Electronic Supplementary Information

Iron-Catalyzed Aerobic Oxidation of Alcohols in Water Selectively to Carboxylic Acids Mediated by Additives

Han Yu, ^{‡a,b} Jingjing Ren, ^{‡a} Ya Xie, ^{‡a} Xiaofang Su, ^c Aiping Wang, ^a Likai Yan, ^{c,*} Feng Jiang, ^{b,d,*} and Yongge Wei ^{b,*}

a. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.

b. Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China. E-mail: yonggewei@mail.tsinghua.edu.cn (Y.W.)

c. Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China. E-mail: yanlk924@nenu.edu.cn (L.Y.)

d. Key Laboratory of biomaterials and biofabrication in tissue engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China. E-mail: jiangfenghz@163.com (F.J.)

⁺ Electronic Supplementary Information (ESI) available: experimental conditions, supplementary table and NMR spectra. See DOI: 10.1039/x0xx00000x

Table of Contents

1.	General information	\$3
2.	Preparation of inorganic-ligand supported iron catalyst 1	S3
3.	FT-IR and XRD spectra of the catalyst	S4
4.	Crystal data, structure refinement and hydrogen bonds for FeMo $_6$ · Cl	S5
5.	Condition optimization	S7
6.	Gram-scale reaction	S9
7.	Recycling experiments of the catalyst	.S10
8.	The ¹ HNMR studies of tracking the oxidation process	.S11
9.	Computational details	.S14
10	. NMR data of products	.S14
11	. References	S20
12	. NMR spectra	S20

1. General information

All commercially available materials and solvents were used directly without further purification unless otherwise noted. ¹H NMR and ¹³C NMR data were recorded with a Bruker spectrometer (500 MHz) using TMS as internal standard and reported relative to residual solvent signals as follows: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. FT-IR spectra were recorded on a Thermo Fisher Nicolet 6700. XRD were explored on D/max 2200PC of Janpan. GC analyses were performed on Shimadzu GC-2014 with a flame ionization detector equipped with an Rtx-1 capillary column (internal diameter = 0.25 mm, length = 30 m) or a HP-INNOWAX (30*0.25*0.25, length = 30 m). GC mass spectra were recorded on Shimadzu GCMS-QP2010 with RTX-5MS column (0.25 mm× 30 m). Column chromatography was performed using 200-300 mesh silica gel.

CAUTION: The oxygen was used in the reaction, all ignition devices should be removed for that the oxygen can increase the intensity of any fire, including spark, stationary or flame sources, and so on. Pure oxygen inhalation should also be avoided. For more information, see: Cheremisinoff, N. P. *Handbook of Hazardous Chemical Properties*, Butterworth-Heinemann, Woburn, 1999.

$Fe_2(SO_4)_3$ filtration Filtration

2. Preparation of inorganic-ligand supported iron catalyst 1

 $(NH_4)_3$ [FeMo₆O₂₄H₆]·7H₂O was synthesized according to a modified published procedure^[1]: $(NH_4)_6$ Mo₇O₂₄·4H₂O(15.9 g) was dissolved in water (250 mL) and then heated to 100 °C. Fe₂(SO₄)₃ (3.8 g) was dissolved in water (60 mL), which was slowly added in the solution with stirring. The pH value of the mixture was kept to about 2.5-3.0. The mixture was still stirring 1h after completely adding. Then the crude ammonium salt filtrate obtained from the refluxed solution by heat filtering. The brown block crystals were filtered off after the filtrate stewed for 12 h at room temperature. The light yellow aim product (11.8 g) was collected after recrystallized in hot water (100 °C) for two times.

Preparation of (TBA)₃FeMo₆O₁₈(OH)₆: Tetrabutylammonium bromide (TBAB, 2.9 g), (NH₄)₃[FeMo₆O₁₈(OH)₆]·7H₂O (2.4 g, 2.0 mmol) were added to 50 mL of H₂O, and heated to 100 °C with stirring for 30 min. Then, a large white solid (3.9 g) appeared by adding 50 mL of acetonitrile after cooling naturally to room temperature, the target product was obtained by suction filtration and drying.

IR: v~max=3401.29 (vas NH, w), 2953.21 (vCH, s), 2782.41 (v CH, s), 1609.32 (w), 1552.24 (δ CH, s), 1486.65 (δ CH, m), 1379.43(w), 959.55 (v Mo=O, s), 929.62 (v Mo=O, s), 857.03 (v Mo=O, s), 669.83 (v Mo-O-Mo, vs), 560.94 (w) cm-1. ¹H NMR (500 MHz, DMSO) δ 7.12 (s, 6H), δ 3.25 (d, 3H),δ 3.15 (t, 24H), 1.61 (m, 24H), 1.28 (m, 24H), 0.95 (t, 36H).

3. FT-IR and XRD spectra of the catalyst

Figure S2. The FT-IR spectra of (TBA)₃[FeMo₆O₁₈(OH)₆].

Figure S3. The XRD spectra of (TBA)₃[FeMo₆O₁₈(OH)₆]

4. Crystal data, structure refinement and hydrogen bonds for FeMo6'Cl

FeMo₆·Cl was synthesized according to a modified published procedure ^[3]: (TBA)₃[FeMo₆O₁₈(OH)₆] (1.800 g, 1.0 mmol) and KCl (0.075 g, 1.0 mmol) was added into 20 mL H₂O and stirred for 30 minutes at 100 °C. Then the large white solid (1.223 g) appeared by adding 20 mL acetonitrile after cooling naturally to room temperature and filtered off.

	10010 01	erystar aata aria s			
	Identification code			FeMo ₆ Cl	
	CCDC number			1882680	
	Empirical formula			C ₆₄ H ₁₇₂ ClFeMo ₆ N ₄ O	35
	Formula weight			2224.99	
	Temperature/K			100	
	Crystal system			orthorhombic	
	Space group			Bhca	
	space group				
	a/A			48.6754(12)	
	b/A			17.5864(3)	
	c/Ă			23.1423(4)	
	α/°			90	
	β/°			90	
	v/°			90	
	Volume/Å ³			19810 4(7)	
	7			20010.1(7)	
				1 402	
				1.492	
	μ/mm ⁻			0.978	
	F(000)			9272.0	
	Crystal size/mm ³			$0.1 \times 0.1 \times 0.1$	
	Radiation			ΜοΚα (λ = 0.71073)
	20 range for data collection/°			6.67 to 59.276	
	Index ranges			$-67 \le h \le 48$. $-24 \le k \le 23$. -2	3 ≤ ≤ 31
	Reflections collected			83221	
	Independent reflections			22470 [P 0 0708 P.	- 0 08271
	Data (rostraints (narameters			23470 [Rint = 0.0708, Rsigma	- 0.0827]
	Data/restraints/parameters			23470/66/1105	
	Goodness-of-fit on F ²			1.177	
	Final R indexes [I>=2o (I)]			R ₁ = 0.0870, wR2 = 0.1	479
	Final R indexes [all data]			R1 = 0.1193, wR2 = 0.1	.592
	Largest diff. peak/hole / e Å ⁻³			1.10/-1.81	
		Table S2. Hydrog	en bonds for FeMo6·0	CI.	
D-H	d(D-H)	d(HA)	<dha< td=""><td>d(DA)</td><td>А</td></dha<>	d(DA)	А
O2-H2	0.980	2.313	141.83	3,143	Cl1
06-86	0.980	1 7/9	176 3/	2 773	05W/
01 11	0.080	2.745	120.25	2.775	
01-H1 04.114	0.980	2.456	130.55	5.250	
04-H4	0.980	2.601	129.67	3.314	07W
04-H4	0.980	2.345	129.70	3.065	08W
O9W-H9WA	0.850	1.937	160.31	2.752	010W
O9W-H9WB	0.850	1.907	152.77	2.691	05W
O3-H3	0.980	2.273	143.51	3.116	Cl1
O5W-H5WA	0.849	1.871	176.34	2.719	O6W
O5W-H5WB	0.851	1.944	150.18	2.715	O4W
C50-H50B	0 970	2 5 3 9	152 17	3 427	$\Omega \frac{1}{1} = 0.01 \times \frac{1}{2} = 0.000 \times \frac{1}{2} = 0.0000 \times \frac{1}{2} = 0.00000 \times \frac{1}{2} = 0.0000000000000000000000000000000000$
	0.020	1 776	160 21	2 742	0000
01-113	0.980	1.770	100.21	2.742	014
С9-Н9А	0.970	2.017	123.59	3.250	014
С9-Н9В	0.970	2.652	134.01	3.398	08
O1W-H1WA	0.850	1.966	170.27	2.807	012
O1W-H1WB	0.851	2.415	161.54	3.234	Cl1
O4W-H4WB	0.850	2.076	151.24	2.850	023
O7W-H7WA	0.850	1.963	167.95	2.799	08W
O7W-H1WB	0.850	2.495	121.53	3.028	O24
07W-H7WB	0.850	2 454	137 72	3 135	019
	0.850	2.434	146 10	2 221	C11
0300-11300A	0.851	2.570	140.10	2.331	
O3W-H3WB	0.850	1.915	1/8.22	2.765	0200
O8W-H8WA	0.850	1.976	167.51	2.812	09W
O10W-H10C	0.850	2.005	148.02	2.763	011W
O10W-H10D	0.848	2.005	155.95	2.802	O21
O11W-H11C	0.850	2.064	168.74	2.903	O10W [-x, -y+1, -z+1]
011W-H11D	0.850	2.038	161.31	2.856	O20 [-x, -v+1, -z+1]
O2W-H2WA	0.850	2.321	149.97	3.086	01W
O2\W/-H2\W/B	0.850	2 228	161 69	3 146	017
O3/W/T5/MB	0.850	2.525	112 72	2.140	012
	0.050	2.313	100 57	2.333	010
	0.850	1.941	100.57	2.775	011

Table S1. Crystal data and structure refinement for $\mathsf{FeMo}_{6}\mathsf{\cdot}\mathsf{Cl}$

Figure S4 The BET report of $\mathsf{FeMo}_6{\cdot}\mathsf{Cl}$

Figure S5 The SEM report of FeMo6·Cl

Figure S6 The XRD of FeMo6·Cl

5. Condition Optimization

General procedure: To a Schlenk tube were added cinnamic alcohol (134.1 mg, 1.0 mmol), Cat. **1** (19.9 mg, 0.01mmol), KCl (14.9 mg, 0.2 mmol), and H₂O (2 mL) sequentially under the atmosphere of oxygen from a O₂ balloon. The Schlenk tube was then stirred at 70 °C until completion of the reaction as monitored by GC (24 h). The crude reaction mixture was extracted with ethyl acetate or ether (7.5 mL). After evaporation, the residue was purified by chromatography on silica gel to afford **2a** (136.3 mg, 92%) (eluent: petroleum ether/ethyl acetate) as a white crystal. The following starting materials **3-41** were conducted according to **General Procedure**.

Cyclic voltammogram: Cyclic voltammograms were obtained at the glassy carbon electrode and a 1.0 mM acetonitrile solution of the FeMo₆ in the presence of increasing respectively amounts of KCl, MgCl₂, RbCl, NH₄Cl, NaCl, LiCl, KF KBr, and KI at sweep rates of 100 mV s⁻¹.

Table S3. The effects of catalyst and additives

	ОН	O _n (1 atm)	Cat. 1 (1 mol %) Additive (0.2 equiv.)		ОН	
	+	(balloon)	H ₂ O (2.0 ml), 24 h, 70 °C			
Entry ^a	Cat. (mol%)	Additive	Conversion (%)	Yield (%)	Selectivity (%)	
1	1	-	<5	n.t.	n.t.	
2	1	Na ₂ SO ₄	21	20	95	
3 ^b	1	Na ₂ SO ₄	7	<3	n.t.	
4	1	NaF	41	28	68	
5	1	NaCl	33	32	98	
6	1	NaBr	33	26	78	
7	1	Nal	28	26	70	
8	1	NaNO ₂	0	20	0	
9	1	NaCO₂H	0	0	0	
10	1	Na ₂ CO ₃	0	0	0	
11	1	NaHCO₃	5	trace	n.t.	
12	1	RbCl	17	9	n.t.	
13	1	CsCl	27	13	n.t.	
14	1	CaCl ₂	12	7	n.t.	
15	1	MgCl ₂	0	0	0	
16	1	ZnCl ₂	6	trace	n.t.	
17	1	LiCl	35	19	54	
18	1	NH₄Cl	46	30	65	
19	1	KCI	>99	96	97	
20	0.5	KCI	93	88	95	
21	2	KCI	>99	91	96	
22 ^c	1	KCI	96	80	92	
23 ^d	1	KCI	85	78	92	
24	-	KCI	0	0	0	
25	Fe ₂ (SO ₄) ₃ ·9H ₂ O	KCI	0	0	0	
26	(NH4)6M07O24·4H2O	KCI	0	0	0	
27 ^e	1	KCI	10	9	90	
28	1	KF	66	48	72	
29	1	KBr	59	40	68	
30	1	KI	55	39	70	

^{*a*}Reaction conditions: cinnamic alcohol (1 mmol), **1** (1 mol%), additive (20 mol%), O₂ (1.0 atm, balloon), H₂O (2.0 mL), 70 °C, yields and selectivity were determined by GC and confirmed by GC-MS. ^{*b*}Reaction was carried out under atmospheric argon. ^{*c*}at 60 °C. ^{*d*}at 80 °C. ^{*e*}at 60 °C and air as oxidant.

	OH ₊ O ₂ (1 (balloo	atm) <u>Cat.1 (1.0 mmol%)</u> , KCI (0. solvent (2.0 ml), Time, 7	2 equiv.)	
Entry ^a	Solvent	Time (h)	Selectivity (%)	Yield (%)
1	Dioxane	24	92	47
2	Toluene	24	95	61
3	DMF	24	97	55
4	MeOH	24	90	74
5	MeCN	24	94	69
6 ^{<i>b</i>}	CH ₂ Cl ₂	24	96	57
7 ^c	THF	24	95	42
8 ^d	Acetone	24	95	59
9	H ₂ O	24	99	96
10	MeOH	12	96	78
11	MeOH	30	97	82
12 ^e	CH ₂ Cl ₂	30	95	29

Table S4. The effects of solvents and time

^{*a*}Reaction conditions: cinnamic alcohol (1.0 mmol), **1** (1.0 mol%), KCl (0.2 equiv.), O₂ (1.0 atm), Solvent (2.0 mL), 70 °C, yields and selectivity were determined by GC and confirmed by GC-MS. ^{*b*} at 40 °C. ^{*c*} at 60 °C. ^{*c*} at 50 °C. ^{*c*} at 30 °C, *a* ir as oxidant.

Figure S7. Cyclic voltammogram experiments. Cyclic voltammograms (298 K, scan rate 100mVs⁻¹) of a 1.0 mM acetonitrile solution of the FeMo₆ in the presence of KCl MgCl₂ RbCl NH₄Cl NaCl and LiCl.

Figure S8. Cyclic voltammogram experiments. Cyclic voltammograms (298 K, scan rate 100mVs⁻¹) of a 1.0 mM acetonitrile solution of the FeMo₆ in the presence of KCl KF KBr and KI.

6. Gram-scale reaction

To a 50 mL three-necked bottle were added cinnamic alcohol (1.34 g, 0.01 mol), Cat.1 (0.20 g, 0.0001mol), KCI (0.15 g, 0.002 mol), and H₂O (20 mL) sequentially under the atmosphere of O₂ from a gas bag with a valve. The three-necked bottle was then stirred at 70 °C until completion of the reaction as monitored by GC (24 h). The crude reaction mixture was extracted with ethyl acetate (3*20 mL). After evaporation, the residue was purified by recrystallization (water/ethanol = 3/1) to afford 2a (1.36 g, 92%) as a white crystal.

Figure S9. Gram-scale reaction of the catalyst.

7. Recycling experiments of the catalyst

The Fe^{III}Mo₆ catalyst was precipitated by adding ethyl acetate or anhydrous ether to the reaction system after the oxidative experiments, and then recovered for reuse. The recovered catalyst was characterized by FT-IR and XRD.

Figure S10. Recycling experiments of the catalyst.

Figure S11. The FT-IR spectra of the catalyst before and after the reaction.

Figure S12. The XRD spectra of the catalyst before and after the reaction.

8. The ¹H NMR studies for tracking the oxidation process

Figure S13. ¹H NMR spectra of the reaction mixture at different time points.

Figure S14. ¹H NMR Tracing of d₁-benzyl alcohol

9. Computational details

All DFT calculations were performed by using B3LYP-D3 hybrid functional^[4] in Gaussian 09 program package.^[5] The solvent effect was modeled with the conductor-like polarizable continuum model (CPCM) in water.^[6] The basis sets LANL2DZ^[7] and 6-31G(d, p)^[8] were applied for metal atoms (Fe, Mo) and non-metal atoms (H, C, O, CI), respectively. On the basis of optimized structure, the single-point energy was obtained at B3LYP-D3/6-311+G(d,p)/SDD level.

able S5. The frontier r	molecular orbital	energy levels	s of I	(eV).
-------------------------	-------------------	---------------	--------	-------

	LUMO	LUMO+1	LUMO+2
α spin	-2.19	-2.18	-2.06
β spin	-3.39	-3.29	-3.29

10. NMR data of products

Cinnamic acid (2)^[9]: White crystal. ¹H NMR (400 MHz, CDCl₃) δ 12.25 (s, 1H), δ 7.83 (d, *J* = 16.0 Hz, 1H), 7.62 – 7.55 (m, 2H), 7.47 – 7.42 (m, 3H), 6.49 (d, *J* = 16.0 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 172.44 (s), 147.14 (s), 134.05 (s), 130.79 (s), 128.99 (s), 128.40 (s), 117.31 (s).

4-Methylcinnamic acid (3) ^[9]: White powder. ¹**H NMR** (400 MHz, DMSO- d_6) δ 12.27 (s, 1H), 7.55 – 7.48 (m, 3H), 7.18 (d, J = 8.0 Hz, 2H), 6.42 (d, J = 16.0 Hz, 1H), 2.28 (s, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 168.20 (s), 144.45 (s), 140.66 (s), 132.03 (s), 130.03 (s), 128.71 (s), 118.62 (s), 21.53 (s).

4-methoxycinnamic acid (4) ^[9]: White powder. ¹**H NMR** (400 MHz, DMSO- d_6) δ 12.18 (s, 1H), 7.59 (d, J = 8.7 Hz, 2H), 7.50 (d, J = 16.0 Hz, 1H), 6.93 (d, J = 8.7 Hz, 2H), 6.34 (d, J = 16.0 Hz, 1H), 3.75 (s, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 168.36 (s), 161.46 (s), 144.27 (s), 130.46 (s), 127.35 (s), 117.02 (s), 114.87 (s), 55.83 (s).

4-fluorocinnamic acid (5) ^[9]: White crystal. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.35 (s, 1H), 7.72 (dd, J = 8.7, 5.6 Hz, 2H), 7.55 (d, J = 16.0 Hz, 1H), 7.20 (t, J = 8.8 Hz, 2H), 6.45 (d, J = 16.0 Hz, 1H).¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 168.04 (s), 162.44 (d, J = 246.98 Hz), 143.22 (s), 131.42 (s), 130.98 (s), 119.63 (s), 116.50 (s).

4-chlorocinnamic acid (6) ^[9]: Colorless crystal. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.43 (s, 1H), 7.69 (d, J = 8.5 Hz, 2H), 7.54 (d, J = 16.0 Hz, 1H), 7.43 (d, J = 8.5 Hz, 2H), 6.52 (d, J = 16.0 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.95 (s), 143.04 (s), 135.23 (s), 133.75 (s), 130.47 (s), 129.45 (s), 120.61 (s).

4-bromocinnamic acid (7)^[9]: White crystal. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.57 (dt, J = 19.6, 12.3 Hz, 5H), 6.53 (d, J = 16.0 Hz, 1H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.94 (s), 143.13 (s), 134.07 (s), 132.38 (s), 130.68 (s), 124.05 (s), 120.67 (s).

4-(trifluoromethyl)cinnamic acid (8) ^[9]: White powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.61 (s, 1H), 7.86 (d, J = 8.1 Hz, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.62 (d, J = 16.1 Hz, 1H), 6.64 (d, J = 16.1 Hz, 1H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.73 (s), 142.59 (s), 138.79 (s), 130.51 (s), 129.33 (s), 126.18 (d, J = 3.7 Hz), 122.68 (s).

Benzoic acid (9) ^[9]: White solid. ¹**H NMR** (400 MHz, CDCl₃) δ 10.04 (d, J = 7.8 Hz, 2H), 9.57 (d, J = 3.1 Hz, 1H), 9.43 (d, J = 2.0 Hz, 2H).¹³**C NMR** (100 MHz, CDCl₃) δ 173.90 (s), 135.88 (s), 132.07 (s), 131.23 (s), 130.54 (s).

p-Toluic acid (10) ^[9]: White powder. ¹**H NMR** (400 MHz, DMSO- d_6) δ 12.75 (s, 1H), 7.80 (d, J = 8.1 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 2.31 (s, 3H). ¹³**C NMR** (100 MHz, DMSO- d_6) δ 167.84 (s), 143.52 (s), 129.85 (s), 129.62 (s), 128.55 (s), 21.62 (s).

4-Isopropylbenzoic acid (11)^[9]: White powder. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 2.98 (dt, J = 13.8, 6.9 Hz, 1H), 1.27 (d, J = 6.9 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.51 (s), 155.48 (s), 130.50 (s), 126.72 (s), 125.65 (s), 34.44 (s), 23.77 (s).

4-Methoxybenzoicacid (12)^[9]: White powder. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.59 (s, 1H), 7.85 (d, J = 8.9 Hz, 2H), 6.97 (d, J = 9.0 Hz, 2H), 3.78 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.54 (s), 163.36 (s), 131.87 (s), 123.48 (s), 114.33 (s), 55.95 (s).

4-Fluorobenzoic acid (13)^[9]: White powder. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (dd, J = 8.9, 5.4 Hz, 2H), 7.14 (t, J = 8.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 166.89 (d, J = 253.8 Hz), 132.63 (d, J = 9.5 Hz), 116.27 (s), 116.05 (s).

4-chlorobenzoic acid (14)^[9]: White powder. ¹H NMR (500 MHz, DMSO-*d*₆) δ 13.16 (s, 1H), 7.93 (d, J = 8.6 Hz, 2H), 7.52 (d, J = 8.6 Hz, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 166.91 (s), 138.25 (s), 131.55 (s), 130.07 (s), 129.10 (s).

4-bromobenzoic acid (15)^[9]: White powder. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 13.19 (s, 1H), 7.85 (s, 2H), 7.71 (s, 2H). ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 167.07 (s), 132.85 (s), 131.48 (s), 131.13 (s), 130.47 (s).

4-(trifluoromethyl)benzoic acid (16)^[9]: White powder. ¹H NMR (500 MHz, DMSO-*d*₆) δ 13.49 (s, 1H), 8.14 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 8.2 Hz, 2H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 166.65 (s), 135.05 (s), 132.81 (s), 130.55 (s), 126.05 (s), 125.34 (s).

4-nitrobenzoic acid (17)^[9]: Light yellow powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.63 (s, 1H), 8.27 (d, J = 8.8 Hz, 2H), 8.11 (d, J = 8.8 Hz, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.34 (s), 150.58 (s), 136.90 (s), 131.24 (s), 124.28 (s).

2,4,6-Trimethylbenzoic acid (18)^[9]: White powder. ¹H NMR (400 MHz, CDCl₃) δ 8.83 (s, 2H), 4.31 (s, 6H), 4.22 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 176.29 (s), 142.14 (s), 137.89 (s), 131.31 (s), 130.65 (s), 22.86 (s), 21.94 (s).

naphthoic acid (19)^[9]: Light yellow powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.05 (s, 1H), 8.58 (s, 1H), 8.10 – 7.93 (m, 4H), 7.64 – 7.52 (m, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.98 (s), 135.46 (s), 132.67 (s), 131.05 (s), 129.80 (s), 128.71 (t, J = 12.7 Hz), 128.18 (s), 127.33 (s), 125.69 (s).

4-bromo-2-chlorobenzoic acid (20) ^[9]: White powder. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 13.73 (s, 1H), 7.94 (d, J = 2.3 Hz, 1H), 7.74 (dd, J = 8.6, 2.5 Hz, 1H), 7.52 (d, J = 8.6 Hz, 1H). ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 135.57 (s), 133.86 (s), 133.48 (s), 133.05 (s), 131.33 (s), 120.32 (s).

3,5-dimethoxybenzoic acid (21)^[9]: White powder. ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.94 (s, 1H), 6.97 (d, J = 2.3 Hz, 2H), 6.64 (t, J = 2.2 Hz, 1H), 3.69 (s, 6H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 167.43 (s), 160.83 (s), 133.30 (s), 107.29 (s), 105.33 (s), 55.86 (s).

4-hydroxy-3-methoxybenzoic acid (22)^[9]: liquid. ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 12.45 (s, 1H), 9.80 (s, 1H), 7.42 – 7.36 (m, 2H), 6.80 (d, J = 8.5 Hz, 1H), 3.76 (s, 3H). ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 167.73 (s), 151.60 (s), 147.72 (s), 123.98 (s), 122.10 (s), 115.53 (s), 113.19 (s), 56.03 (s).

salicylic acid (23)^[9]: White solid. ¹H NMR (400 MHz, DMSO- d_6) δ 13.76 (s, 1H), 11.37 (s, 1H), 7.75 (dd, J = 7.9, 1.7 Hz, 1H), 7.48 – 7.44 (m, 1H), 6.92 – 6.85 (m, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 172.48 (s), 161.68 (s), 136.17 (s), 130.79 (s), 119.69 (s), 117.61 (s), 113.40 (s).

picolinic acid (24) ^[9]: White powder. ¹H NMR (400 MHz, DMSO- d_6) δ 13.13 (s, 1H), 8.66 (d, J = 4.6 Hz, 1H), 8.01 – 7.92 (m, 2H), 7.58 (ddd, J = 7.5, 4.7, 1.2 Hz, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 166.70 (s), 149.96 (s), 148.86 (s), 138.04 (s), 127.62 (s), 125.18 (s).

2-furoic acid (25)^[9]: Off-white powder. ¹H NMR (400 MHz, CDCl₃) δ 11.32 (s, 1H), 7.66 – 7.61 (m, 1H), 7.35 – 7.30 (m, 1H), 6.55 (dd, J = 3.6, 1.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 163.73 (s), 147.54 (s), 143.88 (s), 120.28 (s), 112.38 (s).

2-thiophenecarboxylic acid(26) ^[9]: Solid. ¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (dd, J = 3.7, 1.2 Hz, 1H), 7.64 (dd, J = 4.9, 1.1 Hz, 1H), 7.14 (dd, J = 4.9, 3.8 Hz, 1H). ¹³**C NMR** (100 MHz, CDCl₃) δ 167.74 (s), 135.13 (s), 134.13 (s), 132.92 (s), 128.17 (s).

2-methyl-1,3-thiazole-5-carboxylic acid (27)^[9]: Solid. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 13.29 (s, 1H), 8.07 (s, 1H), 2.60 (s, 3H). ¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 172.21 (s), 162.54 (s), 147.99 (s), 130.50 (s), 19.78 (s).

Propionic acid (28) ^[9]: Colorless liquid. ¹H NMR (500 MHz, CDCl₃) δ 11.83 (s, 1H), 1.61 – 1.45 (m, 2H), 0.91 – 0.77 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 180.15 (s), 17.88 (s), 13.11 – 12.95 (m).

Valeric acid (29) ^[9]: Colorless liquid. ¹**H NMR** (500 MHz, CDCl₃) δ 11.60 (s, 1H), 2.13 (td, J = 7.6, 2.4 Hz, 2H), 1.50 – 1.34 (m, 2H), 1.17 (pd, J = 7.5, 2.4 Hz, 2H), 0.72 (td, J = 7.4, 2.4 Hz, 3H). ¹³**C NMR** (125 MHz, CDCl₃) δ 180.27 (s), 33.52 (s), 26.54 (s), 21.96 (s), 13.22 (s).

acrylic acid (30) ^[9]: Clear liquid. ¹H NMR (500 MHz, CDCl₃) δ 11.63 (s, 1H), 6.26 (dd, J = 17.3, 1.2 Hz, 1H), 5.90 (dd, J = 17.3, 10.5 Hz, 1H), 5.71 (dd, J = 10.4, 1.2 Hz, 1H). ¹³C NMR (125 MHz, CDCl₃) δ 171.34 (s), 132.70 (s), 127.80 (s).

3,3-dimethylacrylic acid (31)^[9]: White crystal. ¹H NMR (500 MHz, DMSO-*d*₆) δ 11.73 (s, 1H), 5.51 (s, 1H), 1.98 (s, 3H), 1.74 (s, 4H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 167.75 (s), 155.83 (s), 116.93 (s), 27.22 (s), 20.08 (s).

Geranic acid (32)^[9]: Solid. ¹**H NMR** (400 MHz, CDCl₃) δ 13.84 (s, 1H), 7.62 (d, J = 1.1 Hz, 1H), 7.08 – 6.97 (m, 1H), 4.15 – 4.09 (m, 6H), 3.86 (d, J = 1.3 Hz, 1H), 3.62 (s, 3H), 3.55 (s, 3H). ¹³**C NMR** (100 MHz, CDCl₃) δ 174.64 (s), 165.48 (s), 134.56 (s), 124.82 (s), 117.02 (s), 43.16 (s), 35.63 (s), 28.01 (s), 27.34 (s), 19.35 (s).

Levulinicacid (33) ^[9]: Clear yellow liquid. ¹H NMR (500 MHz, CDCl₃) δ 10.02 (s, 1H), 2.34 (t, J = 6.5 Hz, 2H), 2.12 (t, J = 6.5 Hz, 2H), 1.73 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 208.31 (s), 176.96 (s), 37.26 (s), 27.32 (s).

2-chloropropionic acid (34)^[9]: Colourless liquid. ¹H NMR (500 MHz, CDCl₃) δ 11.13 (s, 1H), 4.30 (q, J = 7.0 Hz, 1H), 1.52 (d, J = 7.1 Hz, 2H). ¹³C NMR (125 MHz, CDCl₃) δ 176.03 (d, J = 1.3 Hz), 52.09 (s), 21.07 (s).

Cyclohexanecarboxylic acid (35)^[9]: White solid. ¹H NMR (500 MHz, CDCl₃) δ 12.20 (s, 1H), 2.26 (d, J = 10.9 Hz, 1H), 1.87 (s, 2H), 1.70 (s, 2H), 1.58 (s, 1H), 1.40 (s, 2H), 1.31 – 1.09 (m, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 182.82 (s), 42.86 (s), 28.66 (s), 25.65 (s), 25.25 (s).

Indole-5-carboxylic acid (36)^[9]: Light beige powder. ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.38 (s, 1H), 11.43 (s, 1H), 8.24 (d, J = 0.6 Hz, 1H), 7.71 (dd, J = 8.5, 1.5 Hz, 1H), 7.49 - 7.41 (m, 2H), 6.61 - 6.55 (m, 1H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.88 (s), 138.78 (s), 127.64 (s), 127.37 (s), 123.26 (s), 122.66 (s), 121.85 (s), 111.55 (s), 102.94 (s).

1h-indazole-6-carboxylic acid (37) ^[9]: White powder. ¹**H NMR** (500 MHz, DMSO- d_6) δ 12.38 (s, 1H), 11.43 (s, 1H), 8.24 (d, J = 0.6 Hz, 1H), 7.71 (dd, J = 8.5, 1.5 Hz, 1H), 7.49 - 7.41 (m, 2H), 6.61 - 6.55 (m, 1H). ¹³**C NMR** (125 MHz, DMSO- d_6) δ 168.88 (s), 138.78 (s), 127.64 (s), 127.37 (s), 123.26 (s), 122.66 (s), 121.85 (s), 111.55 (s), 102.94 (s).

Piperonylic acid (38)^[9]: Off-white powder. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.72 (s, 1H), 7.50 (dd, J = 8.1, 1.6 Hz, 1H), 7.32 (d, J = 1.6 Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.08 (s, 2H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 167.15 (s), 151.65 (s), 147.99 (s), 125.48 (s), 109.31 (s), 108.58 (s), 102.46 (s).

1-benzofuran-5-carboxylic acid (39): Solid. ¹**H NMR** (500 MHz, DMSO-*d*₆) δ 12.78 (s, 1H), 8.21 (d, J = 0.8 Hz, 1H), 8.01 (d, J = 2.0 Hz, 1H), 7.83 (dd, J = 8.6, 1.3 Hz, 1H), 7.59 (d, J = 8.6 Hz, 1H), 6.99 (d, J = 1.4 Hz, 1H).¹³**C NMR** (125 MHz, DMSO-*d*₆) δ 167.86 (s), 157.15 (s), 147.86 (s), 127.83 (s), 126.27 (d, J = 8.9 Hz), 123.88 (s), 111.74 (s), 107.77 (s).

2-(cyclopropylmethoxy)benzoic acid (40)^[9]: Solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.54 (s, 1H), 7.63 (dd, J = 7.6, 1.7 Hz, 1H), 7.50 – 7.39 (m, 1H), 7.06 (d, J = 8.4 Hz, 1H), 6.98 (t, J = 7.5 Hz, 1H), 3.89 (d, J = 6.6 Hz, 3H), 1.21 (s, 1H), 0.53 (dd, J = 8.1, 1.8 Hz, 3H), 0.35 (d, J = 6.2 Hz, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 167.91 (s), 157.80 (s), 133.25 (d, J = 3.1 Hz), 130.97 (s), 122.33 (s), 120.57 (s), 114.36 (s), 73.08 (s), 10.47 (s), 3.26 (s).

2-(2-isopropoxyphenyl)-7-methoxy-1-methyl-1H-benzo[d]imidazole-5-carboxylic acid (41)^[9]: Solid. ¹H NMR (500 MHz, DMSO-*d*₆) δ 12.67 (s, 1H), 7.79 (s, 1H), 7.44 (t, J = 7.9 Hz, 2H), 7.36 (dd, J = 7.4, 1.2 Hz, 2H), 7.26 (s, 1H), 7.13 (d, J = 8.4 Hz, 1H), 6.99 (t, J = 7.4 Hz, 2H), 4.59 (dt, J = 12.0, 6.0 Hz, 2H), 3.89 (s, 5H), 3.70 (s, 5H), 1.10 (d, J = 6.0 Hz, 10H). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 168.26 (s), 155.83 (s), 154.22 (s), 147.05 (s), 144.30 (s), 132.90 (s), 132.24 (s), 128.58 (s), 125.32 (s), 120.90 (s), 114.94 (s), 114.07 (s), 104.53 (s), 79.77 (s), 56.40 (s), 22.10 (s).

11. Reference

[1] B. Hasenknopf, R. Delmont, P. Herson, P. Gouzerh, Eur. J. Inorg. Chem. 2002, 5, 1081.

[2] P. Wu, P. Yin, J. Zhang, J. Hao, Z. Xiao, Y. Wei, Chem. Eur. J. 2011, 17, 12002.

[3] A. Blazevic, A.-S. Emir, A. Roller, G. Giester, A. Rompel, Chem. Eur. J. 2015, 21, 4762.

[4] (a) C. Lee, C. Yang, R. G. Parr, *Phys. Rev. B: Condens. Matter Mater. Phys.* **1988**, *37*, 785. (b) A. D. Becke, *J. Chem. Phys.* **1993**, *98*, 5648. (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. **1994**, *98*, 11623. (d) K. S. Thanthiriwatte, E. G. Hohenstein, L. A. Burns, C. D. Sherrill, J. Chem. Theory Comput. **2011**, *7*, 88.

[5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, *Gaussian 09*, revision D.01; Gaussian, Inc.: Wallingford, CT, **2009**.

[6] E. Cances, B. Mennucci, J. Tomasi, J. Chem. Phys. 1997, 107, 3032.

[7] P. J. Hay, W. R.Wadt, J. Chem. Phys. 1985, 82, 299.

[8] (a) M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. Defrees, J. A. Pople, J. Chem. Phys. **1982**, 77, 3654. (b) P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. **1973**, 28, 213. (c) G. A. Petersson, T. G. Tensfeldt, J. A. Montgomery, J. Chem. Phys. **1991**, 94, 6091.

[9] (a) S. M. McKenna, S. Leimkühler, S. Herter, N. J. Turner, A. J. Carnell. *Green Chem.* **2015**, *17*, 3271-3275. (b) S. M. Kim, Y. S. Kim, D. W. Kim, J. W. Yang. *Green Chem.* **2012**, *14*, 2996-2998. (c) P. Thiruvengetam, D. K. Chand. *J. Org. Chem.* **2022**, *87*, 4061-4077. (c) Y. Wan, Z. K. Wu, H. Yu, S. Han, Y. G. Wei. *Green Chem.* **2020**, *22*, 3150-3154. (d) H. Yu, S. Ru, Y. Zhai, G. Dai, S. Han, Y. Wei. *ChemCatChem* **2018**, *10*, 1253-1257. (e) A. Itoh, S.-i. Hirashima, *Synthesis.* **2006**, *2006*, 1757-1759.

12. NMR Spectra

12.25 7.85 7.59 7.59 7.59 7.59 7.59 7.59 7.45 7.45 7.45 7.45 7.44 7.45 7.44 7.45 7.43 7.42 7.42 7.42 7.42 6.51 6.51

1.

¹³C NMR spectra of 21 (125 MHz, DMSO-d₆)

