# Supporting Information

# Self-photocatalyzed regulable alkylation of 2*H*-benzothiazoles with

# diverse aliphatic C-H donors

Jiadi Zhou,<sup>b, ‡</sup> Chaodong Wang,<sup>a, ‡</sup> Lei Huang,<sup>a</sup> Can Luo,<sup>a</sup> Shilu Ye,<sup>a</sup> Ning Xu,<sup>a</sup> Yunsheng Zhu,<sup>a</sup> Li Liu,<sup>a</sup> Quanlei Ren,<sup>a</sup> Zhi Chen,<sup>a</sup> Shengjie Song,<sup>a</sup> and Jianjun Li,<sup>\*a, b</sup>

<sup>a.</sup> College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China.

<sup>b.</sup> Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals,

Zhejiang University of Technology, Hangzhou 310014, P. R. of China.

<sup>‡</sup> These authors contributed equally.

\* Corresponding author. E-mail: <u>lijianjun@zjut.edu.cn</u>

# **Table of contents**

| 1.General method.                                          | 2  |
|------------------------------------------------------------|----|
| 2.General procedure                                        | 2  |
| 2.1 Representative procedure for the synthesis of <b>3</b> | 2  |
| 2.2 Representative procedure for the synthesis of 11       | 3  |
| 3. Additional optimization studies                         | 3  |
| 4. The mechanistic studies                                 | 4  |
| 4.1 Radical quenching experiment                           | 4  |
| 4.2 Chlorine radical trapping experiment                   | 6  |
| 4.3 Light on/off experiment                                | 7  |
| 4.4 Kinetic isotope effect (KIE) experiment                | 7  |
| 4.5 Singlet oxygen quenching experiment                    | 9  |
| 4.6 Superoxide radical quenching experiment                | 9  |
| 4.7 Fluorescence quenching Screening Studies               | 9  |
| 4.8 Isomerization experiment of alcohols                   | 13 |
| 5. Characterization data for compounds                     | 15 |
| 6. NMR spectra                                             | 36 |
| 7. HRMS spectra                                            | 11 |

### 1.General method.

The reagents and solvents were purchased from commercial suppliers and used without further purification unless noted. All reactions were monitored by TLC with silica gel-coated plates. <sup>1</sup>H (400 MHz or 600 MHz) NMR and <sup>13</sup>C (101 MHz or 151 MHz) NMR spectra were recorded on a Varian spectrometer in CDCl<sub>3</sub> or DMSO- $d_6$  using tetramethylsilane (TMS) as internal standards. Data are reported as follows: Chemical shift (number of protons, multiplicity, coupling constants). Coupling constants were quoted to the nearest 0.1 Hz and multiplicity reported according to the following convention: s = singlet, d = doublet, t = triplet, q = quartet, hept = heptet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets, td = triplet of doublets, ddd = doublet of doublet of doublets, br s = broad singlet. Mass spectra were measured with a HRMS-APCI instrument using ESI ionization. Fluorescence quenching experiments were performed on Hitachi F7000 FL Spectrophotometer and F97Pro Spectrophotometer.

### 2.General procedure

#### 2.1 Representative procedure for the synthesis of 3



General procedure A. A mixture of compound 1 (0.2 mmol, 1.0 equiv.), alcohol 2 (1.0 mL), HCl (36wt%, 35  $\mu$ L, 2.0 equiv.) in a 10 mL Schlenk tube was added CH<sub>3</sub>CN (2.0 mL). The reaction mixture was open to the air and stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda$  = 390 – 400 nm) at room temperature for 24 h. The reaction mixture was quenched by NaHCO<sub>3</sub> and then extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed by brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate = 30/1 – 3/1) on silica get to give the products **3**.

#### 2.2 Representative procedure for the synthesis of 11



General procedure B. To a 10 mL Schlenk tube equipped with a magnetic stirring bar was added compound 1 (0.2 mmol, 1.0 equiv.). After three cycles of evacuation and backfilling of the reaction flask with N<sub>2</sub>, alcohol 2 (1.0 mL), HCl (36wt%, 70 µL, 4.0 equiv.) and CH<sub>3</sub>CN (2.0 mL) was added. The reaction mixture stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda = 390 - 400$  nm) at room temperature for 48 h. The reaction mixture was quenched by NaHCO<sub>3</sub> and then extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed by brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate = 60/1 – 30/1) on silica get to give the products 11.

### 3. Additional optimization studies

| CI                                                                                                                      | N + H + O                                                           | HCI (2.0 equiv)<br>CH <sub>3</sub> CN (2 mL), rt, air<br>LEDs (390-400 nm, 25W) | CI S N   | OH + CI            | N H                |  |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|----------|--------------------|--------------------|--|--|
|                                                                                                                         | 1a 2a                                                               | "standard conditions"                                                           | 3a       | 1                  | 1a                 |  |  |
| Entry                                                                                                                   | ry Deviation from standard conditions                               |                                                                                 | Yield 3a | Yield 11a          |                    |  |  |
|                                                                                                                         |                                                                     |                                                                                 |          | (%) <sup>[b]</sup> | (%) <sup>[b]</sup> |  |  |
| 1                                                                                                                       | 40 mol% T                                                           | BAB and TFA instead of H                                                        | ICl      | 37                 | 0                  |  |  |
| 2                                                                                                                       | 40 mol% 7                                                           | TBAI and TFA instead of H                                                       | Cl       | 0                  | 0                  |  |  |
| 3                                                                                                                       | 40 mol% TBAC without HCl                                            |                                                                                 |          | 22                 | 0                  |  |  |
| 3                                                                                                                       | 25W Bule LEDs (450 – 460 nm) instead of Purple LEDs                 |                                                                                 |          | 15                 | 0                  |  |  |
| 4                                                                                                                       | 25W White LEDs instead of Purple LEDs                               |                                                                                 |          | 18                 | 0                  |  |  |
| 5                                                                                                                       | Reaction at $60^{\circ}$ C in the dark instead of light irradiation |                                                                                 |          | 0                  | 0                  |  |  |
| 6                                                                                                                       | 5 equiv of <b>2a</b>                                                |                                                                                 |          | 41                 | 0                  |  |  |
| 7                                                                                                                       |                                                                     | 10 equiv of <b>2a</b>                                                           |          | 64                 | 0                  |  |  |
| 8                                                                                                                       | 0.2                                                                 | 2 mL (13 equiv) of <b>2a</b>                                                    |          | 66                 | 0                  |  |  |
| 9                                                                                                                       | 0.5                                                                 | 5 mL (32 equiv) of <b>2a</b>                                                    |          | 71                 | 0                  |  |  |
| 10                                                                                                                      |                                                                     | 1 equiv of HCl                                                                  |          | 62                 | 0                  |  |  |
| 11                                                                                                                      | 3 equiv of HCl                                                      |                                                                                 |          | 86                 | 0                  |  |  |
| 12                                                                                                                      | 4 equiv of TFA, under a N <sub>2</sub> atmosphere, 48 h             |                                                                                 |          | trace              | 42                 |  |  |
| 13                                                                                                                      | 4 equiv of HCl,                                                     | under a N2 atmosphere, 48                                                       | h, 60°C  | trace              | 68                 |  |  |
| [a] Reaction conditions: 1a (0.2 mmol), 2a (1.0 mL), HCl (2.0 equiv.), CH <sub>3</sub> CN (2.0 mL), 2 × 25W Purple LEDs |                                                                     |                                                                                 |          |                    |                    |  |  |

#### Table S1. Additional optimization of reaction conditions.<sup>[a]</sup>

### 4. The mechanistic studies

#### 4.1 Radical quenching experiment



A mixture of compound **1a** (0.2 mmol, 1.0 equiv.), IPA **2a** (2.0 mmol, 10 equiv.), HCl (36wt%, 35  $\mu$ L, 2.0 equiv.) and a radical quencher (TEMPO or BHT, 0.8 mmol, 4.0 equiv.) in a 10 mL Schlenk tube was added CH<sub>3</sub>CN (2.0 mL). The reaction mixture was open to the air and stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda$  = 390 – 400 nm) at room temperature for 24 h. After the reaction was completed, only a trace amount of **3a** was observed by TLC.

To a 10 mL Schlenk tube equipped with a magnetic stirring bar was added compound **1a** (0.2 mmol, 1.0 equiv.) and a radical quencher (TEMPO or BHT, 0.8 mmol, 4.0 equiv.). After three cycles of evacuation and backfilling of the reaction flask with N<sub>2</sub>, IPA **2a** (2.0 mmol, 10 equiv.), HCl (36wt%,

70  $\mu$ L, 4.0 equiv.) and CH<sub>3</sub>CN (2.0 mL) was added. The reaction mixture stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda = 390 - 400$  nm) at room temperature for 48 h. After the reaction was completed, only a trace amount of **11a** was observed by TLC.

To a 10 mL Schlenk tube equipped with a magnetic stirring bar was added compound **1a** (0.2 mmol, 1.0 equiv.) and TEMPO (0.8 mmol, 4.0 equiv.). After three cycles of evacuation and backfilling of the reaction flask with N<sub>2</sub>, 1-butanol **2c** (2.0 mmol, 10 equiv.), HCl (36wt%, 70 µL, 4.0 equiv.) and CH<sub>3</sub>CN (2.0 mL) was added. The reaction mixture stirred under the irradiation of  $2 \times 25$  W Purple LEDs ( $\lambda = 390 - 400$  nm) at room temperature for 48 h. After the reaction was completed, only a trace amount of **11i** and **11i'** was observed by TLC.

The formation of **3a**, **11a**, **11i** and **11i'** was significantly suppressed by radical quenchers, which suggested that both dehydrogenative alkylation and dehydrative alkylation proceed through a radical-involved pathway.



Figure S1. The HRMS analysis of radical quenching experiment b



Figure S2. The HRMS analysis of radical quenching experiment d



Figure S3. The HRMS analysis of radical quenching experiment e

#### 4.2 Chlorine radical trapping experiment



To a 10 mL Schlenk tube equipped with a magnetic stirring bar was added compound **1a** (0.2 mmol, 1.0 equiv.). After three cycles of evacuation and backfilling of the reaction flask with N<sub>2</sub>, *t*-BuOH **2o** (1.0 mL), HCl (36wt%, 70  $\mu$ L, 4.0 equiv.) and CH<sub>3</sub>CN (2.0 mL) was added. The reaction mixture stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda = 390 - 400$  nm) at room temperature for 24 h. The reaction mixture was quenched by NaHCO<sub>3</sub> and then extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed by brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure to obtain the crude product. The isolated **16** was obtained in 16% yield by preparative thin-layer chromatography using petroleum ether/ethyl acetate (50:1) as the eluent. On the contrary, no chloroalkylated product **16** was formed in the absence of chlorine anion.



To a 10 mL Schlenk tube equipped with a magnetic stirring bar was added compound **1a** (0.2 mmol, 1.0 equiv.) and TEMPO (0.8 mmol, 4.0 equiv.). After three cycles of evacuation and backfilling of the reaction flask with N<sub>2</sub>, IPA **2a** (2.0 mmol, 10 equiv.), HCl (36wt%, 70  $\mu$ L, 4.0 equiv.) and CH<sub>3</sub>CN (2.0 mL) was added. The reaction mixture stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda$  = 390 – 400 nm) at room temperature for 48 h. After the reaction was completed, a chlorine radical adduct **17** was detected by ESI-HRMS, which indicated the formation of Cl<sup>-</sup> in our case (see Figure S2).

### 4.3 Light on/off experiment





#### 4.4 Kinetic isotope effect (KIE) experiment



**Parallel reactions**. Two 10 mL Schlenk tubes were added **2a** (2 mmol) and **2a-d**<sub>8</sub> (2 mmol), separately. The mixtures were then sequentially added compound **1a** (0.2 mmol, 1.0 equiv.), HCl (36wt%, 35  $\mu$ L, 2.0 equiv.), CH<sub>3</sub>CN (2.0 mL). The reaction tubes were open to the air and stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda = 390 - 400$  nm) at room temperature for 24 h. The reaction mixtures were quenched by NaHCO<sub>3</sub> and then extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed by brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate = 10/1) on silica get to give the products **3a** and **3a-d**<sub>6</sub> in 64% and 43% yields, respectively. *k*<sub>H</sub>/*k*<sub>D</sub> = 1.48.



Intermolecular competition. A mixture of compound 1a (0.2 mmol, 1.0 equiv.), 2a (0.1 mL), 2ad<sub>8</sub> (0.1 mL), HCl (36wt%, 35 µL, 2.0 equiv.) in a 10 mL Schlenk tube was added CH<sub>3</sub>CN (2.0 mL). The reaction mixture was open to the air and stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda = 390 - 400$  nm) at room temperature for 24 h. The reaction mixture was quenched by NaHCO<sub>3</sub> and then extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed by brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate = 10/1) on silica get to give the products **3a** and **3a**-**d**<sub>6</sub>, with a ratio of 3.63:2.37, *k*<sub>H</sub>/*k*<sub>D</sub> = 1.53.

Kinetic isotope effect experiment suggesting that the alkyl C-H cleavage might not be the ratedetermine step.



Figure S5. Determination of the ratio of 3a and 3a-d<sub>6</sub> by <sup>1</sup>H NMR

#### 4.5 Singlet oxygen quenching experiment



A mixture of compound **1a** (0.2 mmol, 1.0 equiv.), **2a** (IPA, 1.0 mL), HCl (36wt%, 35  $\mu$ L, 2.0 equiv.) and DABCO (0.4 mmol, 2.0 equiv.) in a 10 mL Schlenk tube was added H<sub>2</sub>O (2.0 mL). The reaction tubes was open to the air and stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda = 390 - 400$  nm) at room temperature for 24 h. The reaction mixtures were quenched by NaHCO<sub>3</sub> and then extracted with ethyl acetate (3 × 10 mL). The combined organic extracts were washed by brine, dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, concentrated under reduced pressure and purified by column chromatography (petroleum ether/ethyl acetate = 10/1) on silica get to give the products **3a** in 39% yields.

#### 4.6 Superoxide radical quenching experiment



A mixture of compound **1a** (0.2 mmol, 1.0 equiv.), **2a** (IPA, 1.0 mL), HCl (36wt%, 35  $\mu$ L, 2.0 equiv.) and benzoquinone (0.4 mmol, 2.0 equiv.) in a 10 mL Schlenk tube was added CH<sub>3</sub>CN (2.0 mL). The reaction tubes was open to the air and stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda$  = 390 – 400 nm) at room temperature for 24 h. After the reaction was completed, only a trace amount of **3a** was observed by TLC.

#### 4.7 Fluorescence quenching Screening Studies

**Preparation.** Four formulated solutions were prepared with CH<sub>3</sub>CN in 10 mL volumetric flasks. For flask A, 6-chlorobenzo[d]thiazole (**1a**, 0.5 mmol, 84.5 mg) was added; for flask B, 6-chlorobenzo[d]thiazole (**1a**, 0.5 mmol, 84.5 mg) and TFA (0.75 mmol, 57  $\mu$ L) were added; for the flask C, Bu<sub>4</sub>NCl (0.5 mmol, 139 mg) was added; for the flask D, isopropyl alcohol (**2a**, IPA, 0.5 mmol, 38  $\mu$ L). All these flasks were diluted to 10 mL to set the concentration to be 0.05 M.

Fluorescence quenching experiments of 1a with CF. A quartz cuvette ( $1 \text{ cm} \times 1 \text{ cm} \times 3.5 \text{ cm}$ ) was added 60 µL of the formulated solution from flask A and was diluted to 3 mL as a 1 µM 1a solution, which was then irradiated at 350 nm. Duplicate experiments were performed with the addition of 0, 60, 90, 120, 180, 240 µL 0.05 M Bu<sub>4</sub>NCl solution from flask C before diluted to 3 mL, emission spectra of the sample were collected instantly after each addition. The resulting fluorescence emission spectra are shown in Figure S6. No significant fluorescence quenching between excited 1a and Bu<sub>4</sub>NCl was observed.



Figure S6. Emission intensity of 1  $\mu$ M 1a in CH<sub>3</sub>CN, with varied amount of Bu<sub>4</sub>NCl Fluorescence quenching experiments of 1a-H<sup>+</sup> with Cl. A quartz cuvette (1 cm ×1 cm ×3.5 cm) was added 60  $\mu$ L of the formulated solution from flask B and was diluted to 3 mL as a 1  $\mu$ M 1a solution, which was then irradiated at 350 nm. Duplicate experiments were performed with the addition of 0, 60, 120, 180, 240, 360  $\mu$ L 0.05 M Bu<sub>4</sub>NCl solution from flask C before diluted to 3 mL, emission spectra of the sample were collected instantly after each addition. The resulting fluorescence emission spectra are shown in Figure S7.



Figure S7. Emission intensity of 1 µM 1a-H<sup>+</sup> in CH<sub>3</sub>CN, with varied amount of Bu<sub>4</sub>NCl



Figure S8. Stern-Volmer plot of 1a-H<sup>+</sup> and Bu<sub>4</sub>NCl

Fluorescence quenching experiments of 1a with IPA. A quartz cuvette (1 cm ×1 cm ×3.5 cm) was added 60  $\mu$ L of the formulated solution from flask A and was diluted to 3 mL as a 1  $\mu$ M 1a solution, which was then irradiated at 365 nm. Duplicate experiments were performed with the addition of 0, 60, 120, 180, 240, 360 $\mu$ L 0.05 M IPA solution from flask D before diluted to 3 mL, emission spectra of the sample were collected instantly after each addition. The resulting fluorescence emission spectra are shown in Figure S9. No significant fluorescence quenching between excited 1a and IPA was observed.



Figure S9. Emission intensity of 1 µM 1a in CH<sub>3</sub>CN, with varied amount of IPA

Fluorescence quenching experiments of 1a-H<sup>+</sup> with IPA. A quartz cuvette (1 cm ×1 cm ×3.5 cm) was added 60  $\mu$ L of the formulated solution from flask B and was diluted to 3 mL as a 1  $\mu$ M 1a solution, which was then irradiated at 350 nm. Duplicate experiments were performed with the addition of 0, 60, 120, 180, 240, 360  $\mu$ L 0.05 M IPA solution from flask D before diluted to 3 mL, emission spectra of the sample were collected instantly after each addition. The resulting fluorescence emission spectra are shown in Figure S10.



Figure S10. Emission intensity of 1 µM 1a-H<sup>+</sup> in CH<sub>3</sub>CN, with varied amount of IPA



Figure S11. Stern-Volmer plot of 1a-H<sup>+</sup> and IPA

#### 4.8 Isomerization experiment of alcohols

Three 10 mL Schlenk tubes were added IPA (1.0 mL), 1-butanol (1.0 mL) and 3-pentanol (1.0 mL). After three cycles of evacuation and backfilling of the reaction flask with N<sub>2</sub>. The mixtures were then sequentially added HCl (36wt%, 70  $\mu$ L) and CH<sub>3</sub>CN (2.0 mL). The reaction mixture stirred under the irradiation of 2×25 W Purple LEDs ( $\lambda$  = 390 – 400 nm) at room temperature for 48 h. After the reaction was completed, the reaction mixture was directly detected by <sup>1</sup>H NMR. The results of <sup>1</sup>H NMR spectrogram showed that no isomers formed in our conditions.



Figure S12. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrogram of IPA under acidic condition in CH<sub>3</sub>CN



Figure S13. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrogram of 1-butanol under acidic condition in CH<sub>3</sub>CN



Figure S14. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) spectrogram of 3-pentanol under acidic condition in CH<sub>3</sub>CN

### 5. Characterization data for compounds



**2-(6-chlorobenzo[d]thiazol-2-yl)propan-2-ol (3a).** Yield = 82%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 2.1 Hz, 1H), 7.43 (dd, J = 8.7, 2.0 Hz, 1H), 2.77 (br, 1H), 1.75 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  180.69, 151.63, 136.51, 130.86, 126.88, 123.62, 121.41, 73.71, 30.74. HRMS (ESI) calcd for C<sub>10</sub>H<sub>11</sub>ClNOS [M+H]<sup>+</sup> : 228.0244, found 228.0243.



**2-(benzo[d]thiazol-2-yl)propan-2-ol (3b).** Yield = 65%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.98 (d, *J* = 8.2 Hz, 1H), 7.86 (d, *J* = 7.9 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.38 – 7.34 (m, 1H), 3.26 (br, 1H), 1.75 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 180.28, 152.96, 135.26, 126.09, 124.97, 122.83, 121.81, 73.63, 30.82.



**2-(6-methylbenzo[d]thiazol-2-yl)propan-2-ol (3c).** Yield = 81%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.83 (d, *J* = 8.3 Hz, 1H), 7.59 (s, 1H), 7.23 (d, *J* = 8.3 Hz, 1H), 3.87 (br, 1H), 2.44 (s, 3H), 1.73 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 179.24, 151.15, 135.42, 134.92, 127.56, 122.29, 121.48, 73.52, 30.78, 21.48.



**2-(6-methoxybenzo[d]thiazol-2-yl)propan-2-ol (3d).** Yield = 67%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.84 (d, *J* = 8.9 Hz, 1H), 7.33 – 7.29 (m, 1H), 7.05 (dd, *J* = 8.9, 2.4 Hz, 1H), 3.86 (s, 3H), 3.18 (br, 1H), 1.73 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 177.51, 157.45, 147.45, 136.58, 123.29, 115.33,



**2-(6-ethoxybenzo[d]thiazol-2-yl)propan-2-ol (3e).** Yield = 75%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 8.9 Hz, 1H), 7.31 (d, J = 2.5 Hz, 1H), 7.05 (dd, J = 8.9, 2.5 Hz, 1H), 4.08 (q, J = 7.0 Hz, 2H), 3.15 (br, 1H), 1.73 (s, 6H), 1.45 (t, J = 7.0 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  177.31, 156.82, 147.30, 136.55, 123.26, 115.80, 105.02, 73.45, 64.13, 30.79, 14.83. HRMS (ESI) calcd for C<sub>12</sub>H<sub>16</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> : 238.0896, found 238.0903.



**2-(4-methoxybenzo[d]thiazol-2-yl)propan-2-ol (3f).** Yield = 68%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.44 (dd, *J* = 8.1, 1.0 Hz, 1H), 7.29 (td, *J* = 8.0, 0.9 Hz, 1H), 6.89 (dd, *J* = 8.0, 1.1 Hz, 1H), 4.01 (s, 3H), 3.29 (br, 1H), 1.76 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 178.89, 153.13, 143.14, 136.97, 125.82, 113.78, 106.56, 73.69, 56.00, 30.80.



**2-(4-methylbenzo[d]thiazol-2-yl)propan-2-ol (3g).** Yield = 83%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.72 – 7.70 (m, 1H), 7.29 – 7.26 (m, 2H), 3.62 (br, 1H), 2.75 (s, 3H), 1.76 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 178.11, 152.05, 135.38, 132.97, 126.59, 124.86, 119.12, 73.42, 31.04, 18.30.



ethyl 2-(2-hydroxypropan-2-yl)benzo[d]thiazole-6-carboxylate (3h). Yield = 79%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.58 (d, J = 1.3 Hz, 1H), 8.12 (dd, J = 8.6, 1.6 Hz, 1H), 7.97 (d, J = 8.6 Hz,

1H), 4.41 (q, J = 7.1 Hz, 2H), 3.22 (br, 1H), 1.76 (s, 6H), 1.41 (t, J = 7.1 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 184.17, 166.27, 156.11, 135.21, 127.21, 126.99, 123.99, 122.50, 73.88, 61.34, 30.67, 14.35.
HRMS (ESI) calcd for C<sub>13</sub>H<sub>16</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> : 266.0845, found 266.0854.

**2-(6-fluorobenzo[d]thiazol-2-yl)propan-2-ol (3i).** Yield = 71%; White solid; <sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (dd, J = 8.9, 4.8 Hz, 1H), 7.55 (dd, J = 8.1, 2.6 Hz, 1H), 7.20 (td, J = 8.9, 2.6 Hz, 1H), 2.86 (br, 1H), 1.74 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  179.78 (d, J = 3.1 Hz), 160.25 (d, J = 245.3 Hz), 149.70 (d, J = 1.3 Hz), 136.31 (d, J = 11.1 Hz), 123.79 (d, J = 9.4 Hz), 114.68 (d, J = 24.7 Hz), 107.94 (d, J = 26.6 Hz), 73.65, 30.74.



**2-(6-bromobenzo[d]thiazol-2-yl)propan-2-ol (3j).** Yield = 89%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.01 (d, J = 1.9 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.56 (dd, J = 8.7, 1.9 Hz, 1H), 2.93 (br, 1H), 1.74 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  180.74, 152.00, 137.01, 129.55, 124.34, 124.00, 118.47, 73.71, 30.73. HRMS (ESI) calcd for C<sub>10</sub>H<sub>11</sub>BrNOS [M+H]<sup>+</sup> : 273.9719, found 273.9719.



**2-(6-(trifluoromethyl)benzo[d]thiazol-2-yl)propan-2-ol (3k).** Yield = 78%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.18 (d, J = 1.5Hz, 1H), 8.06 (d, J = 8.6 Hz, 1H), 7.71 (dd, J = 8.6, 1.5 Hz, 1H), 2.87 (br, 1H), 1.77 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  183.57, 155.26, 135.46, 127.14 (q, J = 32.7 Hz), 125.08 (q, J = 270.7 Hz), 123.25, 123.02 (q, J = 3.4 Hz), 119.51 (q, J = 4.2 Hz), 73.94, 30.71. HRMS (ESI) calcd for C<sub>11</sub>H<sub>11</sub>F<sub>3</sub>NOS [M+H]<sup>+</sup> : 262.0508, found 262.0514.



**2-(6-(trifluoromethoxy)benzo[d]thiazol-2-yl)propan-2-ol (3l).** Yield = 78%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.96 (d, *J* = 8.9 Hz, 1H), 7.75 – 7.72 (m, 1H), 7.35 – 7.31 (m, 1H), 3.17 (br, 1H), 1.75 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 181.67, 151.68, 146.23 (q, *J* = 2.0 Hz), 136.13, 123.66, 120.53 (q, *J* = 257.3 Hz), 119.98, 114.37, 73.76, 30.67. HRMS (ESI) calcd for C<sub>11</sub>H<sub>11</sub>F<sub>3</sub>NO<sub>2</sub>S [M+H]<sup>+</sup> : 278.0457, found 278.0466.



**2-(5-chlorobenzo[d]thiazol-2-yl)propan-2-ol (3m).** Yield = 84%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.96 (d, *J* = 2.0 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 1H), 7.34 (dd, *J* = 8.5, 2.0 Hz, 1H), 3.01 (br, 1H), 1.74 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 182.24, 153.96, 133.57, 132.05, 125.44, 122.76, 122.50, 73.75, 30.73.



**2-(5-bromobenzo[d]thiazol-2-yl)propan-2-ol (3n).** Yield = 84%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.12 (d, J = 1.8 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.47 (dd, J = 8.5, 1.9 Hz, 1H), 2.92 (br, 1H), 1.74 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  182.00, 154.31, 134.13, 128.05, 125.83, 122.84, 119.60, 73.73, 30.74. HRMS (ESI) calcd for C<sub>10</sub>H<sub>11</sub>BrNOS [M+H]<sup>+</sup> : 273.9719, found 273.9729.



**2-(4-chlorobenzo[d]thiazol-2-yl)propan-2-ol (30).** Yield = 80%; Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.76 – 7.71 (m, 1H), 7.48 – 7.44 (m, 1H), 7.29 – 7.24 (m, 1H), 3.83 (br, 1H), 1.78 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  181.35, 150.12, 136.78, 127.55, 126.24, 125.38, 120.33, 73.81, 30.73. HRMS (ESI) calcd for C<sub>10</sub>H<sub>11</sub>ClNOS [M+H]<sup>+</sup> : 228.0244, found 228.0246.



**2-(5-nitrobenzo[d]thiazol-2-yl)propan-2-ol (3p).** Yield = 35%; Yellow solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.80 (d, *J* = 2.1 Hz, 1H), 8.23 (dd, *J* = 8.8, 2.2 Hz, 1H), 7.99 (d, *J* = 8.8 Hz, 1H), 3.10 (br, 1H), 1.77 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 184.34, 153.18, 146.63, 142.09, 122.28, 119.35, 118.43, 74.00, 30.61.



**2-(6-nitrobenzo[d]thiazol-2-yl)propan-2-ol (3q).** Yield = 28%; Yellow solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.77 (d, *J* = 2.3 Hz, 1H), 8.30 (dd, *J* = 9.0, 2.3 Hz, 1H), 8.02 (d, *J* = 9.0 Hz, 1H), 3.29 (br, 1H), 1.77 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 186.99, 157.22, 144.70, 135.71, 123.13, 121.47, 118.42, 74.21, 30.58.



ethyl 2-(2-hydroxypropan-2-yl)-4-methylthiazole-5-carboxylate (3r). Yield = 75%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  4.30 (q, J = 7.1 Hz, 2H), 3.16 (br, 1H), 2.67 (s, 3H), 1.64 (s, 6H), 1.34 (t, J= 7.1 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  181.92, 162.41, 159.86, 121.98, 73.37, 61.16, 30.72, 17.41, 14.29. HRMS (ESI) calcd for C<sub>10</sub>H<sub>16</sub>NO<sub>3</sub>S [M+H]<sup>+</sup> : 230.0845, found 230.0856.



**1-(2-phenylquinolin-4-yl)ethan-1-ol (3s).** Yield = 43%; Yellow oil; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 8.21 (d, *J* = 8.4 Hz, 1H), 8.12 – 8.08 (m, 2H), 7.97 (s, 1H), 7.90 (d, *J* = 7.9 Hz, 1H), 7.70 (ddd, *J* = 8.3, 6.9, 1.3 Hz, 1H), 7.52 – 7.42 (m, 4H), 5.59 (q, *J* = 6.5 Hz, 1H), 2.60 (br, 1H), 1.64 (d, *J* = 6.5 Hz, 3H); <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 157.22, 152.10, 148.12, 139.34, 130.34, 129.44, 129.34, 128.78, 127.55, 126.23, 124.26, 122.71, 114.44, 66.37, 24.58.



**1-(quinazolin-4-yl)ethan-1-ol (3t).** Yield = 56%; White solid; <sup>1</sup>**H NMR** (400 MHz, DMSO-*d*<sub>6</sub>) δ 11.80 (s, 1H), 8.11 (dd, *J* = 7.9, 1.2 Hz, 1H), 7.84 – 7.76 (m, 1H), 7.64 (d, *J* = 8.1 Hz, 1H), 7.53 – 7.45 (m, 1H), 5.66 (s, 1H), 4.60 (q, *J* = 6.3 Hz, 1H), 1.43 (d, *J* = 6.6 Hz, 3H); <sup>13</sup>**C NMR** (101 MHz, DMSO-*d*<sub>6</sub>) δ 162.00, 160.20, 148.93, 134.84, 127.43, 126.77, 126.29, 121.67, 67.62, 22.06.

**1-(benzo[d]thiazol-2-yl)ethan-1-ol (4a).** Yield = 33%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.92 (d, *J* = 8.2 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.43 – 7.40 (m, 1H), 7.34 – 7.31 (m, 1H), 5.25 (q, *J* = 6.6 Hz, 1H), 4.41 (br, 1H), 1.68 (d, *J* = 6.6 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 177.80, 152.73, 134.67, 126.10, 125.00, 122.67, 121.83, 68.34, 24.05.



**1-(benzo[d]thiazol-2-yl)ethan-1-one (4a').** Yield = 21%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.18 (d, *J* = 8.2 Hz, 1H), 7.96 (d, *J* = 8.2 Hz, 1H), 7.58 – 7.55 (m, 1H), 7.53 – 7.50 (m, 1H), 2.82 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 193.13, 166.50, 153.58, 137.44, 127.70, 126.98, 125.45, 122.44, 26.16.



**1-(benzo[d]thiazol-2-yl)propan-1-ol (4b).** Yield = 31%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.98 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.48 – 7.46 (m, 1H), 7.39 – 7.36 (m, 1H), 5.05 (dd, J = 7.3, 4.9 Hz, 1H), 3.07 (br, 1H), 2.13 – 1.92 (m, 2H), 1.06 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 176.13, 152.58, 134.78, 126.13, 125.06, 122.80, 121.84, 73.39, 31.14, 9.38.



**1-(benzo[d]thiazol-2-yl)propan-1-one (4b').** Yield = 17%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.17 (d, *J* = 8.2 Hz, 1H), 7.97 (d, *J* = 7.8 Hz, 1H), 7.58 – 7.55 (m, 1H), 7.53 – 7.50 (m, 1H), 3.30 (q, *J* = 7.3 Hz, 2H), 1.30 (t, *J* = 7.3 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 195.98, 166.36, 153.59, 137.21, 127.56, 126.91, 125.36, 122.42, 32.09, 7.89.



**1-(benzo[d]thiazol-2-yl)butan-1-ol (4c).** Yield = 40%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.95 (d, *J* = 8.1 Hz, 1H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.37 – 7.34 (m, 1H), 5.09 (dd, *J* = 7.9, 4.7 Hz, 1H), 3.35 (br, 1H), 2.06 – 1.84 (m, 2H), 1.63 – 1.44 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 176.83, 152.70, 134.73, 126.09, 125.01, 122.78, 121.84, 72.06, 40.18, 18.50, 13.83.



**1-(benzo[d]thiazol-2-yl)butan-1-one (4c').** Yield = 26%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 8.17 (d, *J* = 8.0 Hz, 1H), 7.95 (d, *J* = 7.9 Hz, 1H), 7.58 – 7.48 (m, 2H), 3.24 (t, *J* = 7.4 Hz, 2H), 1.89 – 1.79 (m, 2H), 1.04 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 195.47, 166.63, 153.59, 137.24, 127.58, 126.92, 125.38, 122.43, 40.49, 17.51, 13.79.



**1-(6-chlorobenzo[d]thiazol-2-yl)-2-methylpropan-1-ol (4d).** Yield = 42%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.84 (d, J = 8.7 Hz, 1H), 7.81 (d, J = 2.1 Hz, 1H), 7.39 (dd, J = 8.7, 2.1 Hz, 1H), 4.85 (d, J = 4.9 Hz, 1H), 3.61 (br, 1H), 2.28 – 2.20 (m, 1H), 1.03 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  176.64, 151.16, 135.95, 130.94, 126.84, 123.50, 121.36, 76.79, 35.13, 18.97, 16.48. HRMS (ESI) calcd for C<sub>11</sub>H<sub>13</sub>CINOS [M+H]<sup>+</sup> : 242.0401, found 242.0400.



**1-(6-chlorobenzo[d]thiazol-2-yl)-2-methylpropan-1-one (4d').** Yield = 23%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.06 (d, *J* = 8.8 Hz, 1H), 7.93 (d, *J* = 2.0 Hz, 1H), 7.50 (dd, *J* = 8.8, 2.1 Hz, 1H), 3.92 (hept, *J* = 6.9 Hz, 1H), 1.31 (d, *J* = 7.0 Hz, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 198.86, 166.52, 152.12, 138.40, 133.85, 127.91, 126.17, 121.94, 36.40, 18.63.



**2-(benzo[d]thiazol-2-yl)butan-2-ol (4e).** Yield = 59%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.38 – 7.35 (m, 1H), 3.31 (br, 1H), 2.09 – 1.97 (m, 2H), 1.71 (s, 3H), 0.93 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 179.44, 152.89, 135.41, 126.01, 124.88, 122.84, 121.76, 76.09, 36.29, 29.14, 8.02.



**2-(6-chlorobenzo[d]thiazol-2-yl)butan-2-ol (4e').** Yield = 78%; Yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.84 (d, *J* = 2.1 Hz, 1H), 7.42 (dd, *J* = 8.7, 2.1 Hz, 1H), 2.90 (br, 1H), 2.11 – 1.93 (m, 2H), 1.69 (s, 3H), 0.92 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 180.11, 151.60, 136.61, 130.79, 126.77, 123.60, 121.35, 76.16, 36.18, 28.94, 7.95.



**3-(benzo[d]thiazol-2-yl)pentan-3-ol (4f).** Yield = 61%; Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.00 (d, *J* = 8.2 Hz, 1H), 7.88 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.40 – 7.34 (m, 1H), 3.38 (br, 1H), 2.00 (dq, *J* = 14.1, 7.1 Hz, 4H), 0.88 (t, *J* = 7.4 Hz, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 178.32, 152.69, 135.59, 125.95, 124.83, 122.83, 121.75, 78.73, 35.14, 7.72. HRMS (ESI) calcd for C<sub>12</sub>H<sub>16</sub>NOS [M+H]<sup>+</sup>: 222.0947, found 222.0955.



**3-(6-chlorobenzo[d]thiazol-2-yl)hexan-3-ol (4g).** Yield = 43%; Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.89 (d, *J* = 8.7 Hz, 1H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.42 (dd, *J* = 8.7, 2.1 Hz, 1H), 3.12 (br, 1H), 2.06 – 1.90 (m, 4H), 1.53 – 1.45 (m, 1H), 1.17 – 1.09 (m, 1H), 0.89 – 0.86 (m, 6H). <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 179.42, 151.40, 136.69, 130.73, 126.73, 123.56, 121.33, 78.64, 44.46, 35.30, 16.71, 14.26, 7.66. HRMS (ESI) calcd for C<sub>13</sub>H<sub>17</sub>ClNOS [M+H]<sup>+</sup>: 270.0714, found 270.0721.



**1-(6-chlorobenzo[d]thiazol-2-yl)cyclobutan-1-ol (4h).** Yield = 52%; Pale yellow solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 8.7 Hz, 1H), 7.84 (d, J = 2.0 Hz, 1H), 7.43 (dd, J = 8.7, 2.1 Hz, 1H), 3.23 (br, 1H), 2.80 – 2.71 (m, 2H), 2.56 – 2.47 (m, 2H), 2.14 – 2.01 (m, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  178.52, 151.35, 136.41, 130.91, 126.92, 123.62, 121.40, 76.74, 37.82, 12.81. HRMS (ESI) calcd for C<sub>11</sub>H<sub>11</sub>CINOS [M+H]<sup>+</sup> : 240.0244, found 240.0253.



**1-(benzo[d]thiazol-2-yl)cyclopentan-1-ol (4i).** Yield = 54%; Pale yellow solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.96 (d, *J* = 8.2 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 3.31 (br, 1H), 2.34 – 2.29 (m, 2H), 2.12 – 2.09 (m, 2H), 2.05 – 1.89 (m, 4H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 179.45, 153.16, 135.32, 126.00, 124.80, 122.75, 121.71, 83.92, 42.72, 24.24.



**1-(benzo[d]thiazol-2-yl)cyclohexan-1-ol (4j).** Yield = 66%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.00 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.33 (m, 1H), 3.09 (br,

1H), 2.10 – 2.05 (m, 2H), 1.98 – 1.93 (m, 2H), 1.80 – 1.66 (m, 5H), 1.42 – 1.36 (m, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 180.91, 153.07, 135.08, 125.96, 124.82, 122.83, 121.77, 74.81, 38.41, 25.13, 21.73.

**1-(6-chlorobenzo[d]thiazol-2-yl)ethan-1-one (4k).** Yield = 41%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, J = 8.8 Hz, 1H), 7.94 (d, J = 2.0 Hz, 1H), 7.52 (dd, J = 8.8, 2.1 Hz, 1H), 2.80 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  192.80, 166.92, 152.05, 138.54, 134.03, 128.06, 126.22, 122.00, 26.09.



**3-chloro-1-(6-chlorobenzo[d]thiazol-2-yl)propan-1-ol (41).** Yield = 31%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.86 (d, *J* = 1.9 Hz, 1H), 7.44 (dd, *J* = 8.7, 2.0 Hz, 1H), 5.34 (dd, *J* = 9.0, 3.8 Hz, 1H), 3.89 – 3.83 (m, 1H), 3.78 – 3.74 (m, 1H), 2.86 (br, 1H), 2.51 – 2.46 (m, 1H), 2.37 – 2.32 (m, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 175.61, 151.40, 135.99, 131.23, 127.12, 123.72, 121.50, 69.38, 40.78, 40.04. HRMS (ESI) calcd for C<sub>10</sub>H<sub>10</sub>Cl<sub>2</sub>NOS [M+H]<sup>+</sup> : 261.9855, found 261.9863.



**3-(6-chlorobenzo[d]thiazol-2-yl)-3-hydroxypropanenitrile (4m).** Yield = 32%; Yellow solid; <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  8.28 (d, J = 2.1 Hz, 1H), 7.98 (d, J = 8.7 Hz, 1H), 7.55 (dd, J = 8.7, 2.2 Hz, 1H), 7.24 – 7.19 (m, 1H), 5.32 – 5.28 (m, 1H), 3.21 – 3.11 (m, 2H); <sup>13</sup>C NMR (151 MHz, DMSO- $d_6$ )  $\delta$  177.00, 152.18, 136.66, 130.15, 127.22, 124.34, 122.59, 118.39, 67.09, 26.15. HRMS (ESI) calcd for C<sub>10</sub>H<sub>8</sub>ClN<sub>2</sub>OS [M+H]<sup>+</sup> : 239.0040, found 239.0045.



**2-(tetrahydrofuran-2-yl)benzo[d]thiazole (6a).** Yield = 55%; Yellow oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.97 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.43 (m, 1H), 7.36 – 7.34 (m, 1H), 5.34 (dd, *J* = 7.8, 5.4 Hz, 1H), 4.16 – 4.13 (m, 1H), 4.01 – 3.91 (m, 1H), 2.54 – 2.48 (m, 1H), 2.30 – 2.21 (m, 1H), 2.05 – 1.99 (m, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 176.41, 153.60, 134.71, 125.94, 124.79, 122.77, 121.77, 78.75, 69.46, 33.39, 25.71.



**6-chloro-2-(2-methyltetrahydrofuran-2-yl)benzo[d]thiazole (6b).** Yield = 50%; Colorless oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.86 (d, *J* = 8.7 Hz, 1H), 7.83 (d, *J* = 2.0 Hz, 1H), 7.40 (dd, *J* = 8.7, 2.1 Hz, 1H), 4.07 (dd, *J* = 7.3, 6.2 Hz, 2H), 2.62 – 2.55 (m, 1H), 2.18 – 2.11 (m, 1H), 2.09 – 1.99 (m, 1H), 1.97 – 1.90 (m, 1H), 1.72 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 181.46, 152.50, 136.48, 130.57, 126.60, 123.50, 121.35, 84.92, 69.10, 39.19, 27.83, 26.15. HRMS (ESI) calcd for C<sub>12</sub>H<sub>13</sub>ClNOS [M+H]<sup>+</sup> : 254.0401, found 254.0409.



**6-chloro-2-(tetrahydro-2H-pyran-2-yl)benzo[d]thiazole (6c).** Yield = 58%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.89 (d, J = 8.7 Hz, 1H), 7.87 (d, J = 2.0 Hz, 1H), 7.42 (dd, J = 8.7, 2.1 Hz, 1H), 4.76 (dd, J = 10.2, 2.6 Hz, 1H), 4.22 – 4.16 (m, 1H), 3.69 (td, J = 11.5, 2.5 Hz, 1H), 2.31 – 2.23 (m, 1H), 2.01 – 1.97 (m, 1H), 1.76 – 1.69 (m, 3H), 1.66 – 1.60 (m, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  174.67, 151.47, 135.90, 130.78, 126.73, 123.61, 121.39, 77.68, 69.02, 32.35, 25.56, 22.93. HRMS (ESI) calcd for C<sub>12</sub>H<sub>13</sub>CINOS [M+H]<sup>+</sup>: 254.0401, found 254.0406.



**2-(1,4-dioxan-2-yl)benzo[d]thiazole (6d).** Yield = 64%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 8.00 (d, *J* = 7.9 Hz, 1H), 7.90 (d, *J* = 7.7 Hz, 1H), 7.48 – 7.46 (m, 1H), 7.39 – 7.36 (m, 1H), 5.08 – 5.02 (m, 1H), 4.29 (d, *J* = 11.6 Hz, 1H), 4.02 – 3.94 (m, 2H), 3.86 – 3.66 (m, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 169.02, 152.98, 134.55, 126.13, 125.15, 123.11, 121.79, 75.43, 70.49, 66.99, 66.40.



**6-chloro-2-(1,4-dioxan-2-yl)benzo[d]thiazole (6d').** Yield = 73%; White solid; <sup>1</sup>**H** NMR (400 MHz, CDCl<sub>3</sub>) δ 7.92 – 7.87 (m, 2H), 7.44 (dd, *J* = 8.7, 2.1 Hz, 1H), 5.03 (dd, *J* = 9.7, 3.1 Hz, 1H), 4.29 (dd, *J* = 11.6, 3.1 Hz, 1H), 4.05 – 3.93 (m, 2H), 3.87 – 3.73 (m, 2H), 3.69 (dd, *J* = 11.6, 9.7 Hz, 1H); <sup>13</sup>**C** NMR (101 MHz, CDCl<sub>3</sub>) δ 169.67, 151.60, 135.84, 131.16, 126.96, 123.88, 121.40, 75.24, 70.33, 66.98, 66.39.



**6-chloro-2-(1,3-dioxolan-2-yl)benzo[d]thiazole (6e).** Yield = 52%; White solid; <sup>1</sup>**H** NMR (600 MHz, CDCl<sub>3</sub>) δ 7.96 (d, *J* = 8.7 Hz, 1H), 7.87 (d, *J* = 2.0 Hz, 1H), 7.44 (dd, *J* = 8.7, 2.1 Hz, 1H), 6.20 (s, 1H), 4.19 – 4.11 (m, 4H); <sup>13</sup>**C** NMR (151 MHz, CDCl<sub>3</sub>) δ 169.79, 151.84, 136.16, 131.72, 127.14, 124.57, 121.52, 100.32, 65.81.



**6-chloro-2-(1,3,5-trioxan-2-yl)benzo[d]thiazole (6f).** Yield = 77%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.98 – 7.94 (m, 1H), 7.91 – 7.88 (m, 1H), 7.47 – 7.43 (m, 1H), 6.24 – 6.21 (m, 1H), 5.42 – 5.37 (m, 2H), 5.37 – 5.32 (m, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  165.99, 151.15, 136.08, 132.01, 127.31, 124.71, 121.57, 97.80, 93.40. HRMS (ESI) calcd for C<sub>10</sub>H<sub>9</sub>ClNO<sub>3</sub>S [M+H]<sup>+</sup>: 257.9986, found 257.9993.



**6-chloro-2-(1-methoxycyclopentyl)benzo[d]thiazole (6g).** Yield = 63%; Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.84 (d, *J* = 2.0 Hz, 1H), 7.40 (dd, *J* = 8.7, 2.1 Hz, 1H), 3.24 (s, 3H), 2.26 – 2.18 (m, 4H), 1.91 – 1.82 (m, 4H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 177.96, 151.60, 137.05, 130.89, 126.57, 123.75, 121.33, 89.25, 52.31, 37.55, 23.66. HRMS (ESI) calcd for C<sub>13</sub>H<sub>15</sub>ClNOS [M+H]<sup>+</sup> : 268.0557, found 268.0559.



**6-chloro-2-(2-isopropoxypropan-2-yl)benzo[d]thiazole (6h).** Yield = 32%; Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 2.1 Hz, 1H), 7.39 (dd, J = 8.7, 2.1 Hz, 1H), 3.86 (hept, J = 6.1 Hz, 1H), 1.70 (s, 6H), 1.17 (d, J = 6.1 Hz, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  180.54, 151.50, 136.86, 130.75, 126.48, 123.73, 121.27, 78.00, 66.46, 28.19, 24.77. HRMS (ESI) calcd for C<sub>13</sub>H<sub>17</sub>ClNOS [M+H]<sup>+</sup> : 270.0714, found 270.0718.



**4-(6-chlorobenzo[d]thiazol-2-yl)-1,3-dimethylimidazolidin-2-one (8a).** Yield = 68%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.81 (d, J = 8.7 Hz, 1H), 7.79 (d, J = 2.0 Hz, 1H), 7.36 (dd, J = 8.7, 2.1 Hz, 1H), 4.81 (dd, J = 9.1, 7.3 Hz, 1H), 3.75 (t, J = 9.2 Hz, 1H), 3.28 (dd, J = 9.0, 7.3 Hz, 1H), 2.78 (s, 3H), 2.75 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.33, 160.74, 151.47, 136.19, 131.56, 127.16, 123.90, 121.64, 58.75, 51.89, 31.16, 30.78. HRMS (ESI) calcd for C<sub>12</sub>H<sub>13</sub>ClN<sub>3</sub>OS [M+H]<sup>+</sup> : 282.0462, found 282.0476.



**4-(6-bromobenzo[d]thiazol-2-yl)-1,3-dimethylimidazolidin-2-one (8b).** Yield = 76%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.05 (d, J = 1.9 Hz, 1H), 7.86 (d, J = 8.7 Hz, 1H), 7.62 (dd, J = 8.7, 1.9 Hz, 1H), 4.90 (dd, J = 9.3, 7.2 Hz, 1H), 3.84 (t, J = 9.2 Hz, 1H), 3.36 (dd, J = 9.2, 7.2 Hz, 1H), 2.87 (s, 3H), 2.84 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  172.66, 160.83, 151.61, 136.60, 130.07, 124.68, 124.25, 119.48, 58.79, 51.97, 31.22, 30.89. HRMS (ESI) calcd for C<sub>12</sub>H<sub>13</sub>BrN<sub>3</sub>OS [M+H]<sup>+</sup> : 327.9937, found 327.9937.



4-(6-methoxybenzo[d]thiazol-2-yl)-1,3-dimethylimidazolidin-2-one (8c). Yield = 51%; White solid;

<sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) δ 7.86 (d, *J* = 8.9 Hz, 1H), 7.33 (d, *J* = 2.5 Hz, 1H), 7.08 (dd, *J* = 8.9, 2.5 Hz, 1H), 4.86 (dd, *J* = 9.2, 7.4 Hz, 1H), 3.87 (s, 3H), 3.80 (t, *J* = 9.2 Hz, 1H), 3.35 (dd, *J* = 9.2, 7.4 Hz, 1H), 2.85 (s, 3H), 2.81 (s, 3H); <sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>) δ 168.84, 160.91, 158.07, 147.22, 136.46, 123.63, 115.89, 104.37, 58.84, 55.84, 52.12, 31.20, 30.66. **HRMS** (ESI) calcd for C<sub>13</sub>H<sub>16</sub>N<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup>: 278.0958, found 278.0960.



ethyl 2-(1,3-dimethyl-2-oxoimidazolidin-4-yl)benzo[d]thiazole-6-carboxylate (8d). Yield = 74%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.58 (d, *J* = 1.4 Hz, 1H), 8.12 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.97 (d, *J* = 8.6 Hz, 1H), 4.88 (dd, *J* = 9.3, 7.1 Hz, 1H), 4.37 (q, *J* = 7.1 Hz, 2H), 3.81 (t, *J* = 9.3 Hz, 1H), 3.34 (dd, *J* = 9.2, 7.1 Hz, 1H), 2.82 (s, 3H), 2.81 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  175.41, 165.80, 160.75, 155.76, 134.89, 127.80, 127.48, 124.13, 122.85, 61.34, 58.91, 51.90, 31.13, 30.84, 14.31. HRMS (ESI) calcd for C<sub>15</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>S [M+H]<sup>+</sup> : 320.1063, found 320.1064.



**4-(5-chlorobenzo[d]thiazol-2-yl)-1,3-dimethylimidazolidin-2-one (8e).** Yield = 65%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, *J* = 1.9 Hz, 1H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.38 (dd, *J* = 8.6, 2.0 Hz, 1H), 4.88 (dd, *J* = 9.3, 7.1 Hz, 1H), 3.82 (t, *J* = 9.3 Hz, 1H), 3.34 (dd, *J* = 9.2, 7.1 Hz, 1H), 2.85 (s, 3H), 2.83 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  173.90, 160.81, 153.83, 133.28, 132.45, 126.20, 123.05, 122.79, 58.84, 51.99, 31.18, 30.82. **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>13</sub>ClN<sub>3</sub>OS [M+H]<sup>+</sup> : 282.0462, found 282.0468.

ethyl 2-(1,3-dimethyl-2-oxoimidazolidin-4-yl)-4-methylthiazole-5-carboxylate (8f). Yield = 48%;

White solid; <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>)  $\delta$  4.70 (dd, J = 9.1, 7.0 Hz, 1H), 4.30 (q, J = 7.1 Hz, 2H), 3.74 (t, J = 9.2 Hz, 1H), 3.23 (dd, J = 6.5, 2.5 Hz, 1H), 2.81 (s, 3H), 2.79 (s, 3H), 2.68 (s, 3H), 1.33 (t, J = 7.1 Hz, 3H); <sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>)  $\delta$  173.31, 161.83, 160.74, 160.10, 123.04, 61.41, 58.33, 52.34, 31.13, 30.65, 17.25, 14.25. **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>18</sub>N<sub>3</sub>O<sub>3</sub>S [M+H]<sup>+</sup> : 284.1063, found 284.1069.



**5-(6-chlorobenzo[d]thiazol-2-yl)-1-methylpyrrolidin-2-one (8g).** Yield = 44%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.85 (d, *J* = 2.0 Hz, 1H), 7.44 (dd, *J* = 8.7, 2.1 Hz, 1H), 4.98 (dd, *J* = 8.7, 4.2 Hz, 1H), 2.85 (s, 3H), 2.68 – 2.58 (m, 2H), 2.50 – 2.43 (m, 1H), 2.21 – 2.14 (m, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 175.07, 172.87, 151.59, 136.00, 131.65, 127.30, 124.02, 121.60, 62.65, 29.29, 28.94, 26.60. HRMS (ESI) calcd for C<sub>12</sub>H<sub>12</sub>ClN<sub>2</sub>OS [M+H]<sup>+</sup> : 267.0353, found 267.0358.



**5-(6-chlorobenzo[d]thiazol-2-yl)-1-ethylpyrrolidin-2-one (8h).** Yield = 46%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.90 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 2.0 Hz, 1H), 7.46 (dd, J = 8.7, 2.1 Hz, 1H), 5.13 (dd, J = 8.6, 3.9 Hz, 1H), 3.81 (dq, J = 14.6, 7.3 Hz, 1H), 2.96 – 2.90 (m, 1H), 2.71 – 2.59 (m, 2H), 2.52 – 2.46 (m, 1H), 2.22 – 2.17 (m, 1H), 1.09 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  174.72, 173.31, 151.55, 136.03, 131.67, 127.30, 124.02, 121.60, 59.86, 36.43, 29.61, 26.80, 12.45. HRMS (ESI) calcd for C<sub>13</sub>H<sub>14</sub>ClN<sub>2</sub>OS [M+H]<sup>+</sup> : 281.0510, found 281.0515.



**4-(6-chlorobenzo[d]thiazol-2-yl)oxazolidin-2-one (8i).** Yield = 63%; Yellow solid; <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.76 (s, 1H), 8.33 – 8.30 (m, 1H), 8.00 (d, *J* = 8.7 Hz, 1H), 7.58 (dd, *J* = 8.7, 2.0 Hz, 1H), 5.41 (ddd, *J* = 9.0, 4.7, 1.4 Hz, 1H), 4.78 (t, *J* = 8.9 Hz, 1H), 4.41 (dd, *J* = 8.8, 4.8 Hz, 1H); <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  174.62, 158.90, 152.09, 136.35, 130.49, 127.51, 124.49, 122.80, 69.76, 54.15. HRMS (ESI) calcd for C<sub>10</sub>H<sub>8</sub>CIN<sub>2</sub>O<sub>2</sub>S [M+H]<sup>+</sup> : 254.9990, found 255.0001.



**2-(2-(6-chlorobenzo[d]thiazol-2-yl)-5-oxopyrrolidin-1-yl)acetamide (8j).** Yield = 28%; White solid; <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  8.30 (d, *J* = 2.1 Hz, 1H), 8.00 (d, *J* = 8.7 Hz, 1H), 7.57 (dd, *J* = 8.7, 2.2 Hz, 1H), 7.39 (s, 1H), 7.10 (s, 1H), 5.22 (dd, *J* = 8.6, 4.6 Hz, 1H), 4.23 (d, *J* = 16.9 Hz, 1H), 3.33 (d, *J* = 16.9 Hz, 1H), 2.68 – 2.61 (m, 1H), 2.54 – 2.40 (m, 2H), 2.12 – 2.07 (m, 1H); <sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>)  $\delta$  175.38, 174.15, 169.40, 151.91, 136.55, 130.50, 127.41, 124.51, 122.71, 60.39, 43.90, 29.25, 26.72. HRMS (ESI) calcd for C<sub>13</sub>H<sub>13</sub>ClN<sub>3</sub>O<sub>2</sub>S [M+H]<sup>+</sup> : 310.0412, found 310.0420.



**1-(2-(6-chlorobenzo[d]thiazol-2-yl)pyrrolidin-1-yl)ethan-1-one, 1:0.54 rotamers (8k)** and **1-(3-(6-chlorobenzo[d]thiazol-2-yl)pyrrolidin-1-yl)ethan-1-one (8k').** Yield = 22%; Colorless oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  8.08 (d, J = 8.8 Hz, 0.29H), 7.96 (d, J = 1.9 Hz, 0.29H), 7.90 – 7.86 (m, 1.54H), 7.85 (d, J = 2.0 Hz, 0.54H), 7.78 (d, J = 2.0 Hz, 1H), 7.54 (dd, J = 8.8, 2.1 Hz, 0.29H), 7.46 (dd, J = 8.7, 2.1 Hz, 0.54H), 7.40 (dd, J = 8.7, 2.1 Hz, 1H), 5.53 (dd, J = 8.1, 2.0 Hz, 1H), 5.29 (dd, J = 8.2, 1.9 Hz, 0.54H), 4.32 (dd, J = 7.5, 4.7 Hz, 0.29H), 3.82 – 3.74 (m, 1.54H), 3.72 – 3.65 (m, 0.58H), 3.62 – 3.52 (m, 1.54H), 3.51 – 3.49 (m, 0.29H), 3.41 – 3.37 (m, 0.29H), 2.69 – 2.63 (m, 0.29H), 2.55 – 2.49 (m, 0.29H), 2.47 – 2.43 (m, 1.08H), 2.37 – 2.28 (m, 2H), 2.23 – 2.18 (m, 1.08H), 2.16 (s, 3H), 2.12 – 2.07 (m, 2H), 2.01 (s, 1.62H), 1.96 (s, 0.87H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  175.30, 174.54, 173.30, 170.26, 170.15, 170.09, 152.13, 151.98, 151.67, 138.28, 136.23, 135.89, 134.29, 131.38, 130.81, 128.26, 127.27, 126.73, 126.36, 123.84, 123.63, 122.01, 121.49, 121.15, 61.00, 58.74, 53.86, 48.10, 46.64, 39.83, 38.79, 34.92, 34.24, 31.99, 24.55, 23.30, 22.74, 22.60, 22.48. HRMS (ESI) calcd for C<sub>13</sub>H<sub>14</sub>ClN<sub>2</sub>OS [M+H]<sup>+</sup> : 281.0510, found 281.0522.



N-((6-chlorobenzo[d]thiazol-2-yl)methyl)-N-methylacetamide, 1:0.3 rotamers (8l). Yield = 18%; Yellow solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.91 – 7.86 (m, 1+0.3H), 7.85 (d, *J* = 2.0 Hz, 0.3H), 7.81 (d, *J* = 2.0 Hz, 1H), 7.45 (dd, *J* = 8.7, 2.0 Hz, 0.3H), 7.42 (dd, *J* = 8.7, 2.1 Hz, 1H), 4.93 (s, 2H), 4.85 (s, 0.6H), 3.12 (s, 3H), 3.08 (s, 0.9H), 2.21 (s, 0.9H), 2.18 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 170.99, 170.81, 168.65, 168.43, 151.87, 151.20, 136.89, 136.02, 131.56, 131.23, 127.31, 126.90, 123.91, 123.67, 121.49, 121.33, 53.00, 49.39, 36.51, 34.45, 21.54, 21.50.



**6-chloro-2-cyclopentylbenzo[d]thiazole (10a).** Yield = 52%; Yellow solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.85 (d, *J* = 8.7 Hz, 1H), 7.79 (d, *J* = 2.1 Hz, 1H), 7.39 (dd, *J* = 8.7, 2.1 Hz, 1H), 3.55 – 3.50 (m, 1H), 2.30 – 2.19 (m, 2H), 1.98 – 1.82 (m, 4H), 1.79 – 1.70 (m, 2H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 177.73, 151.66, 136.00, 130.43, 126.60, 123.19, 121.10, 44.73, 34.00, 22.59. HRMS (ESI) calcd for C<sub>12</sub>H<sub>13</sub>CINS [M+H]<sup>+</sup> : 238.0452, found 238.0457.



**6-chloro-2-cyclohexylbenzo[d]thiazole (10b).** Yield = 58%; Yellow solid; <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) δ 7.87 (d, *J* = 8.7 Hz, 1H), 7.81 (d, *J* = 1.8 Hz, 1H), 7.39 (dd, *J* = 8.6, 1.7 Hz, 1H), 3.11 – 3.06 (m, 1H), 2.21 – 2.18 (m, 2H), 1.90 – 1.87 (m, 2H), 1.78 – 1.75 (m, 1H), 1.65 – 1.59 (m, 2H), 1.48 – 1.40 (m, 2H), 1.35 – 1.27 (m, 1H); <sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>) δ 178.26, 151.48, 135.69, 130.47, 126.63, 123.24, 121.17, 43.36, 33.33, 26.00, 25.73.



**6-chloro-2-cyclooctylbenzo[d]thiazole (10c);** Yield = 44%; Yellow oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.86 (d, *J* = 8.7 Hz, 1H), 7.81 – 7.79 (m, 1H), 7.41 – 7.37 (m, 1H), 3.38 – 3.33 (m, 1H), 2.17 – 2.12 (m, 2H), 1.99 – 1.91 (m, 2H), 1.85 – 1.78 (m, 2H), 1.68 – 1.60 (m, 8H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 179.68, 151.51, 135.92, 130.38, 126.55, 123.25, 121.11, 43.68, 32.79, 26.89, 26.09, 25.38. HRMS (ESI) calcd for C<sub>15</sub>H<sub>19</sub>ClNS [M+H]<sup>+</sup> : 280.0921, found 280.0928.



**2-(adamantan-1-yl)-6-chlorobenzo[d]thiazole (10d).** Yield = 65%; White solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.81 (d, *J* = 2.0 Hz, 1H), 7.38 (dd, *J* = 8.7, 2.1 Hz, 1H), 2.12 (s, 8H), 2.04 – 1.94 (m, 1H), 1.81 (s, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 182.72, 151.74, 135.63, 130.26, 126.45, 123.40, 121.17, 42.94, 40.28, 38.46, 37.50, 36.47, 32.58, 32.51, 28.53, 27.80, 27.54. HRMS (ESI) calcd for C<sub>17</sub>H<sub>19</sub>CINS [M+H]<sup>+</sup> : 304.0921, found 304.0929.



**6-chloro-2-isopropylbenzo[d]thiazole (11a).** Yield = 62%; Yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.82 (d, *J* = 2.0 Hz, 1H), 7.41 (dd, *J* = 8.7, 2.1 Hz, 1H), 3.41 (hept, *J* = 7.0 Hz, 1H), 1.48 (d, *J* = 6.9 Hz, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 179.38, 151.35, 135.77, 130.61, 126.74, 123.24, 121.20, 34.05, 22.81.

**6-chloro-2-methylbenzo[d]thiazole (11b).** Yield = 41%; Pale yellow solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.86 (d, *J* = 8.7 Hz, 1H), 7.80 (d, *J* = 2.0 Hz, 1H), 7.41 (dd, *J* = 8.7, 2.1 Hz, 1H), 2.83 (s, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 167.62, 151.68, 136.72, 130.72, 126.77, 123.06, 121.05, 20.06.



**6-chloro-2-ethylbenzo[d]thiazole (11c).** Yield = 53%; Yellow solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.86 (d, *J* = 8.7 Hz, 1H), 7.80 (d, *J* = 2.1 Hz, 1H), 7.40 (dd, *J* = 8.7, 2.1 Hz, 1H), 3.13 (q, *J* = 7.5 Hz, 2H),

1.46 (t, *J* = 7.6 Hz, 3H); <sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>) δ 174.12, 151.72, 136.22, 130.57, 126.68, 123.20, 121.12, 27.74, 13.64.



**6-chloro-2-propylbenzo[d]thiazole (11d).** Yield = 45%; Yellow solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.86 (d, *J* = 8.7 Hz, 1H), 7.80 (d, *J* = 2.0 Hz, 1H), 7.40 (dd, *J* = 8.7, 2.0 Hz, 1H), 3.07 (t, *J* = 7.6 Hz, 2H), 1.93 – 1.87 (m, 2H), 1.05 (t, *J* = 7.4 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 172.76, 151.75, 136.32, 130.57, 126.65, 123.22, 121.10, 36.19, 22.98, 13.69.



**6-chloro-2-isobutylbenzo[d]thiazole (11e).** Yield = 40%; Yellow oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.6 Hz, 1H), 7.81 (d, *J* = 2.0 Hz, 1H), 7.41 (dd, *J* = 8.7, 2.0 Hz, 1H), 2.97 (d, *J* = 7.2 Hz, 2H), 2.25 - 2.18 (m, 1H), 1.04 (d, *J* = 6.6 Hz, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) δ 171.92, 151.72, 136.41, 130.61, 126.66, 123.27, 121.08, 43.18, 29.71, 22.38. HRMS (ESI) calcd for C<sub>11</sub>H<sub>13</sub>CINS [M+H]<sup>+</sup> : 226.0452, found 226.0462.



**6-chloro-2-(3-chloropropyl)benzo[d]thiazole (11f).** Yield = 30%; White solid; <sup>1</sup>**H NMR** (600 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.82 (d, *J* = 2.1 Hz, 1H), 7.42 (dd, *J* = 8.6, 2.1 Hz, 1H), 3.68 (t, *J* = 6.3 Hz, 2H), 3.29 (t, *J* = 7.4 Hz, 2H), 2.37 (dt, *J* = 13.6, 6.5 Hz, 2H); <sup>13</sup>**C NMR** (151 MHz, CDCl<sub>3</sub>) δ 170.60, 151.70, 136.24, 130.91, 126.88, 123.34, 121.16, 43.73, 31.65, 31.14.



**2-(sec-butyl)-6-chlorobenzo[d]thiazole (11g).** Yield = 42%; Yellow oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) δ 7.88 (d, *J* = 8.7 Hz, 1H), 7.82 (d, *J* = 2.0 Hz, 1H), 7.40 (dd, *J* = 8.7, 2.0 Hz, 1H), 3.23 – 3.17 (m, 1H), 1.94 - 1.74 (m, 2H), 1.44 (d, J = 6.9 Hz, 3H), 0.97 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$ 178.49, 151.55, 135.87, 130.51, 126.60, 123.30, 121.17, 41.04, 30.53, 20.56, 11.77. HRMS (ESI) calcd for C<sub>11</sub>H<sub>13</sub>CINS [M+H]<sup>+</sup>: 226.0452, found 226.0458.



**2-butyl-6-chlorobenzo[d]thiazole (11i)** and **2-(sec-butyl)-6-chlorobenzo[d]thiazole (11i').** Yield = 38%; Yellow oil; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 – 7.85 (m, 1H+0.24H), 7.82 – 7.80 (m, 1H+0.24H), 7.40 (dd, J = 8.7, 2.1 Hz, 1H+0.24H), 3.24 – 3.15 (m, 0.24H), 3.10 (t, J = 8.0 Hz, 2H), 1.93 – 1.73 (m, 2H+0.48H), 1.51 – 1.41 (m, 2H+0.72H), 0.97 (t, J = 7.4 Hz, 3H+0.72H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  178.55, 173.07, 151.67, 151.51, 136.27, 135.84, 130.55, 130.49, 126.68, 126.62, 123.29, 123.18, 121.20, 121.12, 41.05, 34.02, 31.67, 30.58, 22.31, 20.62, 13.79, 11.82. HRMS (ESI) calcd for C<sub>11</sub>H<sub>13</sub>CINS [M+H]<sup>+</sup>: 226.0452, found 226.0453.



**6-chloro-2-(pentan-3-yl)benzo[d]thiazole (11j)** and **6-chloro-2-(pentan-2-yl)benzo[d]thiazole (11j').** Yield = 43%; Yellow oil; <sup>1</sup>**H NMR** (400 MHz, CDCl<sub>3</sub>) δ 7.90 – 7.86 (m, 1H+0.48H), 7.83 – 7.82 (m, 1H+0.48H), 7.42 – 7.39 (m, 1H+0.48H), 3.33 – 3.24 (m, 0.48H), 3.02 – 2.94 (m, 1H), 1.89 – 1.72 (m, 4H), 1.76 – 1.65 (m, 0.95H), 1.44 (d, *J* = 6.9 Hz, 1.43H), 1.41 – 1.32 (m, 0.95H), 0.94 – 0.90 (m, 6H+1.43H); <sup>13</sup>**C NMR** (101 MHz, CDCl<sub>3</sub>) δ 178.77, 177.57, 151.51, 151.47, 135.90, 135.83, 130.51, 130.49, 126.61, 126.57, 123.31, 123.29, 121.20, 48.69, 39.73, 39.28, 28.93, 21.07, 20.50, 13.98, 11.92. **HRMS** (ESI) calcd for C<sub>12</sub>H<sub>15</sub>CINS [M+H]<sup>+</sup> : 240.0608, found 240.0614.



**6-chloro-2-isopropylbenzo[d]thiazole (11k)** and **6-chloro-2-propylbenzo[d]thiazole (11k').** Yield = 56%; Pale yellow solid; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ 7.95 – 7.93 (m, 1H+0.07H), 7.73 – 7.70 (m, 1H+0.07H), 7.29 (dd, *J* = 8.5, 2.0 Hz, 1H+0.07H), 3.40 (hept, *J* = 6.9 Hz, 1H), 3.07 (t, *J* = 7.6 Hz, 0.14H), 1.94 – 1.84 (m, 0.14H), 1.46 (d, *J* = 6.9 Hz, 6H), 1.04 (t, *J* = 7.4 Hz, 0.21H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) δ 180.66, 174.25, 154.08, 154.01, 133.39, 132.97, 131.88, 131.83, 125.11, 125.05, 122.48, 122.40, 122.24, 122.17, 36.29, 34.19, 23.05, 22.83, 13.72. HRMS (ESI) calcd for C<sub>10</sub>H<sub>11</sub>ClNS [M+H]<sup>+</sup> : 212.0295, found 212.0299.



**6-chloro-2-(1-chloro-2-methylpropan-2-yl)benzo[d]thiazole (16).** Yield = 16%; Yellow oil; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, J = 8.7 Hz, 1H), 7.85 (d, J = 2.0 Hz, 1H), 7.43 (dd, J = 8.7, 2.1 Hz, 1H), 3.89 (s, 2H), 1.60 (s, 6H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  177.77, 151.64, 136.05, 130.88, 126.84, 123.70, 121.14, 54.26, 43.17, 26.45. HRMS (ESI) calcd for C<sub>11</sub>H<sub>12</sub>Cl<sub>2</sub>NS [M+H]<sup>+</sup> : 260.0062, found 260.0073.



**2-(6-chlorobenzo[d]thiazol-2-yl)propan-1,1,1,3,3,3-d\_6-2-ol (3a-d\_6).** Yield = 43%; White solid; <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)  $\delta$  7.88 (d, J = 8.7 Hz, 1H), 7.86 (d, J = 2.1 Hz, 1H), 7.43 (dd, J = 8.7, 2.1 Hz, 1H), 2.70 (br, 1H); <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>)  $\delta$  180.65, 151.71, 136.54, 130.82, 126.85, 123.64, 121.40, 73.45, 29.66. HRMS (ESI) calcd for C<sub>10</sub>H<sub>5</sub>D<sub>6</sub>ClNOS [M+H]<sup>+</sup> : 234.0621, found 234.0623.

# 6. NMR spectra

### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 3a



<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3a






# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 3b



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 3c



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3c



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 3d



### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3d



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 3e



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3e







# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3f



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 3g



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3g



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 3h



<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3h





# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3i



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 3j



<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3j





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3k



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 31



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 31



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 3m



### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3m



# <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 3n



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3n



#### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 30



### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 30







# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 3p



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 3q



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 3q





# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3r



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 3s



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 3s



### <sup>1</sup>H NMR (400 MHz, DMSO-d<sub>6</sub>) of 3t



<sup>13</sup>C NMR (101 MHz, DMSO-d<sub>6</sub>) of 3t



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 4a



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4a







### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4a'



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 4b



### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4b





S59

## <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 4c



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 4c





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 4c'



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 4d



### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4d



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 4d'



### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4d'



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 4e



### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4e



<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 4e'



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 4e'





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4f





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4g





### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4h





### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4i



## <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 4j



### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4j



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 4k



# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 4k





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 4l


### <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>) of 4m



<sup>13</sup>C NMR (151 MHz, DMSO-d<sub>6</sub>) of 4m



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 6a



#### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 6a





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 6b



<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 6c



<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 6c







<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 6d





<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 6d'



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 6e



<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 6e





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 6f



## <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 6g



#### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 6g



# <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 6h



<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 6h



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 8a



#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 8a



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 8b



<sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 8b



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 8c



#### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 8c



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 8d



#### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 8d



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 8e



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 8e





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 8f





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 8g



## <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 8h



<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 8h





<sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>) of 8i



### <sup>1</sup>H NMR (600 MHz, DMSO-*d*<sub>6</sub>) of 8j



<sup>13</sup>C NMR (151 MHz, DMSO-*d*<sub>6</sub>) of 8j



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 8k and 8k'



<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 8k and 8k'



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 8l



#### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 81





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 10a



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 10b



#### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 10b





<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 10c



### <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) of 10d



# <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 10d







<sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 11a



# <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 11b



#### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 11b



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 11c



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 11c



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 11d



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 11d



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 11e



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 11e



# <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 11f



# <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 11f



### <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 11g



#### <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 11g





#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 11i and 11i'





#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 11j and 11j'





#### <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>) of 11k and 11k'


## <sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>) of 16



## <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 16





## <sup>13</sup>C NMR (151 MHz, CDCl<sub>3</sub>) of 3a-d<sub>6</sub>



# 7. HRMS spectra







### HRMS spectra of 3h



HRMS spectra of 3j



HRMS spectra of 3k











HRMS spectra of 3o















HRMS spectra of 4g

















HRMS spectra of 6b















HRMS spectra of 6h















HRMS spectra of 8d



#### HRMS spectra of 8e







## HRMS spectra of 8g



**HRMS** spectra of 8h































HRMS spectra of 11g









225

mSigma 6.6

250

1

# mSigma

275

Score

100.00

rdb

6.0

300

even

e<sup>-</sup>Conf

325

N-Rule

ok

m/z



Meas. m/z # 240.0614 1

125

150

Ion Formula C12H15CINS

175

240.0608

m/z

200

err [ppm] -2.6

0-

100







HRMS spectra of 3a-d<sub>6</sub>





HRMS spectra of 16