## **Supporting Information**

# Highly Efficient One-pot Conversion of Saccharides to 2,5-Dimethylfuran using P-UiO-66 and Ni-Co@NC Noble Metal-Free Catalyst

Chi Van Nguyen,<sup>†a</sup> Jyun-Yi Yeh, <sup>†bc</sup> Thuan Van Tran<sup>d</sup>, and Kevin C.-W. Wu\*<sup>bcef</sup>

<sup>a</sup> Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, 69/68 Dang Thuy Tram, Binh Thanh District, Ho Chi Minh City 700000, Vietnam
<sup>b</sup> International Graduate Program of Molecular Science and Technology (NTU-MST), National Taiwan University No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
<sup>c</sup> Taiwan International Graduate Program (TIGP), Academia Sinica, No. 128, Sec. 2, Academia Road, Taipei 11529, Taiwan
<sup>d</sup> NTT Hi-Tech Institute, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
<sup>e</sup> Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
<sup>f</sup> Center of Atomic Initiative for New Materials, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

## \*Corresponding Author's E-mails:

\*Email: <u>kevinwu@ntu.edu.tw</u> (Kevin C. W. Wu)

<sup>†</sup>These authors contributed equally to this work.

## **Materials and Methods**

#### Chemicals

Glucose, fructose, cellubiose, starch, cellulose, 2,5-dimethylfuran (DMF), 5-hydroxymethylfurfural (HMF), 5-methylfurfural (MFAL), 5-methyl-furanmethanol (MFOL), tetrahydro-2,5-dimethanol (THFDM). tetrahydrofuran (THF), ZrOCl<sub>2</sub>·8H<sub>2</sub>O, 1,4-benzenedicarboxylic acid, 2-methylimidazole, Co(NO<sub>3</sub>)<sub>2</sub>•6H<sub>2</sub>O, Ni(NO<sub>3</sub>)<sub>2</sub>•6H<sub>2</sub>O, dimethylformamide and acetone were purchased from Sigma-Aldrich and Across without further purification.

#### Synthesis of Ni@ZIF-67 and derived Ni-Co@NC

Synthesis of Ni@ZIF-67: Ni@ZIF67 was synthesized by in situ synthesis as following procedure. Co(NO<sub>3</sub>)<sub>2</sub>•6H<sub>2</sub>O (1.0 mmol, 0.291 g) and Ni(NO<sub>3</sub>)<sub>2</sub>•6H<sub>2</sub>O (1.0 mmol, 0.291 g) was dissolved 5 mL methanol. The metal precursor was added into 20 mL methanol solution containing 2-methylimmidazole (Hmim, 4.0 mmol, 0.328 g). The mixture stirred at room temperature (RT) for 24 h. Then, the solid was centrifuged at 20000 rpm for 6 minutes, and washed by methanol several times. The purple precipitation was dried under vacuum at RT in 24 h. The obtained materials denoted as Ni@ZIF-67.

*Synthesis of Ni-Co@NC*: Ni-Co@NC was prepared by pyrolysis of Ni@ZIF-67 at 600 °C for 4 h under N<sub>2</sub> atmosphere, with the ramping temperature of 5 °C/min. The resulting powder was collected and denoted as Ni-Co@NC.

#### Synthesis of UiO-66 and derived P-UiO-66

Synthesis of UiO-66: UiO-66 was synthesized based on the previous reports with slightly modification <sup>[1]</sup>. 0.228 g terephthalic acid (BDC, 1.7 mmol) was added into 80 mL dimethylformamide solution containing dissolving 5.026 g benzoic acid (4.1 mol) and 0.442 g ZrOCl<sub>2</sub>·8H<sub>2</sub>O (1.37 mmol). The mixture was then sealed in an autoclave and heated at 120°C for 24 h. After 24 h, the white powder was collected by centrifugation (15000 rpm for 5 min) and washing with dimethylformamide and acetone several times. The UiO-66 solid was dried under vacuum at RT in 24 h.

Synthesis of P-UiO-66: 00 mg UiO-66 was mixed with 10 mL Na<sub>2</sub>HPO<sub>4</sub> aqueous solution (0.2 M) for 3 hours at 70 °C. The white power was collected by centrifugation and washing with water. The resulted solid was activated under vacuum at RT for 24 h.

### **Potentiometric titration**

Potentiometric titration procedure were conducted similar to the previous report <sup>[2]</sup>. Commercial pH buffers of pH = 2.00, 4.00, 7.00, and 9.00 (Metrohm) was used for calibration curve. 50 mg of the synthesized samples were dispersed in 50 mL NaNO<sub>3</sub> solution (0.01 M ) overnight before titration. NaOH solution (0,1 M) was used for titration process with the injection volume of 0.025 mL and an injection rate of 0.02 mL/min until the pH changes to 10–10.5. Maximum points of the first derivatives was used to determine equivalent points. pKa values were determined as the pH at one-half of the volume of titrant added to reach the equivalence point.

#### Characterization

Powder X-ray diffraction (XRD) patterns were conducted on a Rigaku-Ultima IV instrument using a Cu K $\alpha$  radiation source. The chemical state of elements present in prepared samples was studied using X-ray photoelectron spectrometer (XPS, Thermo Scientific, Theta Probe). The metal content in the synthesized samples was determined using induced coupled plasma-mass spectrometry (ICP-MS). N<sub>2</sub> adsorption–desorption isotherms were measured at –196 °C on a Microtrac BELSORP MAX II instrument. Fourier-transform infrared spectroscopy (FT-IR) were carried out with Perkin Elmer Spectrum 100.

#### One-pot conversion of saccharide to DMF over P-UiO-66 and Ni-Co@NC

The reaction was carried out in a Parr reactor connected a mechanical stirring. Typically, 50 mg Ni-Co@NC, 50 mg P-UiO-66, and 1 mmol saccharides were added into a reactor filled with 30 mL THF and 2 mL saturated NaCl aqueous solution. After the reactor was sealed,  $N_2$  was flushed to purge air residue in the reactor (3 times), then filled with hydrogen (0.7 MPa). The reactor was heated to desire temperature at certain reaction time. After completed reaction, the reactor was cooled to room temperature, then the reaction mixture was centrifuged to separate the solids and the liquid phase. The liquid phase was directly analyzed by GC coupling with HP-05 column. The solids were further washed by 10 mL water; the collected aqueous solution was analyzed by HPLC with Shodex SUGAR SP0810 column using water mobile phase. The conversion and product yield were calculated following equation (S1) and (S2), respectively:

Conversion (%) = 
$$\frac{\text{initial mole of saccharide - mole of saccharide remained}}{\text{Initial mole of saccharide}} \times 100\%$$

(S1)

Yield (%) = 
$$\frac{\text{mole of product generated}}{\text{initial mole of saccharide}} \times 100\%$$

| Table S1: Acidity | y testing of the | synthesized | matrials using | Hemmett indicato | r method. |
|-------------------|------------------|-------------|----------------|------------------|-----------|
| -                 |                  | 1           |                |                  |           |

| Indiantors                  | Color     |            | nV              | Material |          |  |
|-----------------------------|-----------|------------|-----------------|----------|----------|--|
| mulcators                   | Acid form | Based form | pκ <sub>a</sub> | UiO-66   | P-UiO-66 |  |
| 4-Phenylazoaniline          | Red       | Orange     | +2.8            | -        | +        |  |
| 2-Nitroaniline              | Red       | Yellow     | -0.2            | -        | +        |  |
| 4-Nitrodiphenylamine        | Red       | Yellow     | -2.4            | -        | +        |  |
| 2,4-Dichloro-6-nitroaniline | Red       | Yellow     | -3.2            | -        | +        |  |

(S2)

| 2,4-Dinitroaniline         | Red    | Yellow    | -4.4  | - | + |
|----------------------------|--------|-----------|-------|---|---|
| 2-Benzoylnaphthalene       | Yellow | Colorless | -5.9  | - | + |
| 2-Bromo-4,6-dinitroaniline | Red    | Yellow    | -6.6  | - | + |
| Anthraquinone              | Yellow | Colorless | -8.1  | - | + |
| 4-Nitotoluene              | Yellow | Colorless | -11.4 | - | + |
| 4-Nitrofluorobenzene       | Yellow | Colorless | -12.4 | - | - |



**Fig. S1**: a-b) potentiometric acid–base titration tests, c-d) first derivative curves of UiO-66 and P-UiO-66, respectively.

The titration curves were analysed using Lorentzian functions, showing that the first derivative curve of UiO-66 is divided into three equivalence points at 3.4, 4.5, and 5.1, contributing to the pKa values of 2.65, 3.55, 4.22, respectively. It was reported that three pKa values of UiO-66 can be attributed to the protons of  $\mu_3$ –OH, Zr-OH<sub>2</sub>, and Zr-OH groups, to be considered as Brønsted acid sites. Meanwhile, the curve-fitting of the P-UiO-66 displayed four peaks with the central point at 2.3, 3.0, 3. and 5.1, which correspond to pKa values of 1.74, 2.27, 3.08, and 4.03, respectively (Fig. S1). Their first three peak had low pKa values, indicating that the acidity of P-UiO-66 was stronger than that of UiO-66, which consisted with the Hemmett indicator method. Moreover, P-UiO-66 curve-fitting appeared a new equivalence point, which suggested of another Brønsted acid site, resulting from the phosphorylation.



**Fig S2.** Effect of Ni loading in the Ni-Co@NC catalyst for conversion of glucose to DMF. Reaction condition: glucose (1 mmol, 0.18 g), 0.05/0.05 (g/g) P-UiO-66 and Ni-Co@NC catalyst, THF/H<sub>2</sub>O ratio of 30/2 (mL/mL) as solvent, 70 mg NaCl, 0.7 MPa of H<sub>2</sub>.



**Fig S3**. a) Effect of reaction time on the conversion of glucose to DMF. Reaction conditions: Glucose (1 mmol, 0.18 g), P-UiO-66 (0.05 g) and Ni-Co@NC (0.05 g) as catalyst, THF/H<sub>2</sub>O ratio of 30/2 (mL/mL) as solvent, 160 °C, 70 mg NaCl, 0.7 MPa of H<sub>2</sub> pressure.



**Fig S4**. a) Illustration of the proposed reaction pathway for glucose conversion to DMF. (1) 5hydroxymethylfurfural (HMF); (2) 5-methylfurfural (MFAL); (3) 5-methyl-furanmethanol (MFM); (4) 2,5-dimethylfuran (DMF)



**Figure S5**: Effect of reaction temperature on the conversion of glucose to DMF. Reaction conditions: Glucose (1 mmol, 0.18 g), P-UiO-66 (0.05 g) and Ni-Co@NC (0.05 g) as catalyst, 8 h reaction time, THF/H<sub>2</sub>O ratio of 30/2 mL as solvent, 70 mg NaCl, 0.7 MPa of H<sub>2</sub> pressure.



Fig. S6: The reusability of the P-UiO-66 and Ni-Co@NC catalyst for glucose conversion to DMF.



Figure S7: a) FT-IR spectra and b) XRD pattern of reused P-UiO-66 catalyst.



Figure S8: a) XRD pattern and b-d) SEM images

|                | Reactio                    | n parame     | eters                            | Conversion | Products yield (%) |      |      |      |       |
|----------------|----------------------------|--------------|----------------------------------|------------|--------------------|------|------|------|-------|
| Entry          | THF/water ratio<br>(mL/mL) | NaCl<br>(mg) | H <sub>2</sub> pressure<br>(MPa) | (%)        | HMF                | MFAL | MFOL | DMF  | THFDM |
| 1              | 30/0.5                     | 70           | 0.7                              | 40         | n.d.               | n.d. | n.d. | 10.1 | 18.6  |
| 2              | 30/2                       | 70           | 0.7                              | 98.1       | Trace              | n.d. | n.d. | 82.1 | 3.2   |
| 3ª             | 30/10                      | 70           | 0.7                              | 98.5       | n.d.               | n.d. | n.d. | 23.5 | 12.5. |
| 4 <sup>b</sup> | 30/30                      | 70           | 0.7                              | 97.4       | Trace              | n.d. | n.d. | 10.5 | 5.6   |
| 5              | 30/2                       | 0            | 0.7                              | 45.1       | Trace              | n.d. | n.d. | 37.0 | 1.4   |
| 6              | 30/2                       | 15           | 0.7                              | 61.2       | Trace              | n.d. | n.d. | 51.8 | 2.0   |
| 7              | 30/2                       | 40           | 0.7                              | 80.1       | Trace              | n.d. | n.d. | 65.0 | 2.4   |
| 8              | 30/2                       | 90           | 0.7                              | 98.0       | Trace              | n.d. | n.d. | 83.0 | 3.6   |
| 9              | 30/2                       | 70           | 0.1                              | 98.5       | Trace              | 9.8  | 15.9 | 31.1 | 41.5  |
| 10             | 30/2                       | 70           | 0.3                              | 98.6       | Trace              | 1.2  | 9.2  | 52.4 | 31.2. |
| 11             | 30/2                       | 70           | 0.5                              | 99.1       | Trace              | n.d. | n.d. | 70.9 | 12.3  |
| 12             | 30/2                       | 70           | 0.9                              | 98.2       | Trace              | n.d. | 10.6 | 54.0 | 27.0  |

**Table S2**: The effect of reaction parameters for direct glucose conversion to DMF over the P-UiO-66 and Ni-Co@/NC.

Reaction condition: Glucose (1 mmol, 0.18 g), P-UiO-66 (0.05 g) and Ni-Co@NC (0.05 g) as catalyst, 8 h and 160 °C.

<sup>a</sup> sorbitol is the main product with 60% yield.

<sup>b</sup> sorbitol is the main product with 81.2% yield.

| Entry    | Feedstock   | Catalysts                                               | Solvent                       | T (<br>°C)  | H <sub>2</sub><br>pressure<br>(MPa) | t<br>(h) | Conversion<br>(%) | DMF yield<br>(%) | Ref. |
|----------|-------------|---------------------------------------------------------|-------------------------------|-------------|-------------------------------------|----------|-------------------|------------------|------|
| Two-step | reaction    |                                                         |                               |             |                                     |          |                   |                  |      |
| 1        | Fructose    | Amberlyst-15 and Ru-Sn/ZnO                              | n-BuOH                        | 240         | 1                                   | 100      | 100               | 99               | [3]  |
| 2        | Fructose    | Formic acid and Pd/C,<br>H2SO4                          | THF                           | 150         |                                     | 17       | 100               | 46               | []   |
| 3        | Fructose    | NaCl/HCl and CuRu/C                                     | n-BuOH                        | 220         | 0.68                                | 10       | 100               | 72               | [45] |
| 4        | Glucose     | 12-molybdophosphoric acid<br>(12-MPA)<br>Pd/C, [EMIM]Cl | Acetonitrile                  | 120         | 0.62                                | 4        | 47                | 0.14             | [6]  |
| 5        | Corn stover | CrCl3, HCl and CuRu/C                                   | DMALiCl<br>[EMIM]Cl<br>n-BuOH | 140<br>/220 |                                     | 12       | -                 | 9                | [7]  |
| One-step | reaction    |                                                         |                               |             |                                     |          |                   |                  |      |
| 6        | Fructose    | ZnCl <sub>2</sub> -Pd/C                                 | THF                           | 150         | 0.8                                 | 8        | -                 | 19               | [8]  |
| 7        | Fructose    | H-Zeolite-Y and Cu/ZnO/Al <sub>2</sub> O <sub>3</sub>   | GVL/H2O                       | 240         | 2                                   | 10       | 100               | 40.6             | [9]  |

# Table S3: Comparison of catalytic conversion of glucose into DMF over various catalysts

| 8  | Fructose   | A1C13/H2SO4/H3PO4/Ru/C | <i>N,N</i> <b>-</b> DMF | 200 | 1.5 | 12 | 99   | 66.3 | [10]         |
|----|------------|------------------------|-------------------------|-----|-----|----|------|------|--------------|
| 9  | Fructose   | 4.8Pd/UiO-66@SGO       | THF                     | 160 | 1   | 3  | 92   | 70.5 | [11]         |
| 10 | Fructose   | 10Cu-1Pd/U50S50        | THF                     | 200 | 1   | 3  | 98   | 85.1 | [12]         |
| 11 | Fructose   | PMHS and Pd/C-SO3H-TMS | n-Butanol               | 120 | -   | 2  | >95  | ~80  | [13]         |
| 12 | Glucose    | 4.8Pd/UiO-66@SGO       | THF                     | 160 | 1   | 3  | 87   | 45.3 | [11]         |
| 13 | Glucose    | 10Cu-1Pd/U50S50        | THF                     | 200 | 1   | 3  | 97   | 79.9 | [12]         |
| 14 | Glucose    | PMHS and Pd/C-SO3H-TMS | n-Butanol               | 120 | -   | 4  | 80   | ~60  | [10]         |
| 15 | Cellobiose | PMHS and Pd/C-SO3H-TMS | n-Butanol               | 120 | -   | 5  | 60   | ~50  | [13]         |
| 16 | Starch     | 4.8Pd/UiO-66@SGO       | THF                     | 200 | 1   | 6  | 53   | 19.5 | [10]         |
| 17 | Cellulose  | 4.8Pd/UiO-66@SGO+HCl   | THF                     | 200 | 1   | 6  | 26   | 10.3 | [12]         |
| 18 | Fructose   |                        |                         |     |     |    | 98.5 | 82.1 |              |
| 19 | Glucose    |                        |                         |     |     |    | 98.1 | 852  |              |
| 20 | Cellubiose | P-UiO-66 and Ni-Co/NC  | THF/Water               | 160 | 0.7 | 8  | 83.6 | 63.3 | This<br>work |
| 21 | Starch     |                        |                         |     |     |    | 70.2 | 35.0 |              |
| 22 | Cellulose  |                        |                         |     |     |    | 65.3 | 20.0 |              |

#### **References:**

- [1] M. Rimoldi, A. J. Howarth, M. R. DeStefano, L. Lin, S. Goswami, P. Li, J. T. Hupp, O. K. Farha, *ACS Catalysis* **2017**, *7*, 997-1014.
- [1] K.-i. Otake, J. Ye, M. Mandal, T. Islamoglu, C. T. Buru, J. T. Hupp, M. Delferro, D. G. Truhlar,
- C. J. Cramer, O. K. Farha, ACS Catalysis 2019, 9, 5383-5390.
- [2] P. P. Upare, D. W. Hwang, Y. K. Hwang, U.-H. Lee, D.-Y. Hong, J.-S. Chang, *Green Chem.*2015, 17, 3310-3313
- [3] T. Thananatthanachon, T. B. Rauchfuss, Angew. Chem. Int. Ed. 2010, 122, 6766-6768
- [4] Y. Román-Leshkov, C. J. Barrett, Z. Y. Liu, J. A. Dumesic, Nature 2007, 447, 982-985
- [5] M. Chidambaram, A. T. Bell, Green Chem. 2010, 12, 1253-1262
- [6] J. B. Binder, R. T. Raines, J. Am. Chem. Soc. 2009, 131, 1979-1985
- [7] B. Saha, C. M. Bohn, M. M. Abu-Omar, ChemSusChem 2014, 7, 3095-3101
- [8] X. Xiang, J. Cui, G. Ding, H. Zheng, Y. Zhu, Y. Li, ACS Sustain. Chem. Eng. 2016, 4, 4506-4510
- [9] Z. Wei, J. Lou, Z. Li, Y. Liu, Catal. Sci. Technol. 2016, 6, 6217-6225
- [10] R. Insyani, D. Verma, S. M. Kim, J. Kim, Green Chem. 2017, 19, 2482-2490
- [11]R. Insyani, D. Verma, H. S. Cahyadi, S. M. Kim, S. K. Kim, N. Karanwal, J. Kim, *Appl. Catal. B* **2019**, *243*, 337-354
- [12] H. Li, W. Zhao, A. Riisager, S. Saravanamurugan, Z. Wang, Z. Fang, S. Yang, Green Chem.2017, 192101-2106