Metal/Catalyst-Free Sequential C-N Bond Forming Cascades at Room Temperature: Environment-Friendly One-Pot Synthesis of 5-Aminoimidazoles from Aryl Glyoxals, Anilines and Amidines

Hitesh B. Jalani^{a,†}, Aneesh Sivaraman^{b,c,†}, Kyoung ho Min^b, Hwa Young Lee^b, Na Kyoung Oh^b, Hyeseul Kang^b, Gyochang Keum^{d,e}, Yongseok Choi^{c,*}, and Kyeong Lee^{b,*}

^a Smart BioPharm, 310-Pilotplant, Incheon Techno-Park, 12-Gaetbeol-ro, Yeonsu-gu, Incheon 21999, South Korea

^b College of Pharmacy, Dongguk University-Seoul, Goyang 10326, South Korea

^c College of Biosciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea

^d Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea

^e Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea

†These authors contributed equally to this work

Corresponding Authors

*Email: kyeonglee@dongguk.ac.kr for Kyeong Lee and ychoi@korea.ac.kr for Yongseok

Choi

Supporting Information

Table of Contents

Table 1: Optimization of the Reaction Conditions	S 3
Experimental Procedures	S4-32
Abbreviations	S 33
¹ H NMR and ¹³ C NMR spectra of compounds.	\$33-\$135
HRMS	S136-S180

Table 1. Optimization of the Reaction Conditions^a

Entry	Stoichiometry	Condition	Yield %
1	1a + 2a (1.0 equiv.) in EtOH, stir for 1 h; then 3a -HCl (1.1 equiv.) + TEA (1.5 equiv.)	55 °C, 6 h	56
2	1a + 2a (1.0 equiv.) in EtOH, stir for 1 h; then $3a$ -HCl (1.1 equiv.) +K ₂ CO ₃ (1.5 equiv.)	55 °C, 6 h	58
3	1a + 2a (1.0 equiv.) in EtOH, stir for 2 h; then 3a -free base (1.1 equiv.)	55 °C, 6 h	60
4	1a (1.0 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	62
5	1a (1.1 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	73
6	1a (1.2 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	86
7	1a (1.3 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	83
8	1a (1.2 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then 3a (1.8 equiv.)	RT, 16 h	68
9	1a (1.2 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.2 equiv.)	RT, 16 h	86
10	1a (1.3 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	55 °C, 16 h	69
11	1a (1.3 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h 50 °C; then 3a (2.0 equiv.)	55 °C, 16 h	49
12	1a (1.2 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then AcOH (0.2 equiv.) 3a (2 equiv.)	RT, 16 h	50
13	1a (1.2 equiv.) in MeOH, + 2a (1.0 equiv.) stir for 3 h; then <i>p</i> -TSA (0.2 equiv.) 3a (2.0 equiv.)	RT, 16 h	73
14	1a (1.2 equiv.) in EtOH, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	68
15	1a (1.2 equiv.) in IPA, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	55
16	1a (1.2 equiv.) in THF, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	18
17	1a (1.2 equiv.) in DMF, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	07
18	1a (1.2 equiv.) in DMSO, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	13
19	1a (1.2 equiv.) in ACN, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	22
20	1a (1.2 equiv.) in DCM, + 2a (1.0 equiv.) stir for 3 h; then 3a (2.0 equiv.)	RT, 16 h	20

^a All reactions were performed with **2a** (1.0 mmol).

General procedure one-pot synthesis of highly substituted imidazoles (4a-4aq). Aniline (1.0 mmol) was added to a stirred solution of glyoxal (1.2 mmol) in MeOH (5 mL) and stirred for 1.5 h at rt. To this mixture, benzaimidine (2.0 mmol) was added and stirred for additional 16 h. The reaction mass was concentrated under reduced pressure and the residue was purified by silica gel column chromatography (EtOAc in *n*-hexane).

2,4-Diphenyl-*N*-(*p*-tolyl)-1*H*-imidazol-5-amine (4a).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4a** as white solid (0.28 g, yield 88%), mp 145–147 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.73 (d, *J* = 7.2 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37 (d, *J* = 7.2 Hz, 1H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.19 (t, *J* = 7.2 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 2H), 6.63 (d, *J* = 8.0 Hz, 2H), 2.18 (s, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 145.89, 145.34, 131.39, 130.51, 129.82, 129.69, 129.49, 128.23, 127.66, 126.96, 126.60, 114.93, 20.55. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₂₀N₃ 326.1657; found 326.1648.

N,2,5-Triphenyl-1*H*-imidazol-5-amine.

Purification by silica gel column chromatography (0 to 13% EtOAc in *n*-hexane) afforded **4b** as light yellow solid (0.22 g, yield 71%), mp 158–160 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, J = 8.8 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.45 (t, J = 8.4 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.32 (t, J = 7.6 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H), 7.10 (t, J = 8.8 Hz, 2H), 6.72 (d, J = 8.0 Hz, 2H), 6.67 (t, J = 8.8 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD): δ 148.35, 145.47, 131.36, 130.03, 129.82, 129.73, 129.51, 127.75, 126.98, 126.62, 119.11, 114.82. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₈N₃ 312.1501; found 312.1489.

N-(4-(Tert-butyl)phenyl)-2,4-diphenyl-1*H*-imidazol-5-amine (4c).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4c** as white solid (0.32 g, yield 86%), mp 208–209 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.6 Hz, 2H), 7.38 (d, J = 7.2 Hz, 1H), 7.33 (t, J = 7.2 Hz, 2H), 7.21 (d, J = 7.6 Hz, 1H), 7.16 (d, J = 7.6 Hz, 2H), 6.67 (d, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 145.88, 145.38, 141.93, 131.47,

129.88, 129.75, 129.56, 127.72, 127.02, 126.83, 126.66, 114.65, 34.74, 32.06. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₅H₂₆N₃ 368.2127; found 368.2118.

N-(4-Methoxyphenyl)-2,5-diphenyl-1*H*-imidazol-5-amine (4d).

Purification by silica gel column chromatography (0 to 17% EtOAc in *n*-hexane) afforded **4d** as brown solid (0.24 g, yield 71%), mp 175–177 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, J = 8.8 Hz, 2H), 7.74 (d, J = 7.2 Hz, 2H), 7.45 (t, J = 7.2 Hz, 2H), 7.38 (d, J = 7.6 Hz, 1H), 7.32 (t, J = 8.0 Hz, 2H), 7.20 (t, J = 7.6 Hz, 1H), 6.74 (d, J = 8.8 Hz, 2H), 6.69 (d, J = 8.8 Hz, 2H), 3.69 (s, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 153.97, 145.28, 142.11, 131.38, 129.81, 129.66, 129.49, 127.61, 126.92, 126.58, 116.00, 115.72, 56.12 . HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₀N₃O 342.1606; found 342.1595.

N-(4-Bromophenyl)-2,5-diphenyl-1*H*-imidazol-5-amine (4e).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded 4e as off-white solid (0.37 g, yield 95%), mp 138–140 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 2H), 7.45 (t, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.23 (t, *J* = 7.6 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 2H), 6.66 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.59, 145.63, 132.75, 131.23, 129.82, 129.79, 129.58, 127.91, 126.96, 126.62, 116.50, 110.46. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₇N₃Br 390.0606; found 390.0598.

N-(4-Chlorophenyl)-2,5-diphenyl-1H-imidazol-5-amine (4f).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4f** as off-white solid (0.33 g, yield 94%), mp 145–147 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.72 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.22 (t, *J* = 7.2 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.70 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.17, 145.62, 131.26, 129.83, 129.58, 127.90, 126.97, 126.63, 123.50, 116.01. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₇N₃Cl 346.1111; found 346.1100.

N-(2-Fluorophenyl)-2,5-diphenyl-1*H*-imidazol-5-amine (4g).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4g** as white solid (0.32 g, yield 96%), mp 184–186 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.95 (d, J = 7.6 Hz, 2H), 7.74 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.39 (d, J = 7.6 Hz, 1H), 7.34 (t, J = 8.0 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.03 (dd, J = 12.4, 8.0 Hz, 1H), 6.85 (t, J = 8.0 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.63 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD): δ 154.15, 151.78, 145.86, 136.35, 136.24, 131.29, 129.88, 129.62, 129.31, 128.03, 126.97, 126.67, 125.45, 119.09, 115.79, 115.61; ¹⁹F NMR (376 MHz, CD₃OD): δ -137.82. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₁H₁₇N₃F 330.1407; found 330.1397.

N-(3-Fluorophenyl)-2,5-diphenyl-1*H*-imidazol-5-amine (4h).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4h** as white solid (0.32 g, yield 98%), mp 187–189 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.95 (d, J = 7.2 Hz, 2H), 7.72 (d, J = 7.2 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H), 7.40 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 7.2 Hz, 2H), 7.23 (t, J = 7.2 Hz, 1H), 7.08 (q, J = 7.6 Hz, 1H),

6.53 (d, J = 7.6 Hz, 1H), 6.42 (d, J = 12.0 Hz, 1H), 6.36 (t, J = 7.2 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD): δ 166.62, 164.22, 150.60, 150.50, 145.70, 131.35, 131.27, 129.85, 129.60, 127.97, 127.01, 126.66, 110.63, 105.27, 105.04, 101.48, 101.23; ¹⁹F NMR (376 MHz, CD₃OD): δ -115.38. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₇N₃F 330.1407; found 330.1405.

N-(4-Fluorophenyl)-2,4-diphenyl-1*H*-imidazol-5-amine (4i).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4i** as white solid (0.32 g, yield 97%), mp 150–152 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.73 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.38 (d, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 6.84 (d, *J* = 8.0 Hz, 2H), 6.68–6.71 (m, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 158.70, 156.37, 145.51, 144.70, 131.34, 129.84, 129.77, 129.55, 127.81, 126.96, 126.63, 116.38, 116.15, 115.74, 115.66; ¹⁹F NMR (376 MHz, CD₃OD): δ -129.81. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₁H₁₇N₃F 330.1407; found 330.1397.

N-(4-Bromo-2-fluorophenyl)-2,5-diphenyl-1*H*-imidazol-5-amine (4j).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4j** as white solid (0.33 g, yield 81%), mp 180–182 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.72 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.24 (t, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 1H), 6.58 (t, *J* = 9.6 Hz, 1H); ¹³C NMR (100 MHz, CD₃O): δ 153.85, 151.42, 145.94, 136.03, 135.91, 131.25, 129.98, 129.93, 129.73, 128.49, 128.22, 127.04, 126.72, 119.27, 119.05, 116.86, 108.99; ¹⁹F NMR (376 MHz, CD₃OD): δ -134.34 (triplets). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₆N₃FBr 408.0512; found 408.0503.

N-(2-Fluorophenyl)-2,5-diphenyl-1*H*-imidazol-5-amine (4k).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4k** as white solid (0.38 g, yield 93%), mp 147–149 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, *J* = 8.0 Hz, 2H), 7.69 (d, *J* = 7.2 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.33 (t, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.20 (s, 1H), 7.01 (d, *J* =

8.8 Hz, 1H), 6.41 (d, J = 8.8 Hz, 1H); ¹³C {¹H} NMR (100 MHz, CD₃OD): δ 145.75, 145.61, 133.66, 131.28, 130.33, 129.89, 129.86, 129.60, 127.94, 126.90, 126.63, 126.22, 115.24, 110.67, 17.77. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉N₃Br 404.0762; found 404.0753.

N-(3-Bromo-5-methylphenyl)-2,5-diphenyl-1H-imidazol-5-amine (4l).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4k** as white solid (0.39 g, yield 97%), mp 218–220 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 6.68 (s,1H), 6.64 (s, 1H), 6.60 (s, 1H); ¹³C NMR (100 MHz, CD₃OD): δ 149.84, 145.72, 141.93, 131.28, 129.86, 129.85, 129.62, 127.99, 127.03, 126.68, 123.78, 122.47, 114.73, 114.15, 21.39. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₁₉N₃Br 404.0762; found 404.0755.

2,5-Diphenyl-N-[4-(trifluoromethyl)phenyl]-1H-imidazol-5-amine (4m).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4m** as white solid (0.35 g, yield 91%), mp 208–210 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.95 (d, J = 8.0 Hz, 2H), 7.71 (d, J = 7.2 Hz, 2H), 7.46 (t, J = 7.6 Hz, 2H), 7.40–7.33 (m, 5H), 7.24 (t, J = 7.6 Hz, 1H), 6.82 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 151.70, 145.85, 131.23, 129.93, 129.90, 129.68, 128.13, 127.84, 127.40, 127.36, 127.05, 126.69, 125.16, 114.21; ¹⁹F NMR (376 MHz, CD₃OD): δ -62.55. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₁₇N₃F₃ 380.1375; found 380.1356.

Methyl 4-[(2,5-diphenyl-1*H*-imidazol-5-yl)amino]benzoate (4n).

Purification by silica gel column chromatography (0 to 25% EtOAc in *n*-hexane) afforded **4n** as white solid (0.35 g, yield 95%), mp 140–142 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.79 (d, *J* = 8.8 Hz, 2H), 7.70 (d, *J* = 7.2 Hz, 2H), 7.46 (t, *J* = 7.2 Hz, 2H), 7.40 (d, *J* = 7.2 Hz, 1H), 7.35 (t, *J* = 7.2 Hz, 2H), 7.23 (t, *J* = 7.2 Hz, 1H), 6.76 (d, *J* = 7.2 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 169.12, 153.21, 145.96, 132.42, 131.25, 129.99, 129.95, 129.72, 128.21, 127.12, 126.74, 119.99, 113.90, 52.08. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₃H₂₀N₃O₂ 370.1556; found 370.1545.

4-[(2,5-Diphenyl-1*H*-imidazol-5-yl)amino]benzonitrile (40).

Purification by silica gel column chromatography (0 to 25% EtOAc in *n*-hexane) afforded **4o** as white solid (0.23 g, yield 69%), mp 129–131 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.95 (d, *J* = 7.6 Hz, 2H), 7.68 (d, *J* = 7.6 Hz, 2H), 7.48 (t, *J* = 7.2 Hz, 2H), 7.44 (d, *J* = 7.6 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 1H), 6.68 (d, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 152.76, 146.12, 134.69, 131.19, 130.06, 129.96, 129.78, 128.35, 127.14, 126.75, 121.23, 114.83, 100.26. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂ H₁₇N₄ 337.1453; found 337.1442.

N-(4-Nitrophenyl)-2,5-diphenyl-1*H*-imidazol-5-amine (4p).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4p** as white solid (0.15 g, yield 41%), mp 217–219 °C. ¹H NMR (400 MHz, CD₃OD): δ 8.04 (d, J = 8.8 Hz, 2H), 7.96 (d, J = 7.6 Hz, 2H), 7.68 (t, J = 7.6 Hz, 2H), 7.46 (t, J = 7.2 Hz, 2H), 7.40 (d, J = 7.2 Hz, 1H), 7.36 (t, J = 7.6 Hz, 2H), 7.25 (t, J = 7.6 Hz, 1H), 6.91 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 154.68, 146.19, 139.86, 131.07,

130.07, 129.92, 129.78, 128.42, 127.15, 126.99, 126.73, 113.74. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₇N₄O₂ 357.1352; found 357.1348.

N-(2,5-Diphenyl-1*H*-imidazol-5-yl)-1-methyl-1*H*-indazol-5-amine (4q).

Purification by silica gel column chromatography (0 to 35% EtOAc in *n*-hexane) afforded **4p** as white solid (0.20 g, yield 55%), mp 114–116 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (s, 1H), 7.92 (s, 1H), 7.73 (d, *J* = 8.4 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.36 (t, *J* = 8.4 Hz, 1H), 7.32 (t, *J* = 8.4 Hz, 2H), 7.19 (t, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.68 (d, *J* = 8.8 Hz, 2H), 3.68 (s,3H); ¹³C NMR (100 MHz, CD₃OD): δ 145.52, 142.92, 136.94, 132.30, 131.39, 129.95, 129.78, 128.68, 127.75, 126.89, 126.57, 126.98, 119.55, 110.94, 102.36, 35.35 . HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₃H₂₀N₅ 366.1719; found 366.1707.

N-(4-Bromophenyl)-2-phenyl-5-(p-tolyl)-1H-imidazol-5-amine (4r).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4r** as white solid (0.37 g, yield 92%), mp 109–111 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.92 (d, *J* = 7.6 Hz, 2H), 7.69 (d, *J* = 7.6 Hz, 2H), 7.42 (t, *J* = 7.2 Hz, 2H), 7.35 (t, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 7.6 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.63 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.72, 145.35, 137.89, 132.74, 131.29, 130.22, 130.12, 129.82, 129.72, 126.92, 126.57, 11.46, 110.34, 21.24. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₁₉N₃Br 404.0762; found 404.0755.

N-(4-Bromophenyl)-5-(4-methoxyphenyl)-2-phenyl-1H-imidazol-5-amine (4s).

Purification by silica gel column chromatography (0 to 13% EtOAc in *n*-hexane) afforded **4s** as off white solid (0.31 g, yield 75%), mp 190–192 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.63 (d, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 1H), 7.54 (d, *J* = 8.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 6.91 (d, *J* = 8.4 Hz, 2H), 6.63 (d, *J* = 8.4 Hz, 2H), 3.78 (s, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 160.23, 147.88, 145.11, 132.75, 131.34, 129.83, 129.66, 128.40, 126.51, 116.41, 115.03, 114.30, 110.30, 55.68. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₂H₁₉N₃OBr 420.0712; found 420.0698.

N-(4-Bromophenyl)-5-(3-methoxyphenyl)-2-phenyl-1H-imidazol-5-amine (4t).

Purification by silica gel column chromatography (0 to 15% EtOAc in *n*-hexane) afforded **4t** as white solid (0.27 g, yield 66%), mp 101–103 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, *J* = 7.6 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.31 (d, *J* = 7.6 Hz, 1H), 7.30 (s, 1H), 7.25 (t, *J* = 8.4 Hz, 1H), 7.20 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.4 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 161.26, 147.60, 145.62, 132.80, 131.23, 130.60, 129.85, 126.67, 119.22, 116.50, 1113.99, 112.09, 110.47, 55.52. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₁₉N₃OBr 420.0712; found 420.0692.

5-(Benzo[d][1,3]dioxol-5-yl)-N-(4-bromophenyl)-2-phenyl-1H-imidazol-5-amine (4u).

Purification by silica gel column chromatography (0 to 25% EtOAc in *n*-hexane) afforded **4u** as white solid (0.30 g, yield 69%), mp 117–119 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.91 (d, J = 7.2 Hz, 2H), 7.44 (t, J = 7.4 Hz, 2H), 7.39 (t, J = 7.6 Hz, 2H), 7.24–7.19 (m, 4H), 6.82 (d, J = 8.4 Hz, 1H), 6.63 (d, J = 8.4 Hz, 2H), 5.93 (s, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 149.33, 148.11, 147.73, 145.20, 142.02, 132.79, 131.29, 129.85, 129.75, 129.01, 126.56, 126.22, 120.87, 116.44, 110.47, 109.36, 107.58, 102.42. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₇N₃O₂Br 434.0504; found 434.0498.

N,5-Bis(4-bromophenyl)-2-phenyl-1*H*-imidazol-5-amine (4v).

Purification by silica gel column chromatography (0 to 14% EtOAc in *n*-hexane) afforded **4v** as off white solid (0.30 g, yield 64%), mp 176–178 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.43 (t, *J* = 8.0 Hz, 2H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.65 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.27, 145.98, 132.85, 132.66, 131.11, 129.95, 129.86, 128.55, 126.65, 121.42, 116.55, 110.73. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₆N₃Br₂ 467.9711; found 467.9702.

5-(3-Bromophenyl)-N-(4-bromophenyl)-2-phenyl-1H-imidazol-5-amine (4w).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4w** as off white solid (0.32 g, yield 69%), mp 96–98 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.95 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.41 (t, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 7.0 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 1H), 7.22 (d, *J* = 8.8 Hz, 2H), 6.66 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.22, 146.28, 132.87, 131.30, 131.10, 130.56, 130.01, 129.88, 129.59, 129.56, 126.71, 125.48, 123.66, 116.61, 110.78. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₆N₃Br₂ 467.9711; found 467.9703.

N-(4-Bromophenyl)-5-(4-chlorophenyl)-2-phenyl-1H-imidazol-5-amine (4x).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4x** as white solid (0.40 g, yield 94%), mp 162–164 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.71 (t, *J* = 8.0 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.39 (t, *J* = 7.2 Hz, 1H), 7.31 (d, *J* = 8.8 Hz, 2H), 7.21 (d, *J* = 8.8 Hz, 2H), 6.65 (d, *J* = 8.8 Hz, 2H);

¹³C NMR (100 MHz, CD₃OD): δ 147.35, 145.97, 133.48, 132.86, 131.14, 129.95, 129.87,129.68, 128.31, 126.66, 116.56, 110.71. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₆N₃ClBr 424.0216; found 424.0208.

N-(4-Bromophenyl)-5-(4-fluorophenyl)-2-phenyl-1*H*-imidazol-5-amine (4y).

Purification by silica gel column chromatography (0 to 15% EtOAc in *n*-hexane) afforded **4y** as white solid (0.40 g, yield 97%), mp 123–125 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.73 (t, *J* = 6.0 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.2 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.08 (t, *J* = 8.8 Hz, 2H), 6.64 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 164.43, 161.99, 147.66, 145.72, 132.87, 131.27, 130.30, 129.91, 129.04, 128.96, 126.65, 116.51, 116.39, 116.28, 110.58; ¹⁹F NMR (376 MHz, CD₃OD): δ -126.85. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₆N₃BrF 408.0512; found 408.0502.

N-(4-Bromophenyl)-5-(3-fluorophenyl)-2-phenyl-1*H*-imidazol-5-amine (4z).

Purification by silica gel column chromatography (0 to 12% EtOAc in *n*-hexane) afforded **4z** as off white solid (0.22 g, yield 55%), mp 106–108 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (d, J = 7.6 Hz, 2H), 7.56 (d, J = 7.6 Hz, 1H), 7.51 (d, J = 10.8 Hz, 1H), 7.45 (t, J = 7.2 Hz, 2H), 7.40 (d, J = 7.2 Hz, 1H), 7.31 (q, J = 7.6 Hz, 1H), 7.22 (d, J = 8.4 Hz, 2H), 6.94 (t, J = 8.0 Hz, 1H), 6.66 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 165.65, 163.23, 147.29, 132.87, 131.38, 131.30, 131.11, 130.02, 129.89, 126.72, 122.60, 116.56, 114.42, 114.21, 113.49, 113.26, 110.76; ¹⁹F NMR (376 MHz, CD₃OD): δ -114.84. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₁H₁₆N₃Br F 408.0512; found 408.0499.

N-(4-Bromophenyl)-5-(3,4-difluorophenyl)-2-phenyl-1*H*-imidazol-5-amine (4aa).

Purification by silica gel column chromatography (0 to 15% EtOAc in *n*-hexane) afforded **4aa** as white solid (0.41 g, yield 96%), mp 182–184 °C. ¹H NMR (400 MHz,

CD₃OD): δ 7.93 (d, J = 7.6 Hz, 2H), 7.65 (t, J = 9.6 Hz, 1H), 7.53 (brs, 1H), 7.45 (t, J = 7.6 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.26–7.20 (m, 3H), 6.65 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 152.83, 152.70, 151.57, 151.44, 150.38, 150.25, 149.11, 148.98, 147.16, 146.01, 132.91, 131.05, 130.00, 129.87, 126.65, 123.38, 123.34, 123.28, 118.50, 118.32, 116.54, 115.75, 115.56, 110.92; ¹⁹F NMR (376 MHz, CD₃OD): δ -140.18, -142.51. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₁H₁₅N₃BrF₂ 426.0417; found 426.0406.

N-(4-Bromophenyl)-5-(2,4-difluorophenyl)-2-phenyl-1*H*-imidazol-5-amine (4ab).

Purification by silica gel column chromatography (0 to 15% EtOAc in *n*-hexane) afforded **4ab** as white solid (0.31 g, yield 73%), mp 166–168 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.56 (q, *J* = 8.4 Hz, 1H), 7.44 (t, *J* = 7.2 Hz, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.03 (brs, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 6.69 (d, *J* = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 163.73, 163.62, 161.26, 161.14, 145.99, 144.55, 131.25, 131.06, 129.75, 128.48, 125.10, 115.19, 111.22, 111.03, 109.14, 103.93, 103.67, 103.61; ¹⁹F NMR (376 MHz, CD₃OD): δ -111.40, -112.20. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₁H₁₅N₃F₂Br 426.0417; found 426.0410.

N-(4-Bromophenyl)-2-phenyl-5-(4-(trifluoromethyl)phenyl)-1*H*-imidazol-5-amine (4ac).

Purification by silica gel column chromatography (0 to 15% EtOAc in *n*-hexane) afforded **4ac** as white solid (0.43 g, yield 93%), mp 124–126 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.94 (t, *J* = 7.6 Hz, 4H), 7.64 (d, *J* = 7.6 Hz, 2H), 7.47 (t, *J* = 7.2 Hz, 2H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.24 (d, *J* = 7.6 Hz, 2H), 6.70 (d, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.06, 146.54, 132.93, 131.06, 130.14, 129.91, 129.39, 129.07, 127.10, 126.98, 126.78, 126.48, 126.44, 124.40, 116.69, 110.97; ¹⁹F NMR (376 MHz, CD₃OD): δ -63.99. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₂H₁₆N₃F₃Br 458.0480; found 458.0471.

N-(4-Bromophenyl)-2-phenyl-5-(2-(trifluoromethyl)phenyl)-1*H*-imidazol-5-amine (4ad).

Purification by silica gel column chromatography (0 to 25% EtOAc in *n*-hexane) afforded **4ad** as white solid (0.17 g, yield 37%), mp 208–210 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.87 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 8.4 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.37 (t, J = 7.6 Hz, 1H), 7.16 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.78,

145.25, 134.53, 132.97, 132.53, 131.27, 131.22, 130.92, 129.98, 129.91, 129.80, 127.48, 127.42, 127.37, 127.32, 126.83, 126.39, 124.12, 116.64, 110.38; ¹⁹F NMR (376 MHz, CD₃OD): δ -60.53. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₆N₃F₃Br 458.0480; found 458.0467.

N-(4-Bromophenyl)-2-phenyl-5-(thiophen-2-yl)-1*H*-imidazol-5-amine (4ae).

Purification by silica gel column chromatography (0 to 17% EtOAc in *n*-hexane) afforded **4ae** as white solid (0.26 g, yield 67%), mp 140–143 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.45 (t, *J* = 7.2 Hz, 2H), 7.39 (d, *J* = 7.2 Hz, 1H), 7.38 (d, *J* = 7.2 Hz, 1H), 7.29 (d, *J* = 4.8 Hz, 1H), 7.21 (d, *J* = 8.8 Hz, 2H), 7.02 (t, *J* = 4.8 Hz, 1H), 6.64 (d, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.48, 145.61, 132.80, 131.15, 129.96, 129.92, 129.75, 129.68, 127.98, 126.66, 125.63, 124.16, 116.55, 110.64. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₉H₁₅N₃SBr 396.0170; found 396.0164.

N-(4-Bromophenyl)-5-(naphthalen-2-yl)-2-phenyl-1*H*-imidazol-5-amine (4af).

Purification by silica gel column chromatography (0 to 10% EtOAc in *n*-hexane) afforded **4af** as off white solid (0.25 g, yield 58%), mp 180–183 °C. ¹H NMR (400 MHz, CD₃OD): δ 8.18 (brs, 1H), 7.98 (d, *J* = 7.2 Hz, 2H), 7.89 (d, *J* = 7.6 Hz, 1H), 7.80 (t, *J* = 7.6 Hz, 3H), 7.50–7.36 (m, 5H), 7.22 (d, *J* = 8.8 Hz, 2H), 6.72 (t, *J* = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.69, 135.03, 133.80, 132.87, 131.31, 129.94, 129.24, 129.20, 129.03, 128.66, 127.41, 126.94, 126.74, 125.32, 125.23, 116.68. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₅H₁₉N₃Br 440.0762; found 440.0747.

N-(4-Bromophenyl)-5-(6-methoxynaphthalen-2-yl)-2-phenyl-1*H*-imidazol-5-amine (4ag).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4ag** as off white solid (0.37 g, yield 80 %), mp 207–209 °C. ¹H NMR (400 MHz, CD₃OD): δ 8.09 (s, 1H), 7.97 (d, J = 8.0 Hz, 2H), 7.83 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.46 (t, J = 8.8 Hz, 2H), 7.39 (t, J = 7.6 Hz, 1H), 7.21 (t, J

= 8.8 Hz, 2H), 7.19 (s, 1H), 7.11 (d, J = 8.8 Hz, 1H), 6.70 (d, J = 8.4 Hz, 2H), 3.88 (s, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 161.80, 150.29, 148.14, 137.53, 135.31, 133.83, 132.97, 132.87, 132.39, 132.31, 130.62, 129.14, 128.22, 127.78, 122..65, 119.09, 112.95, 109.20, 58.25HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₆H₂₁N₃OBr 470.0868; found 470.0866.

N-(4-Bromophenyl)-5-phenyl-2-(*p*-tolyl)-1*H*-imidazol-5-amine (4ah).

Purification by silica gel column chromatography (0 to 13% EtOAc in *n*-hexane) afforded **4ah** as off white solid (0.38 g, yield 94%), mp 188–190 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.82 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.27 (d, J = 8.0 Hz, 2H), 7.22 (d, J = 7.2 Hz, 1H), 7.19 (d, J = 8.4 Hz, 2H), 6.65 (d, J = 8.4 Hz, 2H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CD₃OD): δ 147.72, 145.89, 140.09, 132.77, 131.73, 130.47, 129.59, 128.53, 127.87, 126.93, 126.67, 126.65, 116.48, 110.40, 21.33. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₁₉N₃Br 404.0762; found 404.0747.

N-(4-Bromophenyl)-2-(4-methoxyphenyl)-5-phenyl-1H-imidazol-5-amine (4ai).

Purification by silica gel column chromatography (0 to 25% EtOAc in *n*-hexane) afforded **4ai** as white solid (0.38 g, yield 90%), mp 215–217 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.87 (d, *J* = 8.8 Hz, 2H), 7.70 (d, *J* = 7.2 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.22 (d, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 7.2 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 2H), 6.65 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 161.80, 147.78, 145.90, 132.76, 129.59, 128.19, 127.78, 126.84, 123.98, 116.47, 115.22, 110.34, 55.81. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₁₉N₃OBr 420.0712; found 420.0699.

N,2-Bis(4-bromophenyl)-5-phenyl-1*H*-imidazol-5-amine (4aj).

Purification by silica gel column chromatography (0 to 11% EtOAc in *n*-hexane) afforded **4aj** as white solid (0.37 g, yield 80%), mp 213–215 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.84 (d, *J* = 8.4 Hz, 2H), 7.70 (d, *J* = 7.2 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H), 7.34 (t, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 2H), 6.66 (d, *J* = 7.6 Hz, 2H); ¹³CNMR (100 MHz, CD₃OD): δ 147.48, 144.42,132.99, 132.77, 130.32, 129.62, 128.25, 128.05, 126.99, 123.66, 116.53, 110.54. HRMS (ESI) *m*/*z* calcd for C₂₁H₁₆N₃Br₂, [M + H]⁺ 467.9711; found: 467.9702.

N-(4-Bromophenyl)-2-(4-chlorophenyl)-5-phenyl-1H-imidazol-5-amine (4ak).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4ak** as white solid (0.36 g, yield 83%), mp 205–207 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.92 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 7.2 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.20 (d, *J* = 7.6 Hz, 2H), 6.66 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.55, 144.42, 135.60, 132.78, 130.01, 129.64, 128.06, 127.00, 116.52, 110.53. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₁H₁₆N₃ClBr 424.0216; found 424.0199.

N-(4-Bromophenyl)-2-(4-fluorophenyl)-5-phenyl-1H-imidazol-5-amine (4al).

Purification by silica gel column chromatography (0 to 13% EtOAc in *n*-hexane) afforded **4al** as white solid (0.37 g, yield 90%), mp 174–175 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.96 (dd, J = 8.8, 5.6 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.35 (t, J = 8.0 Hz, 2H), 7.25–7.17 (m, 5H), 6.66 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 165.70, 163.24, 147.63, 144.76, 132.78, 129.62, 128.82, 128.73, 127.98, 127.78, 126.94, 116.82, 116.60,

116.49, 110.47; ¹⁹F NMR (376 MHz, CD₃OD): δ -114.66. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₁H₁₆N₃BrF 408.0512; found 408.0497.

N-(4-Bromophenyl)-5-phenyl-2-[4-(trifluoromethyl)phenyl]-1*H*-imidazol-5-amine (4am).

Purification by silica gel column chromatography (0 to 25% EtOAc in *n*-hexane) afforded **4am** as white solid (0.43 g, yield 93%), mp 215–217 °C. ¹H NMR (400 MHz, CD₃OD): δ 8.12 (d, *J* = 8.0 Hz, 2H), 7.75 (d, *J* = 8.0 Hz, 2H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.25 (t, *J* = 7.2 Hz, 1H), 7.21 (d, *J* = 8.4 Hz, 2H), 6.68 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 147.44, 143.79, 134.82, 132.81, 131.32, 131.00, 129.68, 128.25, 127.13, 126.91, 126.83, 126.80, 124.26, 116.59, 110.63; ¹⁹F NMR (376 MHz, CD₃OD): δ -64.20. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₂H₁₆N₃BrF₃ 458.0480; found 458.0473.

N-(4-Bromophenyl)-2-(4-nitrophenyl)-5-phenyl-1*H*-imidazol-5-amine (4an).

Purification by silica gel column chromatography (0 to 13% EtOAc in *n*-hexane) afforded **4an** as brown solid (0.15 g, yield 35%), mp 236–239 °C. ¹H NMR (400 MHz, CD₃OD): δ 8.32 (d, *J* = 8.4 Hz, 2H), 8.16 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.38 (t, *J* = 8.0 Hz, 2H), 7.27 (t, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 6.70 (d, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 146.45, 144.97, 140.69, 134.75, 130.57, 127.48, 126.18, 124.98, 124.75, 122.95, 114.44, 108.52. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₁H₁₆N₄O₂Br 435.0457; found 435.0438.

N-(4-Bromophenyl)-5-phenyl-2-(pyridin-2-yl)-1H-imidazol-5-amine (4ao).

Purification by silica gel column chromatography (0 to 40% EtOAc in *n*-hexane) afforded **4ao** as brown solid (0.11 g, yield 30%), mp 155–157 °C. ¹H NMR (400 MHz, CD₃OD): δ 8.63 (d, J = 4.0 Hz, 1H), 8.04 (d, J = 7.6 Hz, 1H), 7.86 (td, J = 8.0 Hz, 1.6 Hz, 1H), 7.74 (d, J = 7.6 Hz, 2H), 7.38–7.34 (m, 3H), 7.24 (t, J = 7.6 Hz, 1H), 7.21 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H); ¹³C NMR (100 MHz, CD₃OD): δ 149.00, 147.96, 146.05, 142.99, 137.14, 131.46, 128.37, 126.92, 125.77, 123.20, 119.83, 115.29, 115.12, 109.18. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₆N₄Br 391.0558; found 391.0545.

N-(4-Bromophenyl)-5-phenyl-2-(1H-pyrazol-1-yl)-1H-imidazol-5-amine (4ap).

Purification by silica gel column chromatography (0 to 20% EtOAc in *n*-hexane) afforded **4ap** as white solid (0.12 g, yield 30%), mp 236–239 °C. ¹H NMR (400 MHz, CD₃OD): δ 8.25 (d, J = 2.0 Hz, 1H), 7.76 (s, 1H), 7.70 (d, J = 7.6 Hz, 2H), 7.34 (d, J = 7.6 Hz, 2H), 7.24–7.20 (m, 3H), 6.67 (d, J = 8.8 Hz, 2H), 6.53 (t, J = 2.0 Hz, 1H); ¹³C NMR (100 MHz, CD₃OD): δ 146.02, 141.56, 138.97, 131.41, 128.17, 127.68, 126.54, 125.46, 115.15, 109.31, 109.45. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₈H₁₅N₅Br 380.0511; found 380.0502.

Tert-butyl {5-[(4-bromophenyl)amino]-4-phenyl-1*H*-imidazol-2-yl}carbamate (4aq).

Purification by silica gel column chromatography (0 to 35% EtOAc in *n*-hexane) afforded **4aq** as white solid (0.24 g, yield 63%), mp 236–239 °C. ¹H NMR (400 MHz, CD₃OD): δ 7.75 (d, *J* = 7.2 Hz, 2H), 7.29–7.23 (m, 4H), 7.20 (t, *J* = 7.2 Hz, 1H), 6.51 (d, *J* = 8.8 Hz, 2H), 1.35 (s, 9H); ¹³C NMR (150 MHz, CD₃OD): δ 149.76, 148.89, 145.30, 133.42,

132.50, 132.09, 128.30, 127.37, 126.49, 117.13, 115.49, 111.26, 85.73, 27.82. HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₀H₂₂N₄O₂Br 429.0926; found 429.0923.

(2-Bromophenyl)(4-phenyl-2-(phenylamino)-5-(*p*-tolylamino)-1*H*-imidazol-1yl)methanone (5a).

TEA (0.76 g, 2.30 mmol) and 4-DMAP (0.02 g, 0.15 mmol) were added to a solution of **4a** (0.25 g, 0.77 mmol) in DCM: THF (4: 1) (15 mL) at 0 °C and stirred for 30 minutes. To this mixture 2-bromobenzoyl chloride (0.18 g, 0.85 mmol) was added drop wise and stirred for 16h slowly raising to rt. Reaction mass was diluted with water (30 mL) and extracted with EtOAc (2X50 mL). The combined organic layer was washed with brine (30 mL), dried over sodium sulfate and concentrated in *vacuo*. Purification by silica gel column chromatography (0 to 8% EtOAc in hexanes) afforded **5a** as yellow solid (0.20 g, yield 45%). mp 173–175 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.8 Hz, 2H), 7.46 (dd, *J* = 8.0, 1.6 Hz, 2H), 7.32 (t, *J* = 7.2 Hz, 3H), 7.24–7.15 (m, 5H), 7.09–7.06 (m, 2H), 6.91 (d, *J* = 8.8 Hz, 2H), 6.56 (d, *J* = 8.4 Hz, 2H), 6.16 (s, 1H), 2.19 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.47, 146.03, 141.03, 134.83, 133.78, 132.33, 132.30, 130.70, 130.46, 129.77, 129.46, 128.97, 128.63, 128.35, 128.25, 127.82, 126.41, 114.98, 114.64, 20.62; HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₂₉H₂₃BrN₃O 508.1024; found 508.1009.

3-Phenyl-1-(phenylamino)-4-(p-tolyl)imidazo[5,1-b]quinazolin-9(4H)-one (6a).

CuI (6.0 mg, 0.03 mmol) was added to a degassed solution of compound **5a** (200 mg, 0.34 mmol), K₂CO₃ (143 mg, 1.04 mmol), and (*trans*-N,N' -dimethylcyclohexane-1,2-diamine (10.0 mg, 0.07 mmol) in 1,4-dioxane (10 ml) and reaction mixture was stirred at 110°C for 16h. Reaction mass was cooled to rt, diluted with water (30 mL) and extracted with EtOAc (2X50 mL). The combined organic layer was washed with brine (30 mL), dried over sodium sulfate and concentrated in *vacuo*. Purification by silica gel column chromatography (0 to 5% EtOAc in hexanes) afforded **6a** as yellow solid (95 mg, yield 65%). mp 227–230 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.36 (d, *J* = 7.2 Hz, 1H), 7.78(dd, *J* = 8.4, 2.0 Hz, 2H), 7.50–7.43 (m, 4H), 7.15 (t, *J* = 7.2 Hz, 1H), 7.06–6.95 (m, 9H), 6.83 (d, *J* = 8.4 Hz, 1H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.49, 142.70, 139.31, 139.07, 135.15, 134.02, 133.87, 131.83, 130.30, 130.28, 129.87, 129.38, 129.28, 129.21, 128.53, 127.36, 126.99, 125.86, 121.48, 120.94, 21.03; HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₉H₂₂N₃O 428.1763; found 428.1763.

Abbreviations

DCM, dichloromethane; TEA, triethylamine; 4-DMAP, 4-(dimethylamino)pyridine; MeOH, methanol; THF, tetrahydrofuran; EtOAc, ethyl acetate; HRMS, high-resolution mass spectrometry; mp, melting point.

¹H NMR (400 MHz, methanol- d_4) spectrum of **4a**

¹³C NMR (100 MHz, methanol- d_4) spectrum of **4a**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4b**

 13 C NMR (100 MHz, methanol- d_4) spectrum of **4b**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4c**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4d**

 3 C NMR (100 MHz, methanol- d_{4}) spectrum of **4d**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4e**

 13 C NMR (100 MHz, methanol-*d*₄) spectrum of **4**e

¹H NMR (400 MHz, methanol- d_4) spectrum of **4f**

13 C NMR (100 MHz, methanol- d_4) spectrum of **4f**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4g**

 13 C NMR (100 MHz, methanol- d_4) spectrum of **4g**

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4g**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4h**

13 C NMR (100 MHz, methanol- d_4) spectrum of **4h**

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4h**

¹H NMR (400 MHz, methanol-*d*4) spectrum of **4i**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4i**

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4i**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4**j

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4**j

¹H NMR (400 MHz, methanol- d_4) spectrum of **4**k

 13 C NMR (100 MHz, methanol- d_4) spectrum of **4**k

MHz, methanol-*d*₄) spectrum of **4**l

¹³C NMR (100 MHz, methanol- d_4) spectrum of **4m**

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4m**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4n**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4n**

¹H NMR (400 MHz, methanol- d_4) spectrum of **40**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **40**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4p**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4**q

¹³C NMR (100 MHz, methanol- d_4) spectrum of **4**q

¹H NMR (400 MHz, methanol- d_4) spectrum of **4r**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4s**

 13 C NMR (100 MHz, methanol- d_4) spectrum of **4s**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4t**

¹³C NMR (100 MHz, methanol- d_4) spectrum of **4t**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4u**

 13 C NMR (100 MHz, methanol-*d*₄) spectrum of **4**u

¹H NMR (400 MHz, methanol- d_4) spectrum of **4**v

 13 C NMR (100 MHz, methanol- d_4) spectrum of **4**v

¹H NMR (400 MHz, methanol- d_4) spectrum of **4w**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4**x

¹H NMR (400 MHz, methanol- d_4) spectrum of **4**y

13 C NMR (100 MHz, methanol- d_4) spectrum of **4**y

 19 F NMR (376 MHz, methanol- d_4) spectrum of **4**y

¹H NMR (400 MHz, methanol- d_4) spectrum of 4z

¹³C NMR (100 MHz, methanol- d_4) spectrum of **4z**

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4z**

¹H NMR (400 MHz, methanol-*d*4) spectrum of **4aa**

13 C NMR (100 MHz, methanol- d_4) spectrum of **4aa**

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4aa**

¹H NMR (400 MHz, methanol-*d*4) spectrum of **4ab**

¹³C NMR (100 MHz, methanol- d_4) spectrum of **4ab**

¹⁹F NMR (376 MHz, methanol-*d*₄) spectrum of **4ab**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4ac**

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4ac**

¹H NMR (400 MHz, methanol-*d*4) spectrum of **4ad**

 ^{13}C NMR (100 MHz, methanol-d4) spectrum of **4ad**

¹⁹F NMR (376 MHz, methanol- d_4) spectrum of **4ad**

¹H NMR (400 MHz, methanol-*d*4) spectrum of **4ae**

¹³C NMR (100 MHz, methanol-*d*4) spectrum of **4ae**

¹H NMR (400 MHz, methanol-*d*₄) spectrum of **4af**

 13 C NMR (100 MHz, methanol- d_4) spectrum of **4af**

¹H NMR (400 MHz, methanol-*d*4) spectrum of **4ag**
13 C NMR (100 MHz, methanol- d_4) spectrum of **4ag**

¹H NMR (400 MHz, methanol-*d*4) spectrum of **4ah**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4ah**

¹H NMR (400 MHz, methanol-*d*₄) spectrum of **4ai**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4ai**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4ak**

 13 C NMR (100 MHz, methanol- d_4) spectrum of **4ak**

¹H NMR (400 MHz, methanol-*d*₄) spectrum of **4a**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4a**

¹⁹F NMR (376 MHz, methanol-*d*₄) spectrum of **4a**

¹H NMR (400 MHz, methanol- d_4) spectrum of **4am**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4am**

¹⁹F NMR (376 MHz, methanol-*d*4) spectrum of **4am**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4an**

¹³C NMR (100 MHz, methanol-*d*₄) spectrum of **4ao**

¹H NMR (400 MHz, methanol-*d*₄) spectrum of **4ao**

¹H NMR (400 MHz, methanol-*d*₄) spectrum of **4ap**

¹³C NMR (100 MHz, methanol- d_4) spectrum of **4ap**

¹H NMR (400 MHz, methanol-*d*4) spectrum of **4aq**

¹³C NMR (100 MHz, methanol -*d*4) spectrum of **4aq**

¹H NMR (400 MHz, CDCl3) spectrum of **5a**

¹³C NMR (100 MHz, CDCl3) spectrum of **5a**

¹H NMR (400 MHz, CDCl3) spectrum of **6a**

¹³C NMR (100 MHz, CDCl3) spectrum of **6a**

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 48 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 AS-X-07 74 (1.310) 1: TOF MS ES+ 326.1648 100 267.1117 388.1702 651.3266 752.5405976.4875 1077.6735 1301.6377 1626.8738 1882.3925 200 400 600 800 1000 1200 1400 1600 1800 Minimum: -1.5

Maximum: 5.0 10.0 50.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 326.1648 326.1657 -0.9 -2.8 14.5 644.3 n/a n/a C22 H20 N3

[M+H]⁺: C₂₂H₂₀N₃ Exact Mass: 326.1657

2.490+006

2441.4829 m/z

2400

2117.9648

2200

2000

Compound 4b

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

46 form	ula(e) eva ts Used:	luated v	with 1 results wi	thin limits	(all resu	ults (up to 1	000) for eac	ch mass)	
C: 0-50 KHM-III 1: TOF	00 H: 0- 58 70 (1.24 MS ES+	1000 1)	N: 0-10						
100	312.	1489 _374	.1478623.2949	93	4.4412	1049.6323	1246.5854		1794.8423
•] .	200	400	600	800	1000	1200	1400	1600	1800

TIC

2.49e+006 2492.2949

2400

******** 2000

2200

Compound 4c

Compound 4d

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 570 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 O: 0-20 KHM-III-59 70 (1.241) 1: TOF MS ES+

100 267.1111 200	342.1595 614.2 400	760_683.3 600	163 768.54 800	⁸⁴ 1024.4 1000	723 1113.812 1200	26 1365.64 14	01 00 16	1708.7635 00 18		2048.8347 2000	2219.2712	2504.6809 2400
Minimum: Maximum:		5.0	10.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
342.1595	342.1606 342.1566 342.1553 342.1638 342.1625	-1.1 2.9 4.2 -4.3 -3.0	-3.2 8.5 12.3 -12.6 -8.8	14.5 10.5 5.5 6.5 1.5	618.2 619.8 623.7 626.4 626.8	0.194 1.761 5.605 8.363 8.784	82.40 17.19 0.37 0.02 0.02	C22 H20 C17 H20 C16 H24 C11 H20 C10 H24	N3 0 N5 03 N 07 N9 04 N5 08			

3: Diode Array

1: TOF MS ES+

1: TOF MS ES+

BPI

TIC

3.45e6

- Time

2.42e6

9.67

10.00

10.00

10.00

Range: 2.893

2.34e+006

Compound 4e

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 169 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

AS-X-11 75 (1.327) 1: TOF MS ES+

Mass

7.19e+005

----- m/z

2400

Compound 4f

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 257 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 CI: 0-8 AS-X-10 100 (1.772) 1: TOF MS ES+

100 267.1114 346.1100 0 506.5287			772,4828 251.6314 1012.0461 1358,1786 1517.5787							2200	2400 m/z	
Minimum:	400	000	000	-1 5	5 120	, , , , , , , , , , , , , , , , , , ,	400	1000	1000	2000	2200	2400
Maximum:		5.0	10.0	50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	à			
346.1100	346.1111 346.1129 346.1062 346.1081 346.1093	-1.1 -2.9 3.8 1.9 0.7	-3.2 -8.4 11.0 5.5 2.0	14.5 9.5 6.5 1.5 19.5	241.7 248.5 252.2 252.9 259.2	0.001 6.800 10.559 11.207 17.523	99.88 0.11 0.00 0.00 0.00	C21 H1 C20 H2 C11 H1 C10 H2 C22 H1	7 N3 C1 2 N C12 3 N9 C12 3 N7 C13 2 N5			

6.00

8.00

10.00

2.00

4.00

2.42e+005

Compound 4g

Elemental Composition Report

Compound 4h

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 360 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 F: 0-10

AS-X-16 70 (1.241) 1: TOF MS ES+

100	330.1405	92 659.27	79 756.51	¹⁸ 988.412	8 1086.640	7 1317	.5314 1573.6	150 1645.8	951	1996.5313	
200	400	600	800	1000	1200) ['] 14	00 16	00 1	800	2000	2200
Minimum: Maximum:		5.0	10.0	$^{-1.5}_{50.0}$							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
330.1405	330.1407 330.1405 330.1403	-0.2 0.0 0.2	-0.6 0.0 0.6	14.5 3.5 7.5	533.5 536.6 540.1	0.045 3.155 6.659	95.61 4.26 0.13	C21 H17 C13 H18 C11 H15	N3 F N3 F N9 F	6 3	

2.65e+006 2471.7644 m/z

2400

Compound 4i

Compound 4j

Elemental Composition Report

Compound 4k

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 179 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

AS-X-21 90 (1.593) 1: TOF MS ES+

											7.93e+005
100 326	100 326.1643 404.0753 0 200 400		96 809.1486	1136.3	3060 1214.2	208	161	6.2140	2107	.5696	2427.1179 m/z
200	400	600	800	1000	1200	14	00 16	1800	2000	2200	2400
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
404.0753	404.0762 404.0773	-0.9 -2.0	-2.2 -4.9	14.5 -0.5	558.4 568.4	0.000 9.945	100.00 0.00	C22 H19 N3 C10 H28 N7	Br Br2		

HN

Βr

[M+H]⁺: C₂₂H₁₉N₃Br

Exact Mass: 404.0762

Compound 41

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 179 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

AS-X-24 84 (1.490) 1: TOF MS ES+

[M+H]⁺: C₂₂H₁₉N₃Br Exact Mass: 404.0762

1.00e+006

Compound 4m

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 431 formula(e) evaluated with 6 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 F: 0-10

AS-X-22 79 (1.404) 1: TOF MS ES+

100₁

8

											2.51e+006
100 267.10	50 380.1356 442.	1356	759.2692.82	20.4803	1138.4034	1205.5571	1517.5532	1667.4113	207	8.1680 2286.1	797 2394.1013 m/z
200	400	600	800	1000	1200	J 14	00 16	1800	2000	2200	2400
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
380.1356	380.1375 380.1372 380.1373 380.1311 380.1310 380.1371	-1.9 -1.6 -1.7 4.5 4.6 -1.5	-5.0 -4.2 -4.5 11.8 12.1 -3.9	14.5 18.5 3.5 18.5 7.5 7.5	547.3 549.0 550.4 551.7 552.1 554.6	0.215 1.969 3.314 4.572 4.988 7.480	80.63 13.96 3.64 1.03 0.68 0.06	C22 H17 N3 C20 H14 N9 C14 H18 N3 C23 H15 N5 C15 H16 N5 C12 H15 N9	F3 F8 F F6 F5		

2.51e+006

Compound 4n

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 659 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 O: 0-20 AS-X-14 76 (1.344) 1: TOF MS ES+

100 267.1110 0 200	370.1545 57 400	3.2260 73 600	39.3066 <u>796.</u> 800	<u>5265 1</u> 1000	108.4613 14 1200	408.51531 140	477.6085 0 1	1 <u>662.6483</u> 600	1848.7062 1800	2032.2463 2000	2217.7356	2463.2781 m/z 2400
Minimum: Maximum:		5.0	10.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%) Formul	a			
370.1545	370.1529 370.1515 370.1556 370.1552	1.6 3.0 -1.1 4.3	4.3 8.1 -3.0 11.6	16.5 11.5 15.5 6.5	537.0 541.2 542.1 545.8	0.021 4.195 5.139 8.811	97.89 1.51 0.59 0.01	C19 H1 C18 H2 C23 H2 C17 H2	6 N9 0 N5 O4 0 N3 O2 4 N O8			

1.96e+006

Compound 4o

Elemental Composition Report

Single Mass Analysis

AS-X-12 75 (1.328)

1001

~

337.1442

338.1471

339.1507

400

600

800

673.2838763.5142 1010.4279 1345.5391

1000

1200

1400

267.1116

200

119.0587

0

-0

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 51 formula(e) evaluated with 1 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 AS-X-12 75 (1.328) 1: TOF MS ES+

												1.100+000	
100-267	3: 1116_	37.1442 573.227	2 673.283	38 / 763.514	2 1010.42	79	1345.539	1	1683.2197	2019.7733	2130.4282	2356.4609	
0-1111	200	400	600	800	1000	1200	140	0 16	00 1800	2000	2200	2400	
Minimum Maximum	1: 1:		5.0	10.0	-1.5 50.0								
Mass	C	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
337.144	2 3	337.1453	-1.1	-3.3	16.5	433.1	n/a	n/a	C22 H17 N4	1			

1683.2197

1800

2000

1600

HN

ĊN

[M+H]⁺: C₂₂H₁₇N₄ Exact Mass: 337.1453

1.19e+006

Compound 4p

Compound 4q

Compound 4r

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 179 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

AS-X-25 81 (1.438) 1: TOF MS ES+

100 281.12	72 404.0755	691.2114	809.1480	1094.28	64 1214.2	151 1387.7	222		1957.4811		2351.9031 m/z
200	400	600	800	1000	1200	140	0 16	00 1800	2000	2200	2400
Minimum: Maximum:		5.0	10.0	$^{-1.5}_{50.0}$							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
404.0755	404.0762 404.0773	-0.7 -1.8	-1.7 -4.5	14.5 -0.5	523.4 534.2	0.000 10.763	100.00 0.00	C22 H19 N C10 H28 N	3 Br 7 Br2		

9.19e+005

Compound 4s

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1896 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass) Elements Used: C 0-500 H: 0-1000 N: 0-10 O: 0-20 Br: 0-8

KHM-III-70 74 (1.310) 1: TOF MS ES+

	100 297.12	420.0698	677.1	1603 841.13	65 1096.23	1262	2.2052 135	5.9849	1683.2292	1840.56	⁵⁹ 2103.2161	2291.8965	
	200	400	600	800	1000	1200	140	0 16	600	1800 2	000 220	0 2400	m/z (m/z
	Minimum: Maximum:		5.0	10.0	-1.5 50.0								
	Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formul	la			
	420.0698	420.0671 420.0658 420.0730 420.0730 420.0732 420.0722 420.0652 420.0652 420.0652 420.0679 420.0679 420.0679 420.0679 420.0679 420.0719 420.0719	2.7 -1.4 4.0 -3.2 -4.5 -2.4 4.8 4.6 -4.0 0.0 1.9 0.5 -1.3 -2.1 -3.5 -2.1 -3.5	6.4 -3.3 9.5 -7.6 -10.7 -5.7 11.4 11.0 -9.5 0.0 4.5 1.2 -3.1 -5.0 -8.3	$10.5 \\ 14.5 \\ 5.5 \\ 1.5 \\ 6.5 \\ -0.5 \\ 3.5 \\ 13.5 \\ -0.5 \\ 12.5 \\ 12.5 \\ 14.5 \\ 16.5 \\ 21.5 \\ 21.5 \\ 21.5 \\ 5.5 \\ 21.5 \\ 5.5 \\ 5.5 \\ 15.5 \\ 5.5 \\ 15.5 \\ 5$	588.3 592.5 594.6 597.3 597.6 601.4 603.0 612.4 612.5 612.5 612.5 612.6 612.6 612.8 612.9	0.017 4.190 6.320 9.017 9.222 14.693 24.043 24.043 24.043 24.175 24.199 24.215 24.235 24.558 24.558	98.28 1.51 0.18 0.01 0.00	C17 H1 C22 H1 C16 H2 C10 H2 C11 H1 C10 H2 C16 H2 C13 H1 C10 H1 C5 H16 C17 H1 C6 H14 C22 H1 C23 H1 C23 H1	9 N5 03 B 19 N3 0 B 23 N5 07 B 23 N5 08 B 19 N9 04 B 28 N3 Br2 28 N3 Br2 10 N9 08 18 N3 015 10 N9 01 3 N5 017 14 N3 010 10 N7 06 10 N3 01 10 N5 04 10 N	sr sr sr 2		
		420.0661	3.7	8.8	25.5	613.1	24.369	0.00	C24 H6	LON 03			
KHM-II	II-70 74 (1.310))										1: TOF M	AS ES+
100 ₁		420.0698											8.6665
%		,423.0708	3										
	297.1 199.9661	424.0728		841.1365		1262.205	2	1683.	2292 1	! 840.5659	! 2103.2161	! 2355.0469	
-0	200	400 60	00	800	1000	1200	1400	1600	1800	2000	2200	2400	2600 ^{m/z}

8.67e+005

Compound 4t

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1896 formula(e) evaluated with 15 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 O: 0-20 Br: 0-8

KHM-III-73 86 (1.524) 1: TOF MS ES+

1.101 110	201										6.92e+005
100	420.0692	77 3098	841 13	63 958.2	863 126	0 1967		1696 2495			
0 4 2	00 400	600	800	1000	1200	140	0 16	00 1800	2000	2200	2400 m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	1-FIT	Norm	Conf(%)	Formula			
420.0692	2 420.0671 420.058 420.0658 420.0730 420.0652 420.0652 420.0652 420.0679 420.0698 420.0698 420.0698 420.0711 420.0719 420.0733 420.0661	$\begin{array}{c} 2.1 \\ -2.0 \\ 3.4 \\ -3.8 \\ -3.0 \\ 4.2 \\ 4.0 \\ -4.6 \\ 1.3 \\ -0.6 \\ -0.1 \\ -1.9 \\ -2.7 \\ -4.1 \\ 3.1 \end{array}$	5.0 -4.8 8.1 -9.0 -7.1 10.0 9.5 -11.0 3.1 -1.4 -0.2 -4.5 -6.4 -9.8 7.4	$10.5 \\ 14.5 \\ 5.5 \\ 1.5 \\ -0.5 \\ 3.5 \\ 13.5 \\ 12.5 \\ -0.5 \\ 17.5 \\ 4.5 \\ 16.5 \\ 21.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 25.5 \\ 1.5 \\ 1.5 \\ 25.5 \\ 1.5 \\$	482.1 484.9 487.2 491.0 495.1 495.1 505.2 505.2 505.3 505.4 505.4 505.4 505.4 505.5 505.7 505.9	0.063 2.904 5.134 8.937 13.059 13.373 23.148 23.202 23.295 23.301 23.325 23.373 23.605 23.661 23.895	93.92 5.48 0.59 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 Br 9 Br		

Compound 4u

Elemental Composition Report

Compound 4v

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 232 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

KHM-III-79 94 (1.661) 1: TOF MS ES+

100 0 200	390.0583 ^{469.968}	540.9640 600	800	938.9362 1000	1080.714 	4 <u>1407</u>) 14	.88481474.9 00 16	9178 500 1800	2000 2	23	85.6643 2400 m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
467.9702	467.9711 467.9722	-0.9 -2.0	-1.9 -4.3	14.5 -0.5	403.8 410.2	0.002	99.82 0.18	C21 H16 N3 Br2 C9 H25 N7 Br3			

Exact Mass: 467.9711

7.80e+005

Compound 4w

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 232 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

AS-X-36 98 (1.739) 1: TOF MS ES+

1.101 110 20											5.17	'e+005
100	469.968	1 	765.2459	938.9327	1331.	2104 1408	3.8998	1702.9952 1879.90	43 2	145.9856	2359.5461	m/z
200	400	600	800	1000	1200) 14	00 1	600 1800	2000	2200	2400	
Minimum: Maximum:		5.0	10.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)) Formula				
467.9703	467.9711 467.9722	-0.8 -1.9	-1.7 -4.1	14.5 -0.5	276.5 281.6	0.006 5.068	99.37 0.63	C21 H16 N3 Br C9 H25 N7 Br3	2			

Compound 4x

Compound 4y

Elemental Composition Report

Compound 4z

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for I-FIT = 3

Monoisotopic Mass, Even Electron Ions 1178 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8 F: 0-10

KHM-III-72 84 (1.489) 1: TOF MS ES+

1. TOP MO EO	•								9.81e+005
100 0 200	408.0499 0911 4 400	737.18	88 817.097 800	5 1000	1226.1	1403 140	163 00 16	33. <u>1664</u> 000 1800 2000 2200	2358.1880 2400 m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	
408.0499	408.0512 408.0510 408.0508 408.0462 408.0522 408.0495 408.0495	-1.3 -1.1 -0.9 3.7 -2.3 0.4 0.2	-3.2 -2.7 -2.2 9.1 -5.6 1.0 0.5	14.5 3.5 7.5 -0.5 11.5 22.5	472.5 474.3 476.4 482.5 482.7 493.5 493.7	0.162 2.015 4.119 10.207 10.366 21.216 21.327	85.04 13.33 1.63 0.00 0.00 0.00 0.00 0.00	C21 H16 N3 Br F C13 H17 N3 Br F6 C11 H14 N9 Br F3 C12 H26 N3 Br2 F2 C9 H25 N7 Br2 F C15 H6 N5 F8 C23 H5 N5 F3	

Compound 4aa

Compound 4ab

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1295 formula(e) evaluated with 9 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 F: 0-10 Br: 0-8

KHM-III-84 82 (1.455) 1: TOF MS ES+

1.101 110 20	r									8.83e+005
100 348 0	8.1293 ^{426.0410} 400	733.14	132 <u>853.0</u> 800	0806 <u>916.104</u> 1000	9 <u>12</u> 1200	78.1125.14	18.9869 10 16	1705.2002 1993 00 1800 20	2291.4626 000 2200	2383.5469 2400 m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
426.0410	426.0417 426.0416 426.0413 426.0432 426.0428 426.0428 426.0367 426.0365 426.0365	-0.7 -0.6 -0.3 -2.2 -1.8 4.3 4.5 0.9	-1.6 -1.4 -0.7 -5.2 -4.2 10.1 10.6 2.1	14.5 3.5 7.5 6.5 -0.5 -0.5 3.5 11.5	543.6 546.7 549.4 552.8 555.1 555.3 556.9 565.3	0.045 3.182 5.857 9.296 11.608 11.762 13.339 21.774	95.55 4.15 0.29 0.01 0.00 0.00 0.00 0.00 0.00	C21 H15 N3 F2 B C13 H16 N3 F7 B C11 H13 N9 F4 B C19 H26 N Br2 C9 H24 N7 F2 Br C12 H25 N3 F3 B C10 H22 N9 Br2 C15 H5 N5 F9	r r 2 r2	

Compound 4ac

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1528 formula(e) evaluated with 11 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 F: 0-10 Br: 0-8

AS-X-27 94 (1.662) 1: TOF MS ES+

	150.0474											0.048+003
100 0129	458.04/1		851.3040.91	7.0927		1376.13	10 17	22.7795	1833.103	2138.080	2242.5938	2424.8301 m/z
200	400	600	800	1000	1200	140	0 16	500	1800	2000	2200	2400
Minimum: Maximum:		5.0	10.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Form	ula			
458.0471	458.0477 458.0470 458.0478 458.0490 458.0490 458.0490 458.0494 458.0494 458.0427 458.0465 458.0467	-0.6 -0.9 -0.7 -0.5 -1.9 -2.3 4.1 4.4 0.7 0.6 0.4	-1.3 -2.0 -1.5 -1.1 -4.1 -5.0 9.0 9.6 1.5 1.3	18.5 14.5 3.5 7.5 -0.5 6.5 -0.5 3.5 11.5 22.5 33.5	539.4 539.4 542.2 543.0 549.3 549.4 550.8 551.6 560.6 560.6 560.7	0.708 0.763 3.564 4.348 10.593 10.684 12.147 12.962 21.942 22.033 22.128	49.25 46.62 2.83 1.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00	C20 C22 C14 C12 C10 C20 C13 C11 C16 C24 C32	H13 N9 1 H16 N3 1 H17 N3 1 H17 N3 1 H14 N9 1 H25 N7 1 H27 N F H26 N3 1 H23 N9 1 H6 N5 F H5 N5 F H4 N5	Br F3 Br F8 Br F5 Br F3 Br2 Br2 F4 Br2 F Br2 F Br2 10 5		

8.84e+005

Compound 4ad

Elemental Composition Report

CF₃ Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 1528 formula(e) evaluated with 11 results within limits (all results (up to 1000) for each mass) HN Elements Used: C: 0-500 H: 0-1000 N: 0-10 F: 0-10 Br: 0-8 AS-X-30 81 (1.438) 1: TOF MS ES+ 1.01e+006 917.0925 1093.9729 1376.1306 1512.8867 380.1378458.0467 100 81 1981.2972 2071.9768 2400.8298 m/z 522.0495 Br 400 1800 200 600 2000 2200 2400 -1.5 50.0 Minimum: $[M+H]^+: C_{22}H_{16}N_3F_3Br$ Maximum: 5.0 10.0 DBE Mass Calc. Mass mDa PPM i-FIT Norm Conf(%) Formula Exact Mass: 458.0480 -1.3 -1.0 -1.1 -0.9 -2.7 -2.3 3.7 4.0 0.723 48.51 0.734 48.01 3.700 2.47 4.601 1.00 10.894 0.00 458.0480 C22 H16 N3 F3 Br C20 H13 N9 Br 458.0467 -2.8 -2.2 14.5 18.5 507.1 458.0477 507.1 -2.2 -2.4 -2.0 -5.9 -5.0 458.0478 458.0476 C14 H17 N3 F8 Br C12 H14 N9 F5 Br 3.5 510.1 7.5 511.0 458.0494 C12 H14 N9 F5 B1 C20 H27 N F Br2 C10 H25 N7 F3 Br2 C13 H26 N3 F4 Br2 517.3 -0.5 -0.5 3.5 11.5 22.5 33.5 10.920 0.00 11.729 0.00 12.765 0.00 458.0490 458.0430 517.3 518.1 8.1 8.7 0.7 0.4 0.0 458.0427 519.2 C11 H23 N9 F Br2 0.3 0.2 0.0 458.0464 458.0465 528.5 528.6 22.060 0.00 22.147 0.00 C16 H6 N5 F10 C24 H5 N5 F5 AS-X-30 3: Diode Array 458.0467 528.7 22.239 0.00 C32 H4 N5 1.43 Range: 2.868 AS-X-30 81 (1.438) 1: TOF MS ES+ 458.0467 1.01e6 100₁ 2.0 9.66 1.18 PG-1.0 0.0 2.00 4.00 6.00 8.00 -0.00 10.00 AS-X-30 1: TOF MS ES+ 1.44 BPI 1001 1.01e6 1.26 % % 2.31 -0.00 2.00 4.00 6.00 8.00 10.00 1: TOF MS ES+ AS-X-30 461.0476 1.46 TIC 100 2.77e6 917.0925 % 462.0500 915.0927 920.0924 203.7110380.1378 1512.8867 1376.1306 2071.9768 2400.8298 0+. -0 ----- m/z 2600 2.31 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 04

-0.00

2.00

4.00

6.00

8.00

– Time

10.00

Compound 4ae

Elemental Composition Report

Compound 4af

Compound 4ag

Elemental Composition Report

Compound 4ah

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron lons 179 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used:

C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

KHM-III-76 90 (1.592) 1: TOF MS ES+

	404.0747										5.58e+005
100 265.131 0 77777777 200	404.0747 4 400 400	9.9665 600	809.145 800	4 <u>876.0383</u> 1000	1212.2 1200	1401278.1 140	193)0 16	00 1800	2000	2200	2400 m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
404.0747	404.0762 404.0773	-1.5 -2.6	-3.7 -6.4	14.5 -0.5	445.9 456.5	0.000	100.00 0.00	C22 H19 N3 C10 H28 N7	Br Br2		

Compound 4ai

841.1368

1000

800

424.0737

600

400

208.0920297.1212

200

0-

-0

.

1682.2410

1800

2000

2200

2400

1600

1262.2097

1400

1200

m/z

%

-0.00

1.04

2.00

4.00

6.00

3: Diode Array Range: 2.863

1: TOF MS ES+

1: TOF MS ES+

BPI

TIC

2.71e6

- Time

1.02e6

9.66

10.00

10.00

10.00

8.00

8.00

8.00

Compound 4aj

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 232 formula(e) evaluated with 2 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

KHM-III-75 104 (1.841) 1: TOF MS ES+

												5.46e+005
100	390.0583 469.968	4 540.9634		938.9367	1058.9681	1407	.8922 152	27.9438	1874.8408	8 2	137.6084	378 mmmmm m/z
200	400	600	800	1000	1200) 14	00 1	600	1800	2000	2200	2400
Minimum: Maximum:		5.0	10.0	-1.5 50.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	a			
467.9702	467.9711 467.9722	-0.9 -2.0	-1.9 -4.3	14.5 -0.5	390.4 397.5	0.001 7.163	99.92 0.08	C21 H1 C9 H25	6 N3 Br2 N7 Br3			

Compound 4ak

Elemental Composition Report

426.0176

428.0156

429.0173

400

499.0214

600

852.3860

1000

1200

800

424.0199

197.0946

200

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of lisotope peaks used for I-FIT = 3

Monoisotopic Mass, Even Electron Ions 865 formula(e) evaluated with 12 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 CI: 0-8 Br: 0-8

AS-X-31 106 (1.875) 1: TOF MS ES+

AS-X-31 106 (1.875)

100₁

%

0--0

T. TOP M	15 E5+										2.30e+005
100 0 1,19 0	426.0176 97.0946 200 400	495.0149 600	852.3 800	1000	·····	1274.0497 200 1	1481.3259 400	1699.0254 1600 18	1806.2627 	00 2200	2400 m/z
Minimur Maximur	m: m:	5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
424.01	99 424.0193 424.0216 424.0234 424.0175 424.0198 424.0167 424.0163 424.0163 424.0208 424.0207 424.0157 424.0157	$\begin{array}{c} 0.6 \\ -1.7 \\ -3.5 \\ 2.4 \\ 0.1 \\ 3.2 \\ 1.3 \\ 3.6 \\ -0.9 \\ -2.8 \\ 4.2 \\ 1.2 \end{array}$	1.4 -4.0 -8.3 5.7 0.2 7.5 3.1 8.5 -2.1 -6.6 9.9 2.8	11.59.516.519.56.51.5-1.54.5-0.521.534.5	265.3 266.1 268.6 270.8 270.9 271.6 272.6 273.1 273.7 274.5 275.0 285.9	0.382 1.248 3.756 5.912 6.031 6.764 7.703 8.251 8.825 9.662 10.107 21.045	68.24 28.70 2.34 0.27 0.24 0.12 0.05 0.03 0.01 0.01 0.00 0.00	C21 H18 N C21 H16 N C20 H21 N C22 H13 N C11 H17 N C10 H22 N C10 H24 N C9 H25 N C23 H8 N ⁵ C34 H2 N	N C14 N3 C1 Br N C12 Br N3 C13 N5 Br N9 C12 Br N7 C13 Br N5 C16 N9 Br2 7 C1 Br2 5 C12		

1

1400

1274.0497 1481.3259 1699.0254 1806.2627

1600

.

1800

2000

2200

Compound 4al

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 1178 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8 F: 0-10

KHM-III-77 95 (1.679) 1: TOF MS ES+

											7.18e+005
100 330 0	0.1386 ^{408.0497} 400	<u>3.3425</u> 600	817.095 800	53 <u>880.4026</u> 1000	1226 120	. <u>1464</u> 0 14	1539.28 00 10	14 1636.2223 600 1800	2023,4351 2000	2200	2400 m/z
Minimum: Maximum:		5.0	10.0	-1.5 50.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
408.0497	408.0512 408.0510 408.0508 408.0522 408.0462 408.0495 408.0497	-1.5 -1.3 -1.1 -2.5 3.5 0.2 0.0	-3.7 -3.2 -2.7 -6.1 8.6 0.5 0.0	14.5 3.5 7.5 -0.5 11.5 22.5	516.2 518.6 519.9 526.3 526.4 537.3 537.4	0.115 2.455 3.795 10.168 10.325 21.185 21.300	89.16 8.59 2.25 0.00 0.00 0.00 0.00	C21 H16 N3 B C13 H17 N3 B C11 H14 N9 B C9 H25 N7 B C12 H26 N3 B C15 H6 N5 F8 C23 H5 N5 F3	F F6 F3 F 2 F 2 F2		

7.18e+005

Compound 4am

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for I-FIT = 3

Monoisotopic Mass, Even Electron Ions 1528 formula(e) evaluated with 11 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8 F: 0-10

AS-X-33 105 (1.859) 1: TOF MS ES+

													4./00+000
100 8	319.1075	458.0473	592.0596	886.	1227 10	89.0793	1376.1	315 1576	.3729	1803.4755	1887.9449	2211.3398	2324.0422
	200	400	600	800	1000	1200) 14	00 1	600	1800	2000	2200	2400
Minimu Maximu	m : m :		5.0 1	0.0	-1.5 50.0								
Mass	Cal	c. Mass	mDa P	PM I	OBE	i-FIT	Norm	Conf(%)	Formu	la			
458.04	73 458 458 458 458 458 458 458 458 458 458	8.0480 9.0477 8.0478 8.0476 8.0494 9.0490 8.0490 8.0430 8.0427 9.0464 8.0465 8.0467	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.5 0.9 1.1 0.7 4.6 3.7 .4 0.0 .0 .7 .3	14.5 18.5 3.5 -0.5 -0.5 3.5 11.5 22.5 33.5	439.7 440.8 441.8 444.0 448.4 450.1 450.9 452.2 452.2 460.7 460.8 460.9	0.393 1.464 2.473 4.660 9.061 10.747 11.572 12.895 21.368 21.454 21.550	67.47 23.14 8.43 0.95 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.0	C22 H C20 H C14 H C12 H C20 H C10 H C13 H C11 H C11 H C16 H C24 H C32 H	16 N3 Br 13 N9 Br 17 N3 Br 14 N9 Br 27 N Br 25 N7 Br 26 N3 Br 23 N9 Br 6 N5 F10 5 N5 F5 4 N5	F3 F8 F5 F 2 F3 2 F4 2 F		

[M+H]⁺: C₂₂H₁₆N₃F₃Br Exact Mass: 458.0480

4.78e+005

Compound 4an

Elemental Composition Report

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

111.0181 296.0991

200

0-0

463.3391

600

800

1000

1200

1400

400

Monoisotopic Mass, Even Electron Ions 2083 formula(e) evaluated with 22 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 O: 0-20 Br: 0-8

KHM-III-78 95 (1.678) 1: TOF MS ES+

296.0991 435.0438 100 991.0820 1000 1 1307.1243 1525.1659 1740.1545 1961.1194 2176.0864 2392.3647 m/z 508.0443 863.4184 200 1200 1400 1600 1800 2000 2200 2400 400 600 800 Minimum: Maximum: -1.5 10.0 50.0 5.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 435.0443 435.0416 435.0430 435.0457 435.0403 435.0475 435.0435 0.628 53.38 0.909 40.29 2.882 5.60 5.220 0.54 6.312 0.18 11.091 0.00 14.792 0.00 C20 H20 06 Br C16 H16 N6 04 Br C17 H12 N10 Br C21 H16 N4 02 Br C15 H20 N2 08 Br 435.0438 $\begin{array}{c} -0.5\\ 2.2\\ 0.8\\ -1.9\\ 3.5\\ -3.7\\ 0.3\\ 4.3\\ -2.9\\ -3.2\\ 7\\ 4.1\\ -4.5\\ 1.4\\ 0.0\\ -0.5\\ -1.8\\ -2.7\\ -4.0\\ 1.9\\ 3.2\\ -0.8\end{array}$ 330.3 330.6 332.6 334.9 336.0 344.5 344.5 344.5 344.5 344.8 354.4 354.4 354.4 354.4 354.4 354.4 354.4 354.4 354.4 354.4 354.5 355.5 3C15 H20 N2 08 Br C9 H20 N6 09 Br C4 H20 N8 011 Br C15 H25 N4 0 Br2 C9 H25 N8 02 Br2 C8 H19 020 C15 H15 015 C12 H7 N10 09 C9 H15 N4 016 $\begin{array}{c} 14.792 \ 0.00\\ 15.109 \ 0.00\\ 15.599 \ 0.00\\ 24.625 \ 0.00\\ 24.625 \ 0.00\\ 24.625 \ 0.00\\ 24.719 \ 0.00\\ 24.719 \ 0.00\\ 24.719 \ 0.00\\ 24.734 \ 0.00\\ 25.008 \ 0.00\\ 25.008 \ 0.00\\ 25.088 \ 0.00\\ 25.112 \ 0.00\\ 25.316 \ 0.00\\ 25.574 \ 0.00\\ \end{array}$ 435.0433 435.0395 435.0467 435.0470 435.0411 435.0397 435.0483 C9 H15 N4 016 C16 H11 N4 011 C17 H7 N8 07 C4 H15 N6 018 C5 H11 N10 014 C21 H11 N2 09 C22 H7 N6 05 C29 H3 N6 C28 H7 N2 04 C33 H7 02 435.0483 435.0424 435.0438 435.0443 435.0456 435.0465 435.0478 435.0478 435.0406 435.0406 435.0446 KHM-III-78 95 (1.678) 1: TOF MS ES+ 435.0438 1001 438.0446

863,4184 991.0820 1307.1243 1525,1659 1740,1545 1961,1194 2176,0864 2392,3647

1800 2000

2200

2400

1600

2.74e+005

2.74e5

-m/z

Compound 4ao

Elemental Composition Report

Compound 4ap

Elemental Composition Report

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 161 formula(e) evaluated with 3 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 Br: 0-8

AS-X-38 140 (2.475) 1: TOF MS ES+

HN

Β̈́r

[M+H]⁺: C₁₈H₁₅N₅Br

Exact Mass: 380.0511

Compound 4aq

Elemental Composition Report

Compound 5a KHM-IV-52 128 (2.260) 1: TOF MS ES+ 510.0992 4 04e5 100-508 1009 Ĥ 0 B Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 [M+H]⁺: C₂₉H₂₃BrN₃O Element prediction: Off 511.1028 Number of isotope peaks used for i-FIT = 3 Exact Mass: 508,1024 Monoisotopic Mass, Even Electron Ions 427.3770 3036 formula(e) evaluated with 22 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 O: 0-20 Br: 0-8 512.1054 752.5394 789.1217 875.7302 102.1272 228.2290 326.1636 543.1302 1017,1968 1172.5745 KHM-IV-52 128 (2.260) m/z 200 300 600 700 1000 100 400 500 800 900 1100 1200 1: TOF MS ES+ 4.04e+005 510.0992 100 102.1272 752.5394 789.1217 875.7302 1172.5745 m/z 427.3770 228.2290 326.1636 542.1240 1017.1968 700 300 400 600 1000 1200 100 200 500 800 900 1100 Minimum: -1.5 5.0 10.0 50.0 Maximum: KHM-IV-52 3: Diode Array 1.90 Range: 4.076 Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula Mass 1.17 4.0 9.66 PA. 2.0 465.0 0.98 508.1025 0.006 508.1009 -1.6 -3.1 19.5 99.38 C29 H23 N3 O Br A 508.0984 2.5 4.9 15.5 470.1 0.56 C24 H23 N5 O3 Br 0.0 1.00 2.00 4.00 6.00 7.00 9.00 508.0971 3.8 7.5 10.5 472.7 7.780 0.04 C23 H27 N 07 Br 3.00 5.00 8.00 9.427 508.1030 -2.1 -4.1 1.5 474.4 0.01 C16 H31 N 012 Br KHM-IV-52 1: TOF MS ES+ 508.1043 -3.4 -6.7 6.5 475.2 10.202 0.00 C17 H27 N5 O8 Br 2.01 508 508.1056 -4.7 -9.3 11.5 475.5 10.503 0.00 C18 H23 N9 O4 Br 100 1.21e6 508.1003 0.6 1.2 2.5 476.6 11.598 0.00 C12 H27 N7 010 Br % 508.1022 -1.3 -2.6 -0.5 477.8 12.824 0.00 C16 H36 N3 O5 Br2 508.1035 -2.6 -5.1 4.5 479.1 14.142 0.00 C17 H32 N7 O Br2 0 508.0963 4.6 8.5 480.1 15.128 0.00 C23 H32 N3 Br2 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 9.1 508.0995 15.352 0.00 1.4 2.8 0.5 480.3 C12 H32 N9 O3 Br2 KHM-IV-52 1: TOF MS ES+ 15.562 0.00 23.857 0.00 C7 H27 N9 O12 Br 508.0963 4.6 9.1 -1.5 480.5 1.22 BPI 508.1011 488.8 C12 H22 N5 017 100 1.04 3.13e6 508.1024 -1.5 -3.0 488.8 23.885 0.00 C13 H18 N9 013 9.5 2.01 % 508.0965 4.4 C20 H14 N9 O8 0.44 18.5 488.9 23.922 0.00 0 508.1051 -4.2 -8.3 8.5 489.0 24.019 0.00 C17 H22 N3 015 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 508.1006 0.3 0.6 22.5 489.0 24.047 0.00 C25 H14 N7 O6 508.0992 1.7 3.3 17.5 489.0 24.057 0.00 C24 H18 N3 O10 KHM-IV-52 1: TOF MS ES+ 0.5 508.0970 3.9 7.7 489.0 24.083 0.00 C7 H22 N7 019 1.24 TIC 100 508.1032 -2.3 -4.5 21.5 489.2 24.284 0.00 C29 H18 N 08 1.04 1.99 5.48e6 508.1046 -3.7 -7.3 26.5 489.3 24.305 0.00 C30 H14 N5 O4 % 0.44 508.0974 3.5 6.9 30.5 489.4 24.395 0.00 C36 H14 N O3 0 - Time

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Compound 6a

Single Mass Analysis Tolerance = 5.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 843 formula(e) evaluated with 7 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-500 H: 0-1000 N: 0-10 O: 0-20 KHM-IV-53 117 (2.071) 1: TOF MS ES+

100		428.1763										0000 5400	
1001	242.11	36	492.1913	855.3	3489,919.33	90 1:	304.4948		1706.22	55	1983.1936	2280.5183	2416.5789
0-	200	400	600	800	1000	1200	140	00 16	500	1800	2000	2200	2400
Mini Maxi	mum: mum:		5.0	10.0	-1.5 50.0								
Mass	; (Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formu	la			
428.	1763	428.1763 428.1723 428.1795 428.1781 428.1768 428.1741 428.1728	0.0 4.0 -3.2 -1.8 -0.5 2.2 3.5	0.0 9.3 -7.5 -4.2 -1.2 5.1 8.2	20.5 16.5 12.5 7.5 2.5 3.5 -1.5	700.1 702.3 707.1 707.1 708.4 710.3 711.5	0.107 2.311 7.048 7.063 8.362 10.242 11.464	89.88 9.92 0.09 0.09 0.02 0.00 0.00	C29 H C24 H C18 H C17 H C16 H C12 H C11 H	22 N3 22 N5 22 N9 26 N5 30 N C 26 N7 30 N3	0 03 04 08 012 010 014		

[M+H]⁺: C₂₉H₂₂N₃O Exact Mass: 428.1763

2.30e+006

m/z