined by PY-GC-MS from fast pyrolysis of recovery lignin (S4) at 500 $^\circ\!\mathrm{C}.$

Table S7. Purity of recovered lignin (S4) determined by NREL method.

	Insoluble lignin	Soluble lignin	Cellulose	Purity
S4	87.9%	1.8%	0.7%	89.7%

Table S8. The content of the C 1s peaks and O/C ratio.

	C-C (%)	C-O (%)	C=O (%)	O/C (%)
52	284.60 (49.94%)	285.61 (43.01%)	288.56 (7.04%)	0.273
\$3	284.60 (48.71%)	285.52 (43.50%)	288.50 (7.79%)	0.277
S4	284.60 (45.31%)	285.62(46.29%)	288.52(8.20%)	0.291
S5	284.60 (47.71%)	285.71 (44.74%)	288.54 (7.54%)	0.286
S6	284.60 (48.49%)	285.63 (43.22%)	288.55 (8.30%)	0.298

Table S9. Yields of nanocellulose (based on theoretical value of cellulose in FR).

Samples	Yields (%)
52	52.3
53	27
S4	27.1
S5	27.3
S6	26.4