Electronic Supplementary Information:

Hydrogen Bond Mediated Conversion of Benzenenitriles and Arylacetonitriles to Amides: An "On / In-Water" Reaction Strategy

Shubhranshu Shekhar Choudhury^{a,b}, Shivam Mahapatra^{a,b}, Himansu S. Biswal^{*a,b}

^aSchool of Chemical Sciences, National Institute of Science Education and Research (NISER), PO- Bhimpur-Padanpur, Via-Jatni, District- Khurda, PIN - 752050, Bhubaneswar, India
^bHomi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
* Corresponding Author's E-mail: himansu@niser.ac.in, Phone No: - +91-674-2494 185/186

Contents

1.	¹ H and ¹³ C NMR Spectra	S3-S35
2.	¹⁹ F NMR Spectra	\$36-\$39
3.	Kinetic Results	S39-S44
4.	Computational Method	S44-S55

NMR Spectroscopy characterization

Benzamide (9). To a 25 mL round bottom flask (RB), was added benzonitrile (103 μ L, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 3 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9** was obtained as a white solid (113 mg, 94%). ¹H NMR (400 MHz, DMSO-d6) δ 7.98 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 2H), 7.66 (m, 3H), 7.37 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 168.0, 134.3, 131.2, 128.2, 127.5.

Figure S1. ¹H and ¹³C spectra of benzamide (9) in DMSO-d6.

2-methylbenzamide (9a). To a 25 mL round bottom flask (RB), was added 2methylbenzonitrile (118 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9a** was obtained as a white solid (121 mg, 90%). ¹H NMR (400 MHz, DMSO-d6) δ 7.92 (s, 1H), 7.70 (m, 2H), 7.33 (d, J = 4.0 Hz, 2H), 7.31 (s, 1H), 2.34 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 168.0, 137.4, 134.3, 131.8, 128.0, 128.0, 124.6, 21.0.

Figure S2. ¹H and ¹³C spectra of 2-methylbenzamide (9a) in DMSO-d6.

3-methylbenzamide (*9b*). To a 25 mL round bottom flask (RB), was added 3methylbenzonitrile (120 µL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9b** was obtained as a white solid (109 mg, 81%). ¹H NMR (400 MHz, DMSO-d6) δ 7.90 (s, 1H), 7.69 (s, 1H), 7.66 (m, 2H), 7.33 (d, *J* = 4.0 Hz, 2H), 7.29 (s, 1H), 3.34 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 168.0, 137.4, 134.2, 131.7, 128.1, 128.1, 124.6, 21.0.

Figure S3. ¹H and ¹³C spectra of 3-methylbenzamide (9b) in DMSO-d6.

4-methylbenzamide (9c). To a 25 mL round bottom flask (RB), was added 4methylbenzonitrile (119 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9c** was obtained as a white solid (108 mg, 80%). ¹H NMR (400 MHz, DMSO-d6) δ 7.87 (s, 1H), 7.46 (m, 4H), 7.09 (dd, J = 4.0 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (100 MHz, DMSOd6) δ 167.9, 134.3, 131.2, 128.2, 127.5.

Figure S4. ¹H and ¹³C spectra of 4-methylbenzamide (9c) in DMSO-d6.

3-methoxybenzamide (*9d*). To a 25 mL round bottom flask (RB), was added 3methoxybenzonitrile (123 μ L, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 6 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9d** was obtained as a white solid (119 mg, 79%). ¹H NMR (400 MHz, DMSO-d6) δ 7.96 (s, 1H), 7.78 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 167.7, 159.1, 135.7, 129.3, 119.7, 117.0, 112.7, 55.2.

Figure S5. ¹H and ¹³C spectra of 3-methoxybenzamide (9d) in DMSO-d6.

4-methoxybenzamide (9e). To a 25 mL round bottom flask (RB), was added 4-methoxybenzonitrile (133 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 3 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9e** was obtained as a light yellow solid (127 mg, 84%). ¹H NMR (400 MHz, DMSO-d6) δ 7.85 (m, 4H), 7.16 (s, 1H), 6.98 (d, *J* = 8.0 Hz, 1H), 3.80 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 167.4, 161.6, 129.3, 126.5, 113.4, 55.3.

Figure S6. ¹H and ¹³C spectra of 4-methoxybenzamide (9e) in DMSO-d6.

2-*fluorobenzamide* (9*f*). To a 25 mL round bottom flask (RB), was added 2-fluorobenzonitrile (138 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 4 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9f** was obtained as a white solid (107 mg, 77%). ¹H NMR (400 MHz, DMSO-d6) δ 7.68-7.64 (m, 2H), 7.54-7.49 (m, 2H), 7.28-7.23 (m, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 165.1, 159.2 (d, *J*_{C-F} = 247.0 Hz), 132.4 (d, *J*_{C-F} = 9.0 Hz), 130.1 (d, *J*_{C-F} = 3.0 Hz), 124.3 (d, *J*_{C-F} = 4.0 Hz), 123.8 (d, *J*_{C-F} = 14.0 Hz), 116.1 (d, *J*_{C-F} = 22.0 Hz).

Figure S7. ¹H and ¹³C spectra of 2-fluorobenzamide (**9f**) in DMSO-d6.

3-fluorobenzamide (*9g*). To a 25 mL round bottom flask (RB), was added 3-fluorobenzonitrile (106 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 5 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9g** was obtained as a white solid (117 mg, 84%). ¹H NMR (400 Hz, DMSO-d6) δ 7.73 (s, 1H), 7.78 (t, J = 8.0 Hz, 2H), 7.54-7.49 (m, 1H), 7.26 (t, J = 8.0 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 165.8, 159.7 (d, $J_{C-F} = 247.0$ Hz), 133.0 (d, $J_{C-F} = 8.0$ Hz), 130.7 (d, $J_{C-F} = 3.0$ Hz), 124.9 (d, $J_{C-F} = 4.0$ Hz), 124.6 (d, $J_{C-F} = 14.0$ Hz), 116.7 (d, $J_{C-F} = 22.0$ Hz).

Figure S8. ¹H and ¹³C spectra of 3-fluorobenzamide (9g) in DMSO-d6.

4-fluorobenzamide (9h). To a 25 mL round bottom flask (RB), was added 4-fluorobenzonitrile (109 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 4 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9h** was obtained as a white solid (127 mg, 91%). ¹H NMR (400 MHz, DMSO-d6) δ 7.99 (s, 1H), 7.96-7.92 (m, 2H), 7.39 (s, 1H), 7.29-7.25 (m, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 166.8, 163.9 (d, *J*_{C-F} = 247.0 Hz), 130.8 (d, *J*_{C-F} = 3.0 Hz), 130.2 (d, *J*_{C-F} = 9.0 Hz), 115.2 (d, *J*_{C-F} = 22.0 Hz).

Figure S9. ¹H and ¹³C spectra of 4-fluorobenzamide (9h) in DMSO-d6.

2-chlorobenzamide (9i). To a 25 mL round bottom flask (RB), was added 2-chlorobenzonitrile (138 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 6 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and 9i was obtained as a white solid (137 mg, 88%). ¹H NMR (400 MHz, CDCl₃) δ 7.77-7.75 (m, 1H), 7.43-7.31 (m, 3H), 6.45-6.41 (d, *J* = 6.0 Hz 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 133.9, 131.8, 130.8, 130.6, 130.4, 127.2.

Figure S10. ¹H and ¹³C spectra of 2-chlorobenzamide (9i) in CDCl₃.

3-chlorobenzamide (9j). To a 25 mL round bottom flask (RB), was added 3-chlorobenzonitrile (138 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 6 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9j** was obtained as a white solid (115 mg, 74%). ¹H NMR (400 MHz, DMSO-d6) δ 8.09 (s, 1H), 7.91 (t, *J* = 4.0 Hz, 1H), 7.84 (s, 1H), 7.60-7.57(m, 1H), 7.51-7.47 (m, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 166.4, 136.3, 133.1, 131.0,130.2, 127.3, 126.2.

Figure S11. ¹H and ¹³C spectra of 3-chlorobenzamide (9j) in DMSO-d6.

4-chlorobenzamide (9k). To a 25 mL round bottom flask (RB), was added 4-chlorobenzonitrile (138 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9k** was obtained as a white solid (139 mg, 89%). ¹H NMR (400 MHz, DMSO-d6) δ 7.90 (s, 1H), 7.89-7.88 (d, *J* = 4.0 Hz, 2H), 7.69 (s, 1H), 7.67 (d, *J* = 2.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 168.0, 134.3, 131.3, 128.3, 127.5.

Figure S12. ¹H and ¹³C spectra of 4-chlorobenzamide (9k) in DMSO-d6.

2-bromobenzamide (91). To a 25 mL round bottom flask (RB), was added 2-bromobenzonitrile (182 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and 91 was obtained as a white solid (174 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ 7.04 (s, 1H), 7.82 (d, J = 4.0 Hz, 2H), 7.67 (d, J = 4.0 Hz 2H) 7.45 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 138.8, 132.2, 130.0, 128.0, 127.0, 118.0.

Figure S13. ¹H and ¹³C spectra of 2-bromobenzamide (9I) in CDCl₃.

3-bromobenzamide (*9m*). To a 25 mL round bottom flask (RB), was added 3bromobenzonitrile (182 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 4 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9m** was obtained as a white solid (158 mg, 79%). ¹H NMR (400 MHz, DMSO-d6) δ 8.85 (s, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.55 (s, 1H), 7.42-7.49 (m, 2H), 7.35-7.31 (m, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 166.3, 136.5, 134.0, 130.5,130.2, 126.5, 121.6.

Figure S14. ¹H and ¹³C spectra of 3-bromobenzamide (9m) in DMSO-d6.

4-bromobenzamide (*9n*). To a 25 mL round bottom flask (RB), was added 4-bromobenzonitrile (182 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 4 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9n** was obtained as a white solid (180 mg, 90%). ¹H NMR (400 MHz, DMSO-d6) δ 8.04 (s, 1H), 7.82 (d, *J* = 4.0 Hz, 2H), 7.67 (d, *J* = 4.0 Hz 2H) 7.45 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 166.9, 133.4, 131.2, 129.6, 125.0.

Figure S15. ¹H and ¹³C spectra of 4-bromobenzamide (9n) in DMSO-d6.

4-nitrobenzamide (*9o*). To a 25 mL round bottom flask (RB), was added 4-nitrobenzonitrile (148 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9o** was obtained as a white solid (153 mg, 92%). ¹H NMR (400 MHz, DMSO-d6) δ 8.31-8.29 (m, 3H), 8.10-8.08 (d, *J* = 4.0 Hz, 2H), 7.72 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 166.2, 149.0, 140.0, 128.9, 123.5.

Figure S16. ¹H and ¹³C spectra of 4-nitrobenzamide (90) in DMSO-d6.

3,4-dimethoxybenzamide (*9p*). To a 25 mL round bottom flask (RB), was added 3,4dimethoxybenzonitrile (163 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 3 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9p** was obtained as a white solid (161 mg, 89%). ¹H NMR (400 MHz, DMSO-d6) δ 7.87 (s, 1H), 7.50-7.49 (d, *J* = 4.0 Hz, 1H), 7.46 (s, 1H), 7.22 (s, 1H), 6.99-6.98 (d, *J* = 4.0 Hz, 2H), 3.79 (s, 3H), 7.78 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 167.5, 151.3, 148.2, 126.6, 120.8, 110.9, 110.8, 55.6, 55.5.

Figure S17. ¹H and ¹³C spectra of 3,4-dimethoxybenzamide (9p) in DMSO-d6.

5-bromo-2-fluorobenzamide (9q). To a 25 mL round bottom flask (RB), was added 5-bromo-2-fluorobenzonitrile (200 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9q** was obtained as a light yellow solid (177 mg, 81%). ¹H NMR (400 MHz, DMSO-d6) δ 7.84 (s, 1H), 7.77-7.76 (m, 2H), 7.71-7.69 (m, 1H), 7.30-7.27 (t, *J* = 8.0, 4.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 163.9, 158.4 (d, *J*_{C-F} = 142.0 Hz), 135.0 (d, *J*_{C-F} = 5.0 Hz), 132.4 (d, *J*_{C-F} = 2.0 Hz), 126.2 (d, *J*_{C-F} = 9.0 Hz), 118.8 (d, *J*_{C-F} = 14.0 Hz), 116.1 (d, *J*_{C-F} = 2.0 Hz).

Figure S18. ¹H and ¹³C spectra of 5-bromo-2-fluorobenzamide (9q) in DMSO-d6.

Nicotinamide (9r). To a 25 mL round bottom flask (RB), was added nicotinonitrile (104 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9r** was obtained as a white solid (98 mg, 80%). ¹H NMR (400 MHz, DMSO-d6) δ 9.02 (s, 1H), 8.70-8.69 (d, *J* = 4.0 Hz, 1H), 8.21-8.19 (d, *J* = 8.0 Hz, 2H), 7.62 (s, 1H), 7.51-7.48 (m, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 166.6, 152.0, 148.8, 135.3, 129.7, 123.6.

Figure S19. ¹H and ¹³C spectra of Nicotinamide (9r) in DMSO-d6.

Isonicotinamide (9s). To a 25 mL round bottom flask (RB), was added isonicotinonitrile (104 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9s** was obtained as a white solid (105 mg, 86%). ¹H NMR (400 MHz, DMSO-d6) δ 8.72-8.71 (d, *J* = 4.0 Hz, 2H), 8.23 (s, 1H), 7.77-7.76 (d, *J* = 4.0 Hz, 2H), 7.71 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 166.3, 150.2, 141.3, 121.4.

Figure S20. ¹H and ¹³C spectra of Isonicotinamide (9s) in DMSO-d6.

2-chloro-6-(trifluoromethyl)nicotinamide (9t). To a 25 mL round bottom flask (RB), was added 2-chloro-6-(trifluoromethyl)nicotinonitrile (137 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 5 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9t** was obtained as a white solid (175 mg, 78%). ¹H NMR (400 MHz, DMSO-d6) δ 8.21-8.20 (d, J = 4.0 Hz, 1H), 8.17 (s, 1H), 8.03-8.02 (d, J = 4.0 Hz, 1H), 7.97 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 165.8, 147.0, 146.2 (d, $J_{C-F} = 2.0$ Hz), 140.0, 136.9, 121.3, 120.3 (d, $J_{C-F} = 1.0$ Hz).

Figure S21. ¹H and ¹³C spectra of 2-chloro-6-(trifluoromethyl)nicotinamide (9t) in DMSO-d6.

furan-2-carboxamide (9u). To a 25 mL round bottom flask (RB), was added furan-2-carbonitrile (87 µL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 3 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9u** was obtained as a white solid (99 mg, 89%). ¹H NMR (400 MHz, DMSO-d6) δ 7.79 (s, 1H), 7.76 (s, 1H), 7.36 (s, 1H), 7.10-7.09 (d, *J* = 4.0 Hz, 2H), 6.60-6.58 (m, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 159.5, 148.1, 145.0, 113.6, 111.8.

Figure S22. ¹H and ¹³C spectra of furan-2-carboxamide (9u) in DMSO-d6.

furan-3-carboxamide (9v). To a 25 mL round bottom flask (RB), was added furan-3-carbonitrile (87 µL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 3 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9v** was obtained as a white solid (96 mg, 86%). ¹H NMR (400 MHz, DMSO-d6) δ 8.15 (s, 1H), 7.70-7.69 (t, *J* = 4.0 Hz, 1H), 7.64 (s, 1H), 7.18 (s, 1H), 6.80-6.80 (d, *J* = 2.0 Hz, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 163.4, 145.3, 143.9, 122.9, 109.3.

Figure S23. ¹H and ¹³C spectra of furan-3-carboxamide (9v) in DMSO-d6.

thiophene-2-carboxamide (9w). To a 25 mL round bottom flask (RB), was added thiophene-2-carbonitrile (93 μ L, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 4 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9w** was obtained as a white solid (118 mg, 93%). ¹H NMR (400 MHz, DMSO-d6) δ 7.96 (s, 1H), 7.75-7.72 (m, 2H), 7.37 (s, 1H), 6.60-6.58 (m, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 162.9, 140.3, 131.0, 128.7, 127.9.

Figure S24. ¹H and ¹³C spectra of thiophene-2-carboxamide (9w) in DMSO-d6.

thiophene-3-carboxamide (9*x*). To a 25 mL round bottom flask (RB), was added thiophene-3-carbonitrile (91 µL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 4 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and 9x was obtained as a white solid (107 mg, 84%). ¹H NMR (400 MHz, DMSO-d6) δ 8.13-8.12 (d, *J* = 4.0 Hz, 1H), 7.77 (s, 1H), 7.56-7.54 (dd, *J* = 4.0, 4.0, 1H), 7.49-7.47 (d, *J* = 8.0 Hz, 1H), 7.22 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 163.7, 138.0, 129.0, 127.2, 126.5.

Figure S25. ¹H and ¹³C spectra of thiophene-3-carboxamide (9x) in DMSO-d6.

4-(2-amino-2-oxoethyl)benzamide (9y). To a 25 mL round bottom flask (RB), was added 4- (cyanomethyl)benzonitrile (142 mg, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 µL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9y** was obtained as a light pink solid (141 mg, 79%). ¹H NMR (400 MHz, DMSO-d6) δ 7.93 (s, 1H), 7.81-7.79 (d, *J* = 8.0 Hz, 2H), 7.52 (s, 1H), 7.33-7.31 (d, *J* = 16.0 Hz, 1H), 6.94 (s, 3H), 3.42-3.36 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 171.8, 167.8, 139.9, 132.4, 128.9, 127.4.

Figure S26. ¹H and ¹³C spectra of 4-(2-amino-2-oxoethyl)benzamide (9y) in DMSO-d6.

(*E*)-3-(4-methoxyphenyl)acrylamide (9z). To a 25 mL round bottom flask (RB), was added (E)-3-(4-methoxyphenyl)acrylonitrile (145 μ L, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μ L, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9z** was obtained as a white solid (143 mg, 81%). ¹H NMR (400 MHz, DMSO-d6) δ 7.51-7.49 (d, *J* = 8.0 Hz, 2H), 7.43 (s, 1H), 7.38-7.34 (d, *J* = 16.0 Hz, 1H), 6.98-6.96 (d, *J* = 8.0 Hz, 3H), 6.47-6.43 (d, *J* = 16.0 Hz, 1H), 3.8 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 166.9, 160.3, 138.8, 129.1, 127.4, 119.8, 114.4, 55.2.

Figure S27. ¹H and ¹³C spectra of (E)-3-(4-methoxyphenyl)acrylamide (9z) in DMSO-d6.

2-phenylacetamide (9aa). To a 25 mL round bottom flask (RB), was added 2-phenylacenitrile (115 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 5 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9aa** was obtained as a white solid (116 mg, 86%). ¹H NMR (400 MHz, DMSO-d6) δ 7.50 (s, 1H), 7.31-7.21 (m, 5H), 6.89 (s, 1H), 3.36 (s, 1H); ¹³C NMR (100 MHz, DMSO-d6) δ 172.5, 136.6, 129.2, 128.3, 126.4.

Figure S28. ¹H and ¹³C spectra of 2-phenylacetamide (9aa) in DMSO-d6.

2-(*m*-tolyl)acetamide (9ab). To a 25 mL round bottom flask (RB), was added 2-(m-tolyl)acetonitrile (132 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 6 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9ab** was obtained as a white solid (128 mg, 86%). ¹H NMR (400 MHz, DMSO-d6) δ 7.45 (s, 1H), 7.19-7.15 (t, *J* = 8.0 Hz, 1H), 7.07-7.01 (m, 3H), 6.84 (s, 1H), 3.09 (s, 2H), 2.28 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 172.2, 137.1, 136.4, 129.7, 128.0, 126.9, 126.1, 42.2, 21.0.

Figure S29. ¹H and ¹³C spectra of 2-(m-tolyl)acetamide (9ab) in DMSO-d6.

2-(*p-tolyl*)*acetamide* (9*ac*). To a 25 mL round bottom flask (RB), was added 2-(*p*-tolyl)*acetonitrile* (132 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9ac** was obtained as a white solid (121 mg, 81%). ¹H NMR (400 MHz, DMSO-d6) δ 7.39 (s, 1H), 7.14-7.08 (m, 4H), 6.82 (s, 1H), 3.30 (s, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, DMSO-d6) δ 172.4, 135.2, 133.4, 128.9, 128.7, 41.8, 20.6.

Figure S30. ¹H and ¹³C spectra of 2-(p-tolyl)acetamide (9ac) in DMSO-d6.

2-(4-methoxyphenyl)acetamide (9ad). To a 25 mL round bottom flask (RB), was added 2-(4-methoxyphenyl)acetonitrile (145 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 2 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9ad** was obtained as a white solid (134 mg, 81%). ¹H NMR (400 MHz, DMSO-d6) δ 7.37 (s, 1H), 7.17-7.15 (d, J = 8.0 Hz, 2H), 6.86-6.84 (d, J = 8.0 Hz, 2H), 6.80 (s, 1H), 3.72 (s, 3H), 3.28 (s, 2H); ¹³C NMR (176 MHz, CDCl₃) δ 173.7, 156.0, 130.5, 126.8, 114.5, 55.3, 42.4.

Figure S31. ¹H and ¹³C spectra of 2-(4-methoxyphenyl)acetamide (**9ad**) in DMSO-d6 and CDCl₃ respectively.

2-(3-fluorophenyl)acetamide (9ae). To a 25 mL round bottom flask (RB), was added 2-(3-fluorophenyl)acetonitrile (116 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 5 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9ae** was obtained as a white solid (132 mg, 86%). ¹H NMR (400 MHz, DMSO-d6) δ 7.47 (s, 1H), 7.32-7.26 (m, 2H), 7.15-7.12 (m, 2H), 6.95 (s, 1H), 3.44 (s, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 171.1, 160.6 (d, $J_{C-F} = 139.0$ Hz), 131.9 (d, $J_{C-F} = 3.0$ Hz), 128.5 (d, $J_{C-F} = 5.0$ Hz), 124.1 (d, $J_{C-F} = 3.0$ Hz), 123.5 (d, $J_{C-F} = 9.0$ Hz), 115.0 (d, $J_{C-F} = 12.0$ Hz), 35.1.

Figure S32. ¹H and ¹³C spectra of 2-(3-fluorophenyl)acetamide (9ae) in DMSO-d6.

2-(4-fluorophenyl)acetamide (9af). To a 25 mL round bottom flask (RB), was added 2-(4-fluorophenyl)acetonitrile (120 μL, 1 mmol) and water (3 mL). This was followed by the addition of ChOH (13.15 μL, 5 mol%). The reaction mixture was stirred at 80 °C for 4 hours in air, and the progress of the reaction was continuously monitored through TLC. After the completion of the reaction, the product was extracted in ethyl acetate/water (4:1, 3x 50 mL). The resultant solution was concentrated under vacuum. The catalyst was removed in the workup process, and **9af** was obtained as a yellow solid (135 mg, 88%). ¹H NMR (400 MHz, DMSO-d6) δ 7.46 (s, 1H), 7.30-7.26 (m, 2H), 7.13-7.09 (t, *J* = 8.0, 2H), 6.28 (s, 1H), 3.36 (s, 2H); ¹³C NMR (100 MHz, DMSO-d6) δ 172.4, 161.0 (d, *J*_{C-F} = 240.0 Hz), 132.7 (d, *J*_{C-F} = 3.0 Hz), 130.9 (d, *J*_{C-F} = 8.0 Hz), 114.9 (d, *J*_{C-F} = 21.0 Hz), 41.2.

Figure S33. ¹H and ¹³C spectra of 2-(4-fluorophenyl)acetamide (9af) in DMSO-d6.

¹⁹F NMR Spectra:

2-fluorobenzamide (**9***f*). ¹⁹F NMR (376 MHz, DMSO-d6) δ -113.78.

Figure S34. ¹⁹F spectra of 2-fluorobenzamide (9f).in DMSO-d6.

3-fluorobenzamide (*9g*). ¹⁹F NMR (376 MHz, DMSO-d6) δ -113.78.

4-fluorobenzamide (9*h*). ¹⁹F NMR (376 MHz, DMSO-d6) δ -109.62.

Figure S36. ¹⁹F spectra of 4-fluorobenzamide (9h).in DMSO-d6.

5-bromo-2-fluorobenzamide (9q). ¹⁹F NMR (376 MHz, DMSO-d6) δ -115.72.

Figure S37. ¹⁹F spectra of 5-bromo-2-fluorobenzamide (9q).in DMSO-d6.

2-chloro-6-(trifluoromethyl)nicotinamide (9t). ¹⁹F NMR (376 MHz, DMSO-d6) δ -67.25.

Figure S38. ¹⁹F spectra of 2-chloro-6-(trifluoromethyl)nicotinamide (9t).in DMSO-d6.

2-(3-fluorophenyl)acetamide (9ae). ¹⁹F NMR (376 MHz, DMSO-d6) δ -117.48.

Figure S39. ¹⁹F spectra of 2-(3-fluorophenyl)acetamide (9ae).in DMSO-d6.

Figure S40. ¹⁹F spectra of 2-(4-fluorophenyl)acetamide (9af).in DMSO-d6.

Kinetic Results:

For our experimental monitoring, p-fluorobenzonitrile (**8h**) was taken as the model substrate with p-fluoroanisole in DMSO-d6 as the calibrant. The reaction was scaled down to 0.25 mmol of the reactant in order to carry out the reaction in the NMR tube itself. This brings down the catalyst load to ~3.29 μ L, which is very negligible and hence, the reaction did not proceed at all. After careful consideration, the catalyst load was increased to 10 μ L for all further experiments. The general reaction scheme used for our experimental monitoring has been shown below in **Figure S41**.

Figure S41. Reaction scheme for the experimental monitoring.

A simple derivation for the time-dependence of the concentration of the product would lead us to equation 1. Now, a plot of product concentration with respect to time would help us find out the rate constant, k.

$$[B] = 0.25(1 - e^{-kt}) - \dots - 1$$

The progress of the reaction was appreciable at all the three planned temperatures, 70 °C, 65 °C and 60 °C. Some preliminary experiments were performed to estimate the relaxation delay (d1) of the reactant and the product separately. The d1 values were varied from 1 s to 35 s and it was observed that both the reactant and the product relaxed almost completely within around 25 s. The corresponding stacked NMR spectra have been shown in **Figure S42** (a) reactant and (b) product for reference. Moreover, it is recommended to use d1 = 30 s to ensure reliable quantification.¹ Hence, d1 was set at 30 s for all kinetic measurements.

(a)

Figure S42. Corresponding ¹⁹F NMR stacked plots for the relaxation experiments (**a**) reactant and (**b**) product.

A few of the selected ¹⁹F NMR spectra for the data at 70 °C have been shown below in **Figure S43** to represent the general nature of the spectra obtained.

Figure S43. A representative ¹⁹F NMR stacked plot for the data at 70 °C. p-fluorobenzonitrile (**A**), p-fluorobenzamide (**B**), p-fluorobenzamide with catalyst (**C**) and p-fluoroanisole (**D**).

The reaction was monitored separately at 70 °C, 65 °C and 60 °C at regular intervals continuously for 7 hours each and the results were analysed by plotting the respective time-dependent concentrations of the product. The peak (C) has been attributed to the interaction of the product with the regenerated catalyst, verified from additional NMR measurements. Hence, the sum of the integration value for peak (B) and peak (C) was taken as the product. The best fitting obtained further validates our claims. Keeping in mind the guidelines laid down by the University of Oxford for Quantitative NMR Spectroscopy, the measurements were performed and the concentration of product was calculated using the formula shown below.¹

$$[B] = \frac{I_B}{I_{cal}} \times \frac{N_{cal}}{N_B} \times C_{cal} \qquad -----2$$

where, I_B is the integration value for the product

 I_{cal} is the integration value for the calibrant N_{cal} is the number of nuclei for the calibrant

 N_B is the number of nuclei for the product

 C_{cal} is the concentration of the calibrant taken

In our case, the number of nuclei is the same in both the product and the calibrant. Moreover, the integration value for the calibrant is being normalized to 1 for simplicity. Hence, the equation now reduces to -

$$[B] = I_B \times C_{cal} \qquad ------3$$

Different types of exponential fitting were tried and the best fit was obtained with ExpDec1 for all the measurements. The general fitting equation is -

$$y = y_0 + A_1 e^{-\frac{x}{t_1}} - \dots - 4$$

Comparing this equation with equation 1, we know that k from equation 1 should be the reciprocal of t_1 from equation 4. Let us assume that the rate constants are k_1 , k_2 and k_3 at 70 °C, 65 °C and 60 °C respectively.

At 70 °C, $t_1 = 83.41975 \text{ min}$

$$k_1 = \frac{1}{t_1}$$

$$\Rightarrow k_1 = \frac{1}{83.41975} \min^{-1} = 0.012 \min^{-1} \quad ----5$$

At 65 °C, $t_1 = 114.07359$ min

$$k_2 = \frac{1}{t_1}$$

$$\Rightarrow k_2 = \frac{1}{114.07359} \min^{-1} = 0.009 \min^{-1} \quad ----6$$

At 60 °C, $t_1 = 169.02648 \text{ min}$

$$k_3 = \frac{1}{t_1}$$

$$\Rightarrow k_3 = \frac{1}{169.02648} \min^{-1} = 0.006 \min^{-1} \quad ----7$$

Based on the obtained values of rate constants, an Arrhenius plot was made and the activation energy barrier was determined using the slope of the fitted curve.

Computational Method:

The geometry optimizations and frequency calculations were performed using density functional theory (DFT) with the B3LYP functional and 6-31+G(d,p) basis set. Solvent effects were incorporated by using PCM solvation model. The structures of reactants, intermediates, transition states and products were optimized in gas phase and single point energy calculations were performed for the optimized geometries in the solution phase taking H₂O as the solvent, without symmetry constraints. The Gibbs free energy corrections were added to the single-point electronic energies calculated to obtain the free energies. The QTAIM was performed at the same level of theory and all the calculations were performed with Gaussian-16 software package.² Optimized Cartesian coordinates, electronic energies, Gibbs energies of all reactants, transition states and products are provided below.

Molecule		E (au)		G (8	au)	E+G (au)
ChOH		-404.752702		0.172	2380	-404.580322
(2	-1.144263000	-1.43	38415000	-0.3289	77000
Ι	H	-1.603694000	-1.94	46637000	-1.2014	39000
I	Η	-0.677212000	-2.24	48214000	0.2653	38000
(2	-0.068708000	-0.54	42084000	-0.9568	55000
I	Η	0.506168000	-1.07	79260000	-1.7172	97000
I	H	-0.572554000	0.32	28085000	-1.3831	84000
(С	-2.070269000	-0.74	46302000	0.4337	79000
J	Η	-2.039336000	0.3	16695000	0.1760	49000
]	N	0.988776000	0.03	35753000	0.0167	66000

С	0.445047000	0.319444000	1.403947000
Н	1.273687000	0.718230000	1.994492000
Η	-0.371515000	1.040570000	1.289329000
Η	0.071787000	-0.606679000	1.835843000
С	2.131872000	-0.923059000	0.130790000
Η	1.753576000	-1.879205000	0.495258000
Н	2.591534000	-1.056030000	-0.850000000
Η	2.866728000	-0.525474000	0.832930000
С	1.456942000	1.345020000	-0.561581000
Η	1.833812000	1.168062000	-1.570910000
Η	0.582668000	2.003581000	-0.578923000
Н	2.252406000	1.746972000	0.070301000
0	-1.668123000	1.617325000	-0.150779000
Н	-2.407690000	2.235411000	-0.163099000

Molecule	E (au)	G (au)	E+G (au)
Reactant (8)	-324.5213113	0.069445	-324.451866

С	0.000000000	0.000000000	0.610632000
С	0.000000000	1.218590000	-0.091086000
С	0.000000000	-1.218590000	-0.091086000
С	0.000000000	1.211917000	-1.485242000
С	0.000000000	-1.211917000	-1.485242000
С	0.000000000	0.000000000	-2.182796000
Η	0.000000000	2.154066000	0.458215000
Н	0.000000000	-2.154066000	0.458215000
Н	0.000000000	2.152764000	-2.026833000
Н	0.000000000	-2.152764000	-2.026833000
Н	0.000000000	0.000000000	-3.268668000
С	0.000000000	0.000000000	2.046696000
Ν	0.000000000	0.000000000	3.210664000

Molecule		E (au)		G (a	au)	E+G (au)
INT-1		-729.263787		0.261	207	-729.002580
	С	-2.453281000	1.69	7356000	0.4477	05000
	С	-2.249864000	0.44	5050000	-0.4255	13000
	0	-1.894026000	2.82	0526000	-0.2014	00000
	Ν	-3.231275000	-0.70	1463000	-0.1753	18000
	С	-3.175451000	-1.11	3037000	1.2783	87000
	С	-4.624342000	-0.32	2979000	-0.5674	87000
	С	-2.768942000	-1.87	6158000	-1.0124	35000
	0	-0.392868000	-1.75	5827000	0.6388	75000
	Н	-3.515793000	1.92	5007000	0.5897	65000
	Н	-2.006725000	1.54	3698000	1.4378	51000
	Н	-2.372783000	0.72	9027000	-1.4739	99000
	Н	-1.262286000	0.00	4993000	-0.2577	53000
	Н	-0.924002000	2.80	6671000	-0.0784	91000
	Н	-3.835665000	-1.97	3433000	1.4099	72000
	Н	-2.114510000	-1.38	0488000	1.4603	55000
	Н	-3.524958000	-0.28	2326000	1.8929	53000
	Η	-4.977516000	0.50	0380000	0.0522	86000
	Н	-4.630162000	-0.02	4347000	-1.6173	18000
	Н	-5.273236000	-1.18	8633000	-0.4255	88000
	Н	-2.755522000	-1.56	2659000	-2.0585	43000
	Н	-1.761184000	-2.13	9513000	-0.6285	80000
	Н	-3.483977000	-2.69	0980000	-0.8751	17000
	С	1.764259000	1.57	3275000	0.1142	98000
	Ν	0.915051000	2.36	6245000	0.1756	97000
	Н	-0.029046000	-2.48	2710000	1.1619	71000
	С	2.805586000	0.59	2133000	0.0256	98000
	С	2.463093000	-0.77	1587000	0.0888	45000

С	4.141526000	1.007668000	-0.132929000
С	3.490335000	-1.712942000	-0.012787000
С	5.146328000	0.048450000	-0.229428000
С	4.820096000	-1.312155000	-0.170146000
Н	1.412876000	-1.083952000	0.227189000
Н	4.378641000	2.065956000	-0.179013000
Н	3.242254000	-2.769494000	0.032435000
Н	6.179560000	0.359204000	-0.351029000
Η	5.606691000	-2.057911000	-0.247045000
H H	3.242254000 6.179560000	-2.769494000 0.359204000	0.03243500

Molecule		E (au)		G	(au)	E+G (au)
TS-1		-729.2620597		0.26	3784	-728.998275
	0	2.450522000	1 74	4502000	0.25005	12000
	C	-2.450523000		4583000	0.25987	
	C	-2.645569000		7031000	-0.60270	
	0	-1.603802000		9933000	-0.45685	
	Ν	-3.445352000	-0.70	3607000	0.00502	20000
	С	-2.869309000	-1.08	0683000	1.34544	46000
	С	-4.889997000	-0.33	6783000	0.15172	23000
	С	-3.315007000	-1.87	7074000	-0.92147	70000
	0	0.235705000	-0.69	8229000	0.33551	19000
	Η	-3.422648000	2.23	8142000	0.45101	2000
	Н	-2.037096000	1.45	4427000	1.24721	13000
	Н	-3.153917000	0.73	5842000	-1.53484	41000
	Η	-1.659069000	0.06	8272000	-0.81817	75000
	Н	-0.492431000	2.06	5034000	-0.35822	25000
	Η	-3.307287000	-2.03	1552000	1.65758	39000
	Η	-1.784750000	-1.14	9803000	1.23683	30000
	Η	-3.113741000	-0.30	3232000	2.06701	15000
	Н	-4.967970000	0.54	1727000	0.79086	53000
	Н	-5.298091000	-0.10	7952000	-0.83379	90000

Η	-5.431785000	-1.174528000	0.596080000
Η	-3.673472000	-1.586532000	-1.909796000
Η	-2.261800000	-2.153305000	-0.978044000
Η	-3.907189000	-2.710928000	-0.537093000
С	1.119319000	0.449512000	-0.009590000
Ν	0.689584000	1.575326000	-0.275951000
Н	0.782013000	-1.376258000	0.759780000
С	2.565267000	0.038696000	0.001335000
С	3.528192000	1.032180000	0.249710000
С	3.009884000	-1.268149000	-0.263219000
С	4.887175000	0.724987000	0.254909000
С	4.375240000	-1.575096000	-0.270275000
С	5.318844000	-0.582054000	-0.003826000
Н	3.176244000	2.043498000	0.424869000
Η	2.295472000	-2.050129000	-0.507350000
Н	5.614645000	1.506536000	0.457430000
Η	4.697948000	-2.589109000	-0.491504000
Н	6.378981000	-0.819718000	-0.004181000

Molecule		E (au)		G	(au)	E+G (au)
INT-2		-729.2721803		0.26	5480	-729.006700
	C	2.519151000	1 684	5068000	-0.44088	22000
	C	2.757042000		2833000	0.54215	
	0	1.669399000	2.50	0711000	0.20379	2000
]	N	3.642823000	-0.712	2197000	0.08761	3000
	С	3.027845000	-1.352	2168000	-1.12258	37000
	С	5.029038000	-0.243	3966000	-0.23046	51000
	С	3.697609000	-1.71	5469000	1.19826	51000
(С	-0.373570000	-0.41	8009000	-0.52253	39000
]	Η	3.509128000	2.148	8553000	-0.69130	00000

2.136380000	1.267394000	-1.409110000
3.231081000	0.883486000	1.450212000
1.788574000	0.063882000	0.783489000
0.067500000	1.950899000	0.260553000
3.583876000	-2.260153000	-1.369459000
1.985851000	-1.579364000	-0.896649000
3.061307000	-0.646034000	-1.950106000
4.977535000	0.489649000	-1.033226000
5.452111000	0.225563000	0.658557000
5.640504000	-1.098500000	-0.530848000
4.121195000	-1.238624000	2.082882000
2.683109000	-2.050441000	1.416360000
4.317241000	-2.565037000	0.897718000
-1.297204000	0.540005000	-0.036537000
-0.957232000	1.683977000	0.349442000
-0.857704000	-1.058727000	-1.062777000
-2.715928000	0.063209000	-0.004635000
-3.744609000	1.020347000	0.002684000
-3.062119000	-1.297463000	0.032476000
-5.080322000	0.625569000	0.031231000
-4.403286000	-1.693243000	0.066817000
-5.416429000	-0.733516000	0.060841000
-3.464184000	2.068032000	-0.009019000
-2.289554000	-2.061086000	0.076091000
-5.863566000	1.378457000	0.030294000
-4.652303000	-2.750068000	0.106598000
-6.458574000	-1.039204000	0.084126000
	3.231081000 1.788574000 0.067500000 3.583876000 1.985851000 3.061307000 4.977535000 5.452111000 5.640504000 4.121195000 2.683109000 4.317241000 -1.297204000 -0.957232000 -0.857704000 -2.715928000 -3.744609000 -3.744609000 -3.062119000 -5.080322000 -4.403286000 -5.416429000 -3.464184000 -2.289554000 -5.863566000 -4.652303000	3.2310810000.8834860001.7885740000.0638820000.0675000001.9508990003.583876000-2.2601530001.985851000-1.5793640003.061307000-0.6460340004.9775350000.4896490005.4521110000.2255630005.640504000-1.0985000004.121195000-1.2386240002.683109000-2.0504410004.317241000-2.565037000-1.2972040000.540005000-0.9572320001.683977000-0.857704000-1.058727000-3.7446090001.020347000-3.062119000-1.297463000-5.416429000-0.733516000-3.4641840002.068032000-2.289554000-2.061086000-5.8635660001.378457000-4.652303000-2.750068000

Molecule	E (au)	G (au)	E+G (au)
TS-2	-729.2332117	0.261055	-728.972157

С	1.465310000	-1.373003000	-0.680455000
С	2.647396000	-0.360790000	-0.799239000
0	0.692951000	-1.208860000	-1.771015000
Ν	3.444530000	-0.019416000	0.493415000
С	2.575012000	0.779905000	1.426503000
С	3.887570000	-1.282414000	1.169205000
С	4.645669000	0.800732000	0.129680000
0	-1.525223000	2.728700000	-0.251594000
Η	1.900174000	-2.396530000	-0.577000000
Η	0.942433000	-1.182885000	0.299080000
Η	3.386192000	-0.726047000	-1.517690000
Η	2.245727000	0.592571000	-1.144347000
Η	0.036240000	0.344510000	-1.564646000
Н	3.151308000	1.031350000	2.319390000
Н	2.249845000	1.683894000	0.911741000
Н	1.700079000	0.187577000	1.687194000
Η	3.007043000	-1.853574000	1.458913000
Η	4.485149000	-1.864603000	0.466777000
Η	4.482179000	-1.029128000	2.049826000
Н	5.290221000	0.213172000	-0.524910000
Н	4.311043000	1.696492000	-0.394506000
Н	5.187590000	1.078596000	1.037236000
С	-1.413779000	1.447334000	-0.525499000
Ν	-0.308234000	1.279491000	-1.202510000
Η	-0.434197000	2.597468000	-0.945884000
С	-2.415999000	0.450180000	-0.099991000
С	-2.249190000	-0.908827000	-0.420162000
С	-3.542557000	0.870827000	0.623744000
С	-3.212020000	-1.832369000	-0.008818000
С	-4.498612000	-0.060634000	1.030646000
С	-4.334189000	-1.413340000	0.714380000
Н	-1.372320000	-1.229846000	-0.986646000
Н	-3.652857000	1.925549000	0.853018000
Н	-3.087218000	-2.882180000	-0.259145000

Η	-5.371336000	0.267092000	1.588540000
Н	-5.080857000	-2.138344000	1.027630000

Molecule		E (au)		G ((au)	E+G (au)	
INT-3		-729.3096743		0.266031		-729.043643	
	С	-1.575617000	0.14	3761000	1.73554	1000	
	C C	-2.285653000		9422000	0.42206		
	0	-0.873085000		3424000	2.22640		
	N	-2.725923000		1262000	-0.57992		
	С	-1.510354000	-1.10	2208000	-1.22689	95000	
	С	-3.507888000	-1.55	2181000	0.13646	55000	
	С	-3.581588000	0.124	4636000	-1.64684	4000	
	0	1.985729000	2.36	5494000	-1.46765	55000	
	Н	-2.365471000	-0.23	1271000	2.42908	39000	
	Н	-0.957714000	-0.76	2058000	1.48717	73000	
	Н	-3.188783000	1.17	9460000	0.65698	39000	
	Н	-1.595847000	1.24	4150000	-0.13658	32000	
	Н	0.161113000	1.87	7519000	1.19466	58000	
	Н	-1.832357000	-1.892	2758000	-1.90770)2000	
	Н	-0.978872000	-0.32	4177000	-1.77494	44000	
	Н	-0.858838000	-1.50	3013000	-0.45239	90000	
	Н	-2.864285000	-2.02	2138000	0.87834	18000	
	Н	-4.358925000	-1.08	4831000	0.63314	45000	
	Н	-3.854400000	-2.29	2241000	-0.58805	59000	
	Н	-4.482346000	0.532	2374000	-1.18687	75000	
	Н	-3.018990000	0.92	6439000	-2.12616	53000	
	Η	-3.849511000	-0.63	6351000	-2.38393	32000	
	С	1.573876000	1.79	1678000	-0.44699	00000	
	Ν	0.711551000	2.364	4925000	0.42258	34000	
	Н	0.466111000	3.32	0165000	0.19719	6000	

С	2.035955000	0.383522000	-0.135379000
С	1.792761000	-0.254185000	1.092507000
С	2.768888000	-0.289523000	-1.125457000
С	2.273309000	-1.549330000	1.313140000
С	3.241029000	-1.583806000	-0.903553000
С	2.994698000	-2.217966000	0.319499000
Н	1.223224000	0.251453000	1.869692000
Н	2.966678000	0.232743000	-2.055980000
Н	2.090360000	-2.031001000	2.269999000
Η	3.810661000	-2.092810000	-1.676579000
Н	3.371154000	-3.221563000	0.499725000

Molecule	E (au)		G (au)		E+G (au)
Water	-76.4422838	-76.4422838		3620	-76.438664
C	0.000000000	0.000	0000000	0.116517	7000
Н	0.000000000	0.769	9487000	-0.466066	5000
Н	0.000000000	-0.769	9487000	-0.46606	5000

Molecule	E (au)	G (au)	E+G (au)
INT-4	-805.7719155	0.287391	-805.484525

С	2.410183000	1.100279000	1.308096000
С	2.331818000	-0.438618000	1.258630000
0	1.840994000	1.727147000	0.227326000
Ν	3.007981000	-1.108702000	0.047663000
С	2.243863000	-0.828412000	-1.230889000
С	4.430122000	-0.645741000	-0.110243000

С	2.986288000	-2.589083000	0.286670000
0	-0.716351000	-0.952582000	0.128283000
Н	1.905628000	1.338947000	2.271392000
Н	3.467876000	1.398650000	1.461001000
Η	2.819236000	-0.873335000	2.139656000
Η	1.289353000	-0.761687000	1.206407000
Н	0.265277000	1.459312000	0.090068000
Н	2.727625000	-1.390428000	-2.033389000
Н	1.210620000	-1.144252000	-1.080367000
Н	2.273673000	0.242155000	-1.414477000
Н	4.440907000	0.403284000	-0.414858000
Η	4.949935000	-0.782896000	0.840081000
Н	4.902412000	-1.256428000	-0.882652000
Η	3.577046000	-2.818902000	1.174909000
Η	1.952084000	-2.902620000	0.433642000
Н	3.409575000	-3.096294000	-0.582622000
С	-1.370461000	0.107764000	0.052388000
Ν	-0.792040000	1.320464000	0.015330000
Η	-1.366415000	2.137864000	-0.121811000
С	-2.879424000	0.044059000	-0.008674000
С	-3.468949000	-1.154221000	-0.436222000
С	-3.708953000	1.113052000	0.362763000
С	-4.856467000	-1.274691000	-0.515307000
С	-5.098775000	0.990077000	0.295001000
С	-5.676095000	-0.201849000	-0.150604000
Н	-2.818041000	-1.981339000	-0.698599000
Η	-3.280628000	2.038467000	0.737154000
Н	-5.299627000	-2.205630000	-0.857696000
Η	-5.728859000	1.822096000	0.596180000
Н	-6.756873000	-0.296051000	-0.206677000
0	3.814226000	2.279288000	-1.307818000
Η	2.981530000	2.203035000	-0.720634000
Η	3.996238000	3.217194000	-1.429625000

Molecule	E (au) -805.7671874		G	(au)	E+G (au)
Product (9)			0.292205		-805.474982
	2 2125 4 4000	2 0 1 0	74000	0.02422	0000
C	2.213544000	-2.0190		-0.83433	
С	2.719587000	-0.5730		-0.83002	
O	1.156606000		887000	0.05493	
N	3.189587000		045000	0.52745	
C	2.008477000		181000	1.41958	
C	4.076148000	-1.0120		1.22842	
C O	3.952582000 -0.407575000		93000 253000	0.267642 -0.88361	
Н	-0.407373000	-0.4032		-0.88301	
Н					
Н	3.020477000 3.583567000	-2.7233 -0.4915		-0.59918 -1.49777	
н			191000	-1.16455	
Н	1.934546000 0.757023000		938000	-0.90260	
Н	2.401097000		181000	2.33307	
Н	1.342388000		565000	0.89881	
Н	1.481019000		926000	1.63116	
Н	3.492890000		793000	1.49059	
Н	4.901488000		282000	0.56829	
Н	4.467429000		282000	2.13287	
Н	4.467429000		532000	-0.30482	
Н	4.830088000)94000	-0.30482	
Н	4.232908000		271000	-0.29323	
н С	-1.113412000		321000	-0.40748	
C N	-0.620582000		573000	-0.20350	
H	-0.020382000		093000	0.12230	
н С	-1.329021000		513000	-0.08485	
C C	-3.157887000		557000	-0.08485	
C	-3.13/00/000	-0.0030	57000	-0.70094	/000

С	-3.331435000	0.973223000	0.818705000
С	-4.488440000	-1.222109000	-0.451391000
С	-4.659051000	0.631539000	1.087641000
С	-5.244807000	-0.464784000	0.448249000
Η	-2.553826000	-1.472242000	-1.390770000
Н	-2.889097000	1.819734000	1.336861000
Η	-4.934811000	-2.077725000	-0.951202000
Н	-5.233945000	1.218871000	1.798665000
Н	-6.278648000	-0.728771000	0.653477000
0	1.652168000	2.664738000	-1.277080000
Η	0.401140000	-1.684796000	-0.223693000
Н	1.459060000	3.054856000	-2.137009000

References:

- 1. T. Amin. N.; Claridge, University of Oxford, 2017.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Journal*, 2016.