Supplementary Information

Visible-Light-Induced Smiles Rearrangement without Release of SO₂: Rapid Access to Alkyl Sulfonyl Derivatives

Yunpeng Cao, Xinmou Wang, Haoran Jiao, Hongjian Song*, Yuxiu Liu* and Qingmin Wang*

State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, People's Republic of China

E-mail: songhong jian @nankai.edu.cn, liuyuxiu@nankai.edu.cn, wang qm@nankai.edu.cn

Contents

Ge	neral Information	1
1.	Preparation of substrates	2
2.	Reaction optimization	.10
3.	Investigation of the mechanism	.11
4.	Experimental procedures and product characterization	.14
5.	Reference	.41
6.	¹ H NMR and ¹³ C NMR spectrum	42

General Information

All commercially available reagents were used without further purification unless mentioned otherwise. ¹H and ¹³C Nuclear Magnetic Resonance (NMR) spectra were recorded on Bruker Avance 400 Ultrashield NMR spectrometer. Chemical shifts (δ) were given in parts per million (ppm) and were measured downfield from internal tetramethylsilane. High-resolution mass spectrometry (HRMS) data were obtained on an FTICR-MS instrument (Ionspec 7.0 T, ESI/ Quadrupole Mass Analyzer, ESI-QMA). The melting points were determined on an X-4 microscope melting point apparatus and are uncorrected. Conversion was monitored by thin layer chromatography (TLC). Flash column chromatography was performed over silica gel (100-200 mesh). 200 mesh). Blue LED (30 W, λ max = 470nm) was purchased from JIADENG (LS) was used for blue light irradiation. A fan attached to the apparatus was used to maintain the reaction temperature at room temperature.

1.Preparation of substrates

General procedure 1 for the preparation of butenyl heteroaryl sulfone

According to literature reports,^{1, 2}to a 100 mL round-bottom flask was added compound **S1** (5.0 mmol), compound **S2**(7.5 mmol, 1.5 equiv), K₂CO₃ (1.0 g, 7.5 mmol, 1.5 equiv), and 30 mL DMF. The resulting solution was stirred at room temperature for $3 \sim 10$ h, quenched with H₂O (50 mL), extracted with EA (50 mL × 3). The combined organic layer was washed with brine (30 mL × 3), dried over Na₂SO₄, and concentrated. The crude sulfide product was used in the next step without further purification. The sulfide was dissolved (5.0 mmol, 1 equiv) in EtOH (30 mL), (NH₄)₆Mo₇O₂₄·4H₂O (0.5 mmol, 0.1 equiv), and 30% H₂O₂(15.0 mmol) was added at 0 °C. The resulting mixture was stirred at room temperature for 8 ~16 h. quenched with H₂O (50 mL), extracted with EA (50 mL × 3). The combined organic layer was washed with brine (30 mL × 3), dried over Na₂SO₄, and concentrated.The residue was purified by flash chromatography on a silica gel using petroleum ether and ethyl acetate (20/1~2/1, v/v) as the eluent to give substrate **1**.

2-(but-3-en-1-ylsulfonyl)benzo[d]thiazole(1a)

White solid, yield 70% (0.88 g).

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 7.7 Hz, 1H), 8.02 (d, J = 7.6 Hz, 1H), 7.70 – 7.55 (m, 2H), 5.77 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.19 – 4.99 (m, 2H), 3.64 – 3.57 (m, 2H), 2.71 – 2.60 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.8, 152.9, 136.9, 133.3, 128.2, 127.8, 125.6, 122.5, 117.8, 54.0, 26.7.

The data are in accord with the previous literature.³

2-(but-3-en-1-ylsulfonyl)-4-methylbenzo[d]thiazole(1b)

White solid, yield 80% (1.06 g). M.p. = 64-65 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 8.1 Hz, 1H), 7.45 (t, J = 7.7 Hz, 1H), 7.39 (d, J = 7.3 Hz, 1H), 5.84 – 5.72 (m, 1H), 5.15 – 5.04 (m, 2H), 3.62 – 3.57 (m, 2H), 2.77 (s, 3H), 2.68 – 2.62 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 164.3, 152.3, 136.7, 135.8, 133.4, 128.1, 128.0, 119.6, 117.6, 53.8, 26.6, 18.3.

 $\label{eq:HRMS} \textbf{(ESI)} \ m/z; \ [M+H]^+ Calcd \ for C_{12} H_{14} NO_2 S_2^{+2} 68.0460; found 268.0462$

2-(but-3-en-1-ylsulfonyl)-5-chlorobenzo[d]thiazole(1c)

White solid, yield 75% (1.07 g). M.p. = 97–98 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.21 (d, J = 1.7 Hz, 1H), 7.95 (d, J = 8.7 Hz, 1H), 7.58 (dd, J = 8.7, 2.0 Hz, 1H), 5.77 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.13 (ddd, J = 17.1, 2.8, 1.5 Hz, 1H), 5.08 (ddd, J = 10.2, 2.4, 1.1 Hz, 1H), 3.64 – 3.57 (m, 2H), 2.68 – 2.61 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 167.8, 153.6, 135.1, 134.1, 133.2, 129.0, 125.2, 123.3, 117.9, 53.9, 26.6.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₁₁H₁₁ClNO₂S₂⁺287.9914;found 287.9918 **5-bromo-2-(but-3-en-1-ylsulfonyl)benzo**[*d*]thiazole(1d)

White solid, yield 73% (1.21 g). M.p. = 91-92 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.36 (d, J = 1.8 Hz, 1H), 7.89 (d, J = 8.7 Hz, 1H), 7.70 (dd, J = 8.7, 1.8 Hz, 1H), 5.76 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.15 – 5.05 (m, 2H), 3.62 – 3.57 (m, 2H), 2.67 – 2.60 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 167.5, 153.8, 135.6, 133.1, 131.5, 128.3, 123.6, 121.6, 117.9, 53.9, 26.6.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₁₁H₁₁BrNO₂S₂⁺331.9409;found 331.9412 2-(but-3-en-1-ylsulfonyl)-6-chlorobenzo[*d*]thiazole(1e)

White solid, yield 74% (1.06 g). M.p. = 98-99 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.12 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 1.9 Hz, 1H), 7.60 (dd, J = 8.8, 2.0 Hz, 1H), 5.76 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.15 – 5.03 (m, 2H), 3.62 – 3.56 (m, 2H), 2.68 – 2.60 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 166.3, 151.3, 138.0, 134.6, 133.2, 129.0, 126.4, 122.0, 117.9, 54.0, 26.6.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₁₁H₁₁ClNO₂S₂⁺287.9914;found 287.9918 6-bromo-2-(but-3-en-1-ylsulfonyl)benzo[*d*]thiazole(1f)

White solid, yield 69% (1.14 g). M.p. = 112-114 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.18 (d, J = 1.6 Hz, 1H), 8.07 (d, J = 8.8 Hz, 1H), 7.74 (dd, J = 8.8, 1.7 Hz, 1H), 5.77 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.16 – 5.03 (m, 2H), 3.66 – 3.56 (m, 2H), 2.69 – 2.59 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 166.4, 151.6, 138.4, 133.2, 131.6, 126.6, 125.0, 122.4, 117.9, 54.0, 26.6.

HRMS(ESI) m/z: $[M+H]^+$ Calcd for $C_{11}H_{11}BrNO_2S_2^+331.9409$; found 311.9412

2-(but-3-en-1-ylsulfonyl)-6-methoxybenzo[d]thiazole(1g)

White solid, yield 77% (1.09 g). M.p. = 72–74 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.08 (d, J = 9.1 Hz, 1H), 7.39 (d, J = 2.4 Hz, 1H), 7.23 (dd, J = 9.1, 2.5 Hz, 1H), 5.77 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.16 – 5.01 (m, 2H), 3.92 (s, 3H), 3.58 – 3.51 (m, 2H), 2.66 – 2.60 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 162.4, 160.0, 147.4, 139.0, 133.4, 126.3, 118.5, 117.7, 103.6, 56.1, 54.2, 26.7.

HRMS(ESI) m/z: $[M+H]^+$ Calcd for $C_{12}H_{14}NO_3S_2^+$ 284.0410; found 284.0412

2-(but-3-en-1-ylsulfonyl)benzo[d]oxazole(1h)

White solid, yield 52% (0.62 g). M.p. = 71–73 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.89 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 8.3 Hz, 1H), 7.58 (t, J = 7.8 Hz, 1H), 7.51 (t, J = 7.7 Hz, 1H), 5.78 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.14 (dd, J = 17.1, 1.2 Hz, 1H), 5.07 (dd, J = 10.2, 0.8 Hz, 1H), 3.66 – 3.60 (m, 2H), 2.73 – 2.65 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 158.1, 151.0, 139.5, 132.9, 128.7, 126.3, 122.2, 118.0, 112.0, 54.0, 26.3.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₁₁H₁₂NO₃S⁺238.0532;found 238.0537

2-(but-3-en-1-ylsulfonyl)-5-methylbenzo[d]oxazole (1i)

White solid, yield 50% (0.63 g). M.p. = 69–71 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.64 (s, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.36 (d, J = 8.4 Hz, 1H), 5.76 (ddt, J = 13.1, 10.2, 6.5 Hz, 1H), 5.09 (dd, J = 27.5, 13.6 Hz, 2H), 3.66 – 3.52 (m, 2H), 2.66 (dd, J = 15.0, 7.0 Hz, 2H), 2.50 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 158.1, 149.4, 139.8, 136.6, 133.0, 130.1, 121.9, 118.0, 111.4, 54.1, 26.3, 21.6.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₁₂H₁₄NO₃S⁺252.0689;found 252.0691

2-(but-3-en-1-ylsulfonyl)-4,6-dimethylpyrimidine(1j)

White solid, yield 61% (0.68 g). M.p. = 64–75 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (s, 1H), 5.82 (ddt, J = 16.8, 10.1, 6.6 Hz, 1H), 5.17 – 5.04 (m, 2H), 3.64 – 3.57 (m, 2H), 2.67 – 2.60 (m, 8H). ¹³**C NMR** (100 MHz, CDCl₃) δ 169.4, 165.0, 134.1, 123.0, 117.2, 50.4, 26.4, 24.1. **HRMS**(ESI) m/z: [M+H]⁺Calcd for C₁₀H₁₅N₂O₂S⁺227.0849; found 227.0849 **2-(but-3-en-1-ylsulfonyl)pyrimidine (1k)**

Colorless oil, yield 56% (0.55 g).

¹**H NMR** (400 MHz, CDCl₃) δ 8.95 (d, J = 4.9 Hz, 2H), 7.58 (t, J = 4.9 Hz, 1H), 5.77 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.12 – 5.01 (m, 2H), 3.63 – 3.57 (m, 2H), 2.64 – 2.57 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.8, 158.8, 133.8, 124.0, 117.4, 50.6, 26.4.

HRMS (ESI)m/z: $[M+H]^+$ calcd. for C₈H₁₁N₂O₂S⁺199.0536, found 199.0538.

2-(but-3-en-1-ylsulfonyl)-4-phenylthiazole(11)

Colorless oil, yield 50% (0.70 g).

¹**H** NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.4 Hz, 2H), 7.84 (s, 1H), 7.49 – 7.38 (m, 3H), 5.77 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.17 – 5.03 (m, 2H), 3.61 – 3.52 (m, 2H), 2.69 – 2.59 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 164.9, 158.3, 133.4, 132.8, 129.4, 129.1, 126.7, 119.3, 117.7, 54.1, 26.7.

HRMS (ESI)m/z: $[M+H]^+$ calcd. for $C_{13}H_{14}NO_2S_2^+$ 280.0460, found 280.0460

2-(but-3-en-1-ylsulfonyl)thiophene(1m)

Colorless oil, yield 57% (0.57 g).

¹**H** NMR (400 MHz, CDCl₃) δ 7.73 (dd, J = 5.0, 1.3 Hz, 1H), 7.70 (dd, J = 3.8, 1.3 Hz, 1H), 7.17 (dd, J = 5.0, 3.8 Hz, 1H), 5.74 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.10 – 5.04 (m, 2H), 3.29 – 3.25 (m, 2H), 2.56 – 2.49 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 140.1, 134.3, 134.2, 133.7, 128.1, 117.4, 56.9, 27.4.

HRMS (ESI) m/z: $[M+H]^+$ calcd. for C₈H₁₁O₂S₂⁺203.0195, found 203.0196 **2-((3-methylbut-3-en-1-yl)sulfonyl)benzo**[*d*]thiazole(1n)

White solid, yield 76% (1.01 g). M.p. = 56-58 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (dd, J = 7.6, 1.3 Hz, 1H), 8.03 (dd, J = 7.2, 1.0 Hz, 1H), 7.68 – 7.58 (m, 2H), 4.77 (d, J = 26.3 Hz, 2H), 3.68 – 3.61 (m, 2H), 2.62 – 2.54 (m, 2H), 1.74 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) *δ* 165.8, 152.9, 141.0, 136.9, 128.2, 127.8, 125.6, 122.5, 112.6, 53.3, 30.1, 22.4.

HRMS (ESI)m/z: $[M+H]^+$ calcd. for $C_{12}H_{14}NO_2S_2^+268.0460$, found 268.0462

2-(pent-4-en-1-ylsulfonyl)benzo[d]thiazole(1o)

Colorless oil, yield 80% (1.07 g).

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 7.9 Hz, 1H), 7.67 – 7.57 (m, 2H), 5.72 (ddt, J = 13.4, 10.5, 6.7 Hz, 1H), 5.09 – 4.99 (m, 2H), 3.55 – 3.48 (m, 2H), 2.26 – 2.18 (m, 2H), 2.03 – 1.95 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 165.9, 152.9, 136.9, 136.1, 128.2, 127.8, 125.6, 122.5, 117.0, 54.1, 32.1, 21.6.

The data are in accord with the previous literature.⁴

2-(allylsulfonyl)benzo[d]thiazole(1p)

White solid, yield 71% (0.85 g). M.p. = 65-66 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.23 (d, *J* = 7.9 Hz, 1H), 8.01 (d, *J* = 7.7 Hz, 1H), 7.68 – 7.56 (m, 2H), 5.96 – 5.82 (m, 1H), 5.41 (d, *J* = 10.1 Hz, 1H), 5.35 (d, *J* = 17.1 Hz, 1H), 4.25 (d, *J* = 7.2 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.0, 152.5, 136.7, 128.1, 127.6, 126.2, 125.3, 123.0, 122.3, 59.0.

HRMS (ESI)m/z: $[M+H]^+$ calcd. for $C_{10}H_{10}NO_2S_2^+240.0147$, found 240.0149

2-(hex-5-en-1-ylsulfonyl)benzo[d]thiazole(1q)

Colorless oil, yield 79% (1.01 g).

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 7.8 Hz, 1H), 7.67 – 7.58 (m, 2H), 5.73 (ddt, J = 16.9, 10.1, 6.7 Hz, 1H), 5.02 – 4.92 (m, 2H), 3.54 – 3.49 (m, 2H), 2.10 – 2.05 (m, 2H), 1.94 – 1.86 (m, 2H), 1.58 – 1.53 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) *δ* 166.0, 152.9, 137.5, 136.9, 128.2, 127.8, 125.6, 122.5, 115.7, 54.7, 33.1, 27.5, 21.9.

HRMS (ESI)m/z:[M+H]⁺calcd. forC₁₃H₁₆NO₂S₂⁺282.0617, found 282.0619

2-(hept-6-en-1-ylsulfonyl)benzo[d]thiazole(1r)

Colorless oil, yield 76% (1.12 g).

¹**H** NMR (400 MHz, CDCl₃) δ 8.22 (d, J = 7.8 Hz, 1H), 8.03 (d, J = 7.9 Hz, 1H), 7.65 (t, J = 7.1 Hz, 1H), 7.60 (t, J = 7.1 Hz, 1H), 5.74 (ddt, J = 16.9, 10.2, 6.7 Hz, 1H), 5.02 – 4.89 (m, 2H), 3.54 – 3.48 (m, 2H), 2.03 (q, J = 6.7 Hz, 2H), 1.93 – 1.85 (m, 2H), 1.48 – 1.38 (m, 4H).

¹³**C NMR** (100 MHz, CDCl₃) δ 166.0, 152.8, 138.3, 136.9, 128.1, 127.8, 125.6, 122.5, 115.0, 54.8, 33.3, 28.2, 27.8, 22.3.

HRMS (ESI)m/z:[M+H]⁺calcd. forC₁₄H₁₈NO₂S₂⁺296.0773, found 296.0775

1-(but-3-en-1-ylsulfonyl)-4-fluorobenzene(1s)

Colorless oil, yield 86% (0.92 g).

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 – 7.92 (m, 2H), 7.27 (t, *J* = 8.5 Hz, 2H), 5.74 (ddt, *J* = 16.8, 10.2, 6.5 Hz, 1H), 5.10 – 5.02 (m, 2H), 3.22 – 3.17 (m, 2H), 2.50 – 2.43 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 165.8 (d, J = 256.1 Hz), 135.0 (d, J = 3.0 Hz), 133.6 (s), 131.0 (d, J = 9.7 Hz), 117.1, 116.6 (d, J = 22.6 Hz), 55.3, 26.8.

The data are in accord with the previous literature.⁵

1-(but-3-en-1-ylsulfonyl)-4-methoxybenzene(1t)

Colorless oil, yield 90% (1.02 g).

¹**H NMR** (400 MHz, CDCl₃) δ 7.83 (d, J = 8.9 Hz, 2H), 7.02 (d, J = 8.9 Hz, 2H), 5.72 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.09 – 4.99 (m, 2H), 3.88 (s, 3H), 3.16 – 3.10 (m, 2H), 2.48 – 2.40 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 163.9, 134.0, 130.6, 130.4, 117.2, 114.6, 55.8, 55.8, 27.2.

The data are in accord with the previous literature.⁵

General procedure 2 for the preparation of Sodium Sulfinates

General procedure: The sodium sulfinates were synthesized according to a published procedure.⁶ Sulfonic acid chloride (5 mmol) was added to a mixture of Na_2SO_3 (10 mmol) and $NaHCO_3$ (10 mmol) in water (8 mL) and the result mixture was stirred at 80 °C for 10 h. After cooling down to room temperature, the water was removed in vacuum and the residue was extracted in ethanol. Recrystallization from ethanolfurnished sodium sulfinate as a white or light yellow solid.

2. Reaction optimization

Table S1: Screening ofreaction A^a

Entry	Variation from standard conditions	Yield(%) ^b
1	None	57
2	4CzIPN (5 mol%) as photocatalyst	47
3	<i>far</i> -Ir(ppy) ₃ as photocatalyst	trace
4	Eosin Y (5 mol%) as photocatalyst	0
5	Ru(bpy) ₃ Cl ₂ .6H ₂ O as photocatalyst	0
6	Added Na ₂ CO ₃ (100 mol%)	75 (71°)
7	Added NaHCO ₃ (100 mol%)	62
8	Added K ₂ CO ₃ (100 mol%)	59
9	Added Cs ₂ CO ₃ (100 mol%)	60
10	Added acetic acid (100 mol%)	53
11	10:1 acetone/H ₂ O as solvent	67 ^d
12	10:1 MeCN/H ₂ O as solvent	65 ^d
13	10:1 THF/H ₂ O as solvent	40^{d}
14	H ₂ O as solvent	0
15	No photocatalyst	0
16	No light	0

^{*a*}Reaction conditions, unless otherwise noted: **1a** (0.2 mmol), **2a** (0.6 mmol, 3 equiv), and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (2 mol%) in 10:1 (v/v) ethyl acetate (EA)/H₂O (2 mL) were irradiated with 30 W blue LEDs at room temperature under an argon atmosphere for 24 h; then Na₂CO₃ (3 equiv), EtOH (1 mL), and benzyl bromide (BnBr, 3 equiv) were added; and the mixture was stirred at room temperature for another 12 h.^bYields were determined by ¹⁹F NMR spectroscopy with trifluoromethylbenzene as an internal standard. ^c Isolated yield. ^d The reaction was performed with 1 equiv of Na₂CO₃.

$\begin{array}{c} 0 \\ 1a \\ + \\ \end{array}$	$(dF(CF_3)ppy)_2(dtbbpy)]PF_6 (2 mol%)$ $Na_2CO_3 (1 equiv)$ $MeCN/H_2O = 5:1 (2 mL), Ar, r.t.$ $30 W blue LEDs, 24 h$	SO ₂ Na Na ₂ CO ₃ , BnBr EtOH	SO₂Bn
Entry	Variation from standard conditions	Yield(%) ⁶	
1	None	81	
2	10:1 MeCN/H ₂ O as solvent	67	
3	10:1 acetone/H ₂ O as solvent	53	
4	10:1 EA/H ₂ O as solvent	49	
5	EAas solvent	trace	
6	H ₂ O as solvent	0	
7	MeCNas solvent	trace	

Table S2: Screening of reactionB^a

^{*a*}Reaction conditions, unless otherwise noted: **1a** (0.2 mmol), **4a** (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv) and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 5:1 (v/v) MeCN/H₂O (2 mL) were irradiated with 30 W blue LEDs at room temperature under an argon atmosphere for 24 h; then Na₂CO₃ (3 equiv), EtOH (1 mL), and benzyl bromide (BnBr, 3 equiv) were added; and the mixture was stirred at room temperature for another 12 h.^{*b*} Isolated yield.

3.Investigation of the mechanism

General procedure 3

To a 4 mL glass vial equipped with a magnetic stir bar was added **1a** (0.2 mmol), **2a** (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv) and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (2 mol%) in 10:1 (v/v) ethyl acetate (EA)/H₂O (2 mL)and additive (TEMPO (93.8 mg, 0.6 mmol)) or BHT(132 mg, 0.6 mmol). Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealedwith PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL), and benzyl bromide (BnBr, 3 equiv) were added; and the mixture was stirred at room temperature for another 12 h.

Figure S1 High resolution mass spectrum of TEMPO capture product.

Figure S2 High resolution mass spectrum of BHT capture product.

4. Experimental procedures and product characterization.

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 2 (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv) and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (2 mol%) in 10:1 (v/v) ethyl acetate (EA)/H₂O (2 mL).Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealedwith PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.The solvent wasconcentrated in vacuo, and purified by column chromatography (DCM/MeOH = 10:1-5:1) to afford the target compound**3a'** (36 mg, 52%).

General procedure for 3a – 3p and 6l – 6m

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 2 (0.6 mmol, 3 equiv),Na₂CO₃ (0.2 mmol, 1 equiv)and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (2 mol%) in 10:1 (v/v) ethyl acetate (EA)/H₂O (2 mL).Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealedwith PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL), and benzyl bromide (BnBr, 3 equiv) were added; and the mixture was stirred at room temperature for another 12 h.When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate,concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate) to afford thecorresponding target compounds.

General procedure5a – 5p, 6j, 6k, and 6n

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 4 (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 10:1 (v/v) EA/H₂O (2 mL).Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealedwith PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL), and benzyl bromide (BnBr, 3 equiv) were added; and the mixture was stirred at room temperature for another 12 h.When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate,concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate) to afford thecorresponding target compounds.

General procedure: procedure for 5a in gram scale

To an oven-dried 100 mL Schlenk Tube with a stirring bar was added 1 (3 mmol), 4a (12 mmol, 3 equiv), Na₂CO₃ (3 mmol, 1 equiv)and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (2 mol%).Then, air was withdrawn and backfilled with Ar (three times). 5:1 (v/v) MeCN/H₂O (30 mL) was added andthe mixture was irradiated under 30 W× 2blue LED at room temperature for 24 h. Then Na₂CO₃ (3 equiv), EtOH (15 mL),andethyl bromoacetate(3 equiv) were added.The reaction mixture stirred at room temperature for 8 hours.When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate,concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate = $10:1\sim5:1$, v/v) to afford thecorresponding target compound**5a** (1.04g, 71%).

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 2a (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 10:1 (v/v) EA/H₂O (2 mL). Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL), and allyl bromide(3 equiv) were added. The reaction mixture stirred at 60 °C for 10 hours. When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate, concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate = $10:1 \sim 5:1$, v/v) to afford thecorresponding target compounds.

procedure for 6b

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 4a (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 5:1 (v/v) MeCN/H₂O (2 mL). Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL), and allyl bromide(3 equiv) were added. The reaction mixture stirred at 60 °C for 10 hours. When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate, concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate = $8:1 \sim 4:1$, v/v) to afford thecorresponding target compounds.

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 2a (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 10:1 (v/v) EA/H₂O (2 mL). Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL), and methyl iodide (3 equiv) were added. The reaction mixture stirred at 45 °C for 16 hours. When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate,concentrated in purified vacuo. and by columnchromatography (hexane/ethyl acetate = $10:1 \sim 4:1$, v/v) to afford thecorresponding target compounds.

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 4a (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 5:1 (v/v) MeCN/H₂O (2 mL). Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL), and methyl iodide (3 equiv) were added. The reaction mixture stirred at 45 °C for 16 hours. When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate, concentrated in and purified by vacuo, columnchromatography (hexane/ethyl acetate = $5:1 \sim 2:1$, v/v) to afford thecorresponding target compounds.

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), **2a** (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and $[Ir(dF(CF_3)ppy)_2(dtbbpy)]PF_6$ (2 mol%) in 10:1 (v/v) EA/H₂O (2 mL).Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL),andethyl bromoacetate(3 equiv) were added.The reaction mixture stirred at 45 °C for 16 hours.When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate,concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate = 10:1 ~ 5:1, v/v) to afford thecorresponding target compounds.

procedure for 6f

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 4a (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 5:1 (v/v) MeCN/H₂O (2 mL).Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL),andethyl bromoacetate(3 equiv) were added.The reaction mixture stirred at 45 °C for 16 hours.When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate,concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate = $8:1 \sim 4:1$, v/v) to afford the corresponding target compounds.

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 2a (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 10:1 (v/v) EA/H₂O (2 mL). Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL), and NFSI(3 equiv) were added. The reaction mixture stirred at room temperature for 8 hours. When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate, concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate = $10:1 \sim 5:1$, v/v) to afford thecorresponding target compounds.

procedure for 6h

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 4a (0.6 mmol, 3 equiv), Na₂CO₃ (0.2 mmol, 1 equiv)and [Ir(dF(CF₃)ppy)₂(dtbbpy)]PF₆ (2 mol%) in 5:1 (v/v) MeCN/H₂O (2 mL).Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealedwith PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at room temperature for 24 h.Then Na₂CO₃ (3 equiv), EtOH (1 mL),andethyl bromoacetate(3 equiv) were added.The reaction mixture stirred at room temperature for 8 hours.When the reaction is completed, extracted with ethyl acetate, washed with brine, dried over anhydroussodiumsulfate,concentrated in vacuo, and purified by columnchromatography (hexane/ethyl acetate = $8:1 \sim 4:1$, v/v) to afford thecorresponding target compounds.

procedure for 6i

To a 4 mL glass vial equipped with a magnetic stir bar was added 1 (0.2 mmol), 4a $(0.6 \text{ mmol}, 3 \text{ equiv}), \text{Na}_2\text{CO}_3 (0.2 \text{ mmol}, 1 \text{ equiv}) \text{and } [\text{Ir}(dF(CF_3)ppy)_2(dtbpy)]PF_6$ (2 mol%) in 5:1 (v/v) MeCN/H₂O (2 mL). Thereaction mixture was degassed by bubbling with argon for 10 s with an outlet needle and the vial was sealed with PTFE cap. The mixture was then stirred rapidly and irradiated with a 30 W Blue LED at temperature for 24 h.Then CH₃CH₂ONa (3 equiv), room EtOH (1 mL), and hydroxylamine-O-sulfonic acid(3 equiv) were added. The reaction mixture stirred at room temperature for 8 hours. When the reaction is completed, extracted with ethyl acetate, washed with brine. dried over anhydroussodiumsulfate, concentrated in vacuo. and purified by columnchromatography (hexane/ethyl acetate = 5:1 ~ 2:1, v/v) to afford thecorresponding target compounds.

sodium 3-(benzo[d]thiazol-2-yl)-5,5,5-trifluoropentane-1-sulfinate (3a')

White solid, yield 52% (36 mg). M.p.> 300 °C.

¹**H NMR (400 MHz, D₂O)** δ 7.85 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 3.77 – 3.69 (m, 1H), 2.93 – 2.84 (m, 1H), 2.82 – 2.69 (m, 3H), 2.35 – 2.21 (m, 2H).

¹³C NMR (100 MHz, D₂O) δ 174.0, 151.5, 134.0, 126.6, 126.1 (q, *J* = 277.3 Hz), 125.6, 122.1, 121.6, 48.1, 38.3 (q, *J* = 28.2 Hz), 37.0 (q, *J* = 2.2 Hz), 30.5.

¹⁹F NMR (376 MHz, D_2O) δ -64.13 (t, J = 10.7 Hz, 3F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd for $C_{12}H_{12}F_3NNaO_2S_2^+346.0154$; found 346.0158.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)benzo[d]thiazole(3a)

White solid, yield 70% (57.5 mg). M.p. = 72-73 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.2 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.32 – 7.14 (m, 5H), 4.16 (s, 2H), 3.69 – 3.54 (m, 1H), 2.94 – 2.77 (m, 3H), 2.61 – 2.48 (m, 1H), 2.43 – 2.34 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.1, 153.1, 134.7, 130.5, 129.2, 129.1, 127.8, 125.9 (q, *J* = 277.4 Hz), 126.6, 125.7, 123.3, 121.9, 59.7, 48.1, 39.1 (q, *J* = 28.7 Hz), 37.2 (q, *J* = 2.2 Hz). 28.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.00 (t, J = 10.3 Hz, 3F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd forC₁₉H₁₉F₃NO₂S₂⁺414.0804; found 414.0808.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-4-methylbenzo[d]thiazole(3b)

White solid, yield 70% (74 mg). M.p. = 75-76 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.65 (m, 1H), 7.31 – 7.17 (m, 7H), 4.15 (s, 2H), 3.64 – 3.56 (m, 1H), 2.89 – 2.81 (m, 3H), 2.69 (s, 3H), 2.57 – 2.50 (m, 1H), 2.40 – 2.34 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 152.5, 134.6, 133.4, 131.0, 130.5, 129.1, 129.1, 127.8, 127.0, 126.0 (q, *J* = 277.4 Hz), 125.5, 119.2, 59.5, 48.1, 38.9 (q, *J* = 28.8 Hz), 37.2 (q, *J* = 2.5 Hz), 28.0, 18.5.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -63.91 (t, J = 10.5 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₀H₂₁F₃NO₂S₂⁺428.0960; found 428.0963.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-5-chlorobenzo[d]thiazole(3c)

White solid, yield 51% (45.6 mg). M.p. = 86–88 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.96 (d, J = 1.9 Hz, 1H), 7.76 (d, J = 8.6 Hz, 1H), 7.39 (dd, J = 8.6, 1.9 Hz, 1H), 7.31 – 7.22 (m, 5H), 4.17 (s, 2H), 3.67 – 3.58 (m, 1H), 2.88 – 2.78 (m, 3H), 2.58 – 2.48 (m, 1H), 2.39 – 2.33 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 153.9, 133.0, 132.6, 130.5, 129.2, 129.1, 127.7, 126.1, 125.8 (q, *J* = 277.4 Hz), 123.1, 122.6, 59.7, 47.9, 38.9 (q, *J* = 28.7 Hz), 37.2 (q, *J* = 2.5 Hz), 27.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.97 (t, *J* = 10.4 Hz, 3F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd for C₁₉H₁₈ClF₃NO₂S₂⁺; found 448.0417.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-5-bromobenzo[d]thiazole(3d) F_{3C}

White solid, yield 73% (71.6 mg). M.p. = 87–89 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.12 (s, 1H), 7.71 (d, J = 8.5 Hz, 1H), 7.53 (d, J = 8.5 Hz, 1H), 7.31 – 7.22 (m, 5H), 4.17 (s, 2H), 3.67 – 3.59 (m, 1H), 2.90 – 2.77 (m, 3H), 2.58 – 2.45 (m, 1H), 2.36 (dd, J = 15.1, 7.5 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.0, 154.2, 133.5, 130.5, 129.2, 129.1, 128.8, 127.7, 126.2, 125.8 (q, *J* = 277.6 Hz), 122.9, 120.2, 59.8, 47.9, 38.9 (q, *J* = 29.0 Hz), 37.2 (q, *J* = 2.3 Hz), 27.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.97 (t, *J* = 10.4 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd for C₁₉H₁₈BrF₃NO₂S₂⁺491.9909; found 491.9912.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-6-chlorobenzo[d]thiazole(3e)

White solid, yield 78% (70.0 mg). M.p. = 70–72 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.88 (d, J = 8.7 Hz, 1H), 7.83 (d, J = 2.0 Hz, 1H), 7.47 (dd, J = 8.7, 2.1 Hz, 1H), 7.32 – 7.22 (m, 5H), 4.18 (s, 2H), 3.66 – 3.57 (m, 1H), 2.90 – 2.78 (m, 3H), 2.58 – 2.46 (m, 1H), 2.37 (dd, J = 15.2, 7.3 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.7, 151.6, 135.9, 131.6, 130.5, 129.2, 129.1, 127.7, 127.3, 125.8 (q, *J* = 277.5 Hz), 123.9, 121.5, 59.7, 47.9, 38.9 (q, *J* = 29.0 Hz), 37.1 (q, *J* = 2.6 Hz), 27.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.97 (t, *J* = 10.3 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd for C₁₉H₁₈ClF₃NO₂S₂⁺448.0414; found 448.0419

$\label{eq:linear} 2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-6-bromobenzo[d] thiazole(3f)$

White solid, yield 73% (71.7 mg). M.p. = 92–94 °C.

SO₂Bn

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 1.8 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.60 (dd, J = 8.7, 1.9 Hz, 1H), 7.34 – 7.21 (m, 5H), 4.17 (s, 2H), 3.67 – 3.56 (m, 1H), 2.93 – 2.76 (m, 3H), 2.60 – 2.45 (m, 1H), 2.42 – 2.31 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 172.2, 153.9, 132.7, 131.0, 130.6, 129.3, 129.2, 127.8, 126.2, 125.8 (q, *J* = 277.1 Hz), 123.2, 122.6, 59.9, 47.9, 39.0 (q, *J* = 29.1 Hz), 37.3 (q, *J* = 2.0 Hz), 27.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.95 (t, *J* = 10.5 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd for C₁₉H₁₈BrF₃NO₂S₂⁺491.9909; found 491.9907.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-6-methoxybenzo[d]thiazole(3g)

White solid, yield 52% (45.8 mg). M.p. = 82–83 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.9 Hz, 1H), 7.31 – 7.22 (m, 6H), 7.11 (dd, *J* = 9.0, 2.5 Hz, 1H), 4.16 (s, 2H), 3.88 (s, 3H), 3.60 – 3.52 (m, 1H), 2.89 – 2.80 (m, 3H), 2.57 – 2.48 (m, 1H), 2.39 – 2.33 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 167.3, 158.0, 147.5, 136.1, 130.5, 129.2, 129.1, 127.7, 125.9 (q, J = 277.5 Hz), 123.6, 115.9, 104.3, 59.6, 55.9, 48.1, 39.0 (q, J = 28.8 Hz), 37.1 (q, J = 2.6 Hz), 27.9.

¹⁹**F** NMR (376 MHz, CDCl₃) δ -63.97 (t, J = 10.5 Hz, 3F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd for C₂₀H₂₁F₃NO₃S₂⁺444.0909; found 444.0915.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)benzo[d]oxazole(3h)

White solid, yield 63% (50.0 mg). M.p. = 103–105 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.72 – 7.67 (m, 1H), 7.54 – 7.48 (m, 1H), 7.40 – 7.35 (m, 2H), 7.33 – 7.25 (m, 5H), 4.20 (s, 2H), 3.61 – 3.46 (m, 1H), 2.96 – 2.81 (m, 3H), 2.58 – 2.44 (m, 1H), 2.41 – 2.31 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.9, 150.8, 140.8, 130.5, 129.3, 129.2, 127.7, 125.8 (q, *J* = 277.2 Hz), 125.6, 124.8, 120.2, 110.9, 59.8, 48.2, 37.1 (q, *J* = 29.3 Hz), 33.1 (q, *J* = 2.8 Hz), 25.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.56 (t, *J* = 10.3 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd for C₁₉H₁₉F₃NO₃S⁺398.1032; found 398.1033.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-5-methylbenzo[d]oxazole(3i)

White solid, yield 60% (49.4 mg). M.p. = 120–122 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 (s, 1H), 7.37 (d, *J* = 8.4 Hz, 1H), 7.33 – 7.25 (m, 5H), 7.18 (d, *J* = 8.2 Hz, 1H), 4.19 (s, 2H), 3.54 – 3.44 (m, 1H), 2.92 – 2.80 (m, 3H), 2.55 – 2.44 (m, 4H), 2.38 – 2.32 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 164.9, 149.0, 141.0, 134.7, 130.6, 129.3, 129.2, 127.7, 126.6, 125.8 (q, *J* = 277.0 Hz), 120.1, 110.2, 59.8, 48.3, 37.0 (q, *J* = 29.2 Hz), 33.1 (q, *J* = 2.5 Hz), 25.8, 21.6.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.57 (t, *J* = 10.3 Hz, 3F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd for $C_{20}H_{21}F_3NO_3S^+412.1189$; found 412.1191.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-4,6-dimethylpyrimidine(3j)

White solid, yield 60% (45.8 mg). M.p. = 111-113 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.27 (m, 5H), 6.87 (s, 1H), 4.16 (s, 2H), 3.29 – 3.19 (m, 1H), 2.93 – 2.80 (m, 2H), 2.66 – 2.57 (m, 1H), 2.44 – 2.32 (m, 7H), 2.30 – 2.18 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.6, 167.1, 130.5, 129.1, 128.0, 126.5 (q, *J* = 277.0 Hz), 118.5, 59.2, 48.8, 41.4 (q, *J* = 2.3 Hz), 37.7 (q, *J* = 28.2 Hz), 27.2, 24.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.14 (t, J = 10.8 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd forC₁₈H₂₂F₃N₂O₂S⁺387.1349; found 387.1353.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)pyrimidine(3k)

White solid, yield 75% (58.7 mg). M.p. = 69-70 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.55 (d, J = 4.9 Hz, 2H), 7.26 – 7.19 (m, 5H), 7.07 (t, J = 4.9 Hz, 1H), 4.06 (s, 2H), 3.30 – 3.21 (m, 1H), 2.83 – 2.69 (m, 2H), 2.55 – 2.46 (m, 1H), 2.36 – 2.25 (m, 1H), 2.22 – 2.10 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.6, 157.4, 130.6, 129.1, 127.9, 126.4 (q, *J* = 277.1 Hz), 119.7, 59.3, 48.6, 41.6 (q, *J* = 2.3 Hz), 37.8 (q, *J* = 28.5 Hz), 27.1.
¹⁹F NMR (376 MHz, CDCl₃) δ -64.23 (t, *J* = 10.7 Hz, 3F).
HRMS(ESI) m/z: [M+H]⁺Calcd forC₁₆H₁₈F₃N₂O₂S⁺359.1036; found 359.1037.

2-(5-(benzylsulfonyl)-1,1,1-trifluoropentan-3-yl)-4-phenylthiazole(31)

White solid, yield 69% (60.6 mg). $M.p. = 58-60^{\circ}C.$

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.5 Hz, 2H), 7.44 (t, J = 7.5 Hz, 2H), 7.37 – 7.34 (m, 2H), 7.30 – 7.22 (m, 5H), 4.17 (d, J = 2.3 Hz, 2H), 3.61 – 3.52 (m, 1H), 2.87 – 2.78 (m, 3H), 2.57 – 2.46 (m, 1H), 2.36 (dd, J = 15.7, 7.2 Hz, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.0, 155.9, 134.2, 130.5, 129.2, 129.2, 128.9, 128.5, 127.8, 126.5, 126.0 (q, *J* = 277.3 Hz), 112.6, 59.7, 48.2, 39.4 (q, *J* = 28.5 Hz), 36.6 (q, *J* = 2.3 Hz), 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.90 (t, J = 10.4 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd forC₂₁H₂₁F₃NO₂S₂⁺440.0960; found 440.0966.

2-(5-(benzylsulfonyl)-1,1-difluoropentan-3-yl)benzo[d]thiazole(3m)

White solid, yield 70% (55.2 mg). M.p. = 87–88 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (d, *J* = 8.2 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.41 (t, *J* = 7.6 Hz, 1H), 7.33 – 7.18 (m, 5H), 5.99 – 5.66 (m, 1H), 4.16 (s, 2H), 3.59 – 3.45 (m, 1H), 2.85 (t, *J* = 8.0 Hz, 2H), 2.59 – 2.44 (m, 1H), 2.41 – 2.18 (m, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.8, 153.1, 134.7, 130.5, 129.1, 129.1, 127.8, 126.5, 125.6, 123.2, 121.9, 115.5 (t, *J* = 239.9 Hz), 59.6, 48.3, 39.3 (t, *J* = 22.0 Hz), 37.6 (dd, *J* = 6.9, 4.2 Hz), 28.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -113.56 - -118.63 (m, 2F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd for $C_{19}H_{20}F_2NO_2S_2^+396.0898$; found 396.0901.

2-(5-(benzylsulfonyl)-1,1-difluoropentan-3-yl)benzo[d]oxazole(3n)

White solid, yield 57% (43.5 mg). M.p. = 98–100 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.71 – 7.66 (m, 1H), 7.53 – 7.47 (m, 1H), 7.39 – 7.35 (m, 2H), 7.34 – 7.26 (m, 5H), 6.08 – 5.77 (m, 1H), 4.21 (s, 2H), 3.48 – 3.37 (m, 1H), 2.97 – 2.89 (m, 2H), 2.60 – 2.44 (m, 1H), 2.39 – 2.16 (m, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 165.6, 150.8, 140.8, 130.6, 129.2, 129.2, 127.7, 125.5, 124.8, 120.1, 115.4 (t, *J* = 240.0 Hz), 110.8, 59.7, 48.4, 37.2 (t, *J* = 22.1 Hz), 33.0 (dd, *J* = 6.3, 4.9 Hz), 25.93.

¹⁹F NMR (376 MHz, CDCl₃) δ -114.54 – -117.63 (m, 2F).

HRMS(ESI) m/z: [M+H]⁺Calcd for C₁₉H₂₀F₂NO₃S⁺380.1126; found 380.1130.

2-(4-(benzylsulfonyl)-1-((4-methoxyphenyl)sulfonyl)butan-2-yl)benzo[*d*]thiazole(5a)

White solid, yield 81% (83.4 mg). M.p. = 162–163 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (t, *J* = 7.9 Hz, 2H), 7.73 – 7.66 (m, 2H), 7.46 (td, *J* = 7.3, 1.3 Hz, 1H), 7.39 (td, *J* = 7.3, 1.3 Hz, 1H), 7.30 – 7.26 (m, 3H), 7.25 – 7.19 (m, 2H), 6.83 – 6.73 (m, 2H), 4.19 (s, 2H), 3.94 – 3.85 (m, 2H), 3.70 (s, 3H), 3.54 – 3.43 (m, 1H), 2.93 – 2.79 (m, 2H), 2.55 – 2.35 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 163.8, 152.8, 134.8, 130.6, 130.4, 130.3, 129.1, 129.1, 127.7, 126.4, 125.6, 123.1, 121.8, 114.4, 60.0, 59.3, 55.7, 47.9, 37.9, 28.3.
HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₅H₂₆NO₅S₃⁺516.0968; found 516.0973.

2-(4-(benzylsulfonyl)-1-(phenylsulfonyl)butan-2-yl)benzo[d]thiazole(5b)

White solid, yield 51% (49.5 mg). M.p. = 100–102 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.73 – 7.58 (m, 4H), 7.35 – 7.29 (m, 2H), 7.28 – 7.20 (m, 3H), 7.17 – 7.12 (m, 3H), 7.12 – 7.00 (m, 2H), 4.05 (s, 2H), 3.84 – 3.73 (m, 2H), 3.43 – 3.33 (m, 1H), 2.73 (t, *J* = 7.9 Hz, 2H), 2.43 – 2.25 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 152.8, 139.1, 134.8, 133.9, 130.6, 129.2, 129.1, 128.0, 127.7, 126.4, 125.7, 123.1, 121.8, 59.8, 59.3, 47.9, 37.7, 28.2.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₄H₂₄NO₄S₃⁺486.0862; found 486.0863.

2-(4-(benzylsulfonyl)-1-tosylbutan-2-yl)benzo[d]thiazole(5c)

White solid, yield 60% (61.2 mg). M.p. = 142–143 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (t, *J* = 7.2 Hz, 2H), 7.65 (d, *J* = 8.2 Hz, 2H), 7.45 (t, *J* = 7.6 Hz, 1H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.30 – 7.25 (m, 3H), 7.25 – 7.18 (m, 2H), 7.13 (d, *J* = 8.1 Hz, 2H), 4.18 (s, 2H), 3.95 – 3.85 (m, 2H), 3.48 (dd, *J* = 17.0, 8.4 Hz, 1H), 2.92 – 2.79 (m, 2H), 2.54 – 2.37 (m, 2H), 2.26 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 167.0, 152.8, 145.0, 136.1, 134.8, 130.6, 129.8, 129.1, 128.0, 127.8, 126.4, 125.6, 123.1, 121.8, 59.8, 59.3, 47.9, 37.8, 28.2, 21.6.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₂₅H₂₆NO₄S₃⁺500.1018; found 500.1020.

2-(4-(benzylsulfonyl)-1-((4-(tert-butyl)phenyl)sulfonyl)butan-2-yl)benzo[*d*]thiazol e(5d)

White solid, yield 60% (64.0 mg). M.p. = 160–161 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.1 Hz, 1H), 7.78 (d, *J* = 7.9 Hz, 1H), 7.69 (d, *J* = 8.4 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.40 – 7.33 (m, 3H), 7.30 – 7.25 (m, 3H), 7.25 – 7.18 (m, 2H), 4.19 (s, 2H), 3.98 – 3.89 (m, 2H), 3.49 (q, *J* = 8.3 Hz, 1H), 2.92 – 2.78 (m, 2H), 2.55 – 2.37 (m, 2H), 1.20 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 157.9, 152.8, 135.9, 134.8, 130.6, 129.1, 127.9, 127.8, 126.5, 126.2, 125.6, 123.1, 121.8, 59.8, 59.3, 47.9, 37.9, 35.2, 31.0, 28.4.

HRMS(ESI) m/z: $[M+H]^+$ Calcd for $C_{28}H_{32}NO_4S_3^+542.1488$; found 542.1488.

2-(4-(benzylsulfonyl)-1-((4-isopropylphenyl)sulfonyl)butan-2-yl)benzo[d]thiazole(5e)

White solid, yield 58% (61.3 mg). M.p. = 138–140°C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.82 (d, *J* = 8.0 Hz, 1H), 7.78 (d, *J* = 7.7 Hz, 1H), 7.69 (d, *J* = 8.3 Hz, 2H), 7.44 (td, *J* = 7.2, 1.1 Hz, 1H), 7.37 (td, *J* = 7.2 Hz, 1H), 7.29 – 7.24 (m, 3H), 7.24 – 7.16 (m, 4H), 4.18 (s, 2H), 3.98 – 3.89 (m, 2H), 3.59 – 3.39 (m, 1H), 2.92 – 2.78 (m, 3H), 2.55 – 2.37 (m, 2H), 1.15 – 1.10 (m, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 155.6, 152.7, 136.3, 134.7, 130.6, 129.1, 129.1, 128.2, 127.7, 127.3, 126.4, 125.6, 123.1, 121.8, 59.8, 59.3, 47.9, 37.8, 34.2, 28.4, 23.5.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₂₇H₃₀NO₄S₃⁺528.1331; found 528.1337.

2-(4-(benzylsulfonyl)-1-((4-fluorophenyl)sulfonyl)butan-2-yl)benzo[d]thiazole(5f)

White solid, yield 43% (43.0 mg). M.p. = 74–75 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.87 – 7.76 (m, 4H), 7.47 (td, J = 8.3, 1.1 Hz, 1H), 7.40 (td, J = 8.3, 1.1 Hz, 1H), 7.31 – 7.21 (m, 5H), 7.00 (t, J = 8.5 Hz, 2H), 4.19 (s,

2H), 3.98 – 3.89 (m, 2H), 3.51 (dd, *J* = 17.2, 8.4 Hz, 1H), 2.91 – 2.81 (m, 2H), 2.55 – 2.39 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.7, 165.9 (d, *J* = 257.2 Hz), 152.8, 135.2 (d, *J* = 3.1 Hz), 134.7, 131.0 (d, *J* = 9.8 Hz), 130.6, 129.2, 127.8, 126.6, 125.8, 123.1, 121.8, 116.5 (d, *J* = 22.8 Hz), 60.0, 59.5, 47.8, 37.8, 28.2.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₂₄H₂₃FNO₄S₃⁺504.0768; found 504.0772.

2-(4-(benzylsulfonyl)-1-((4-chlorophenyl)sulfonyl)butan-2-yl)benzo[d]thiazole(5g

White solid, yield 34% (35.8 mg). M.p. = 82–83 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (d, *J* = 5.6 Hz, 1H), 7.79 (d, *J* = 6.0 Hz, 1H), 7.71 – 7.62 (m, 2H), 7.48 (t, *J* = 8.3 Hz, 1H), 7.40 (t, *J* = 8.1 Hz, 1H), 7.29 – 7.20 (m, 7H), 4.19 (s, 2H), 3.98 – 3.88 (m, 2H), 3.50 (dd, *J* = 13.2, 4.1 Hz, 1H), 2.92 – 2.80 (m, 2H), 2.53 – 2.35 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 152.7, 140.7, 137.5, 134.7, 130.6, 129.5, 129.4, 129.2, 129.1, 127.7, 126.6, 125.8, 123.1, 121.8, 59.9, 59.5, 47.8, 37.8, 28.2.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₄H₂₃ClNO₄S₃⁺520.0472; found 520.0478.

2-(4-(benzylsulfonyl)-1-((4-bromophenyl)sulfonyl)butan-2-yl)benzo[d]thiazole(5h)

White solid, yield 27% (30.0 mg). M.p. = 79–81 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.80 (t, J = 7.4 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.49 (t, J = 8.0 Hz, 1H), 7.45 – 7.38 (m, 3H), 7.29 – 7.20 (m, 5H), 4.19 (s, 2H), 3.99 – 3.89 (m, 2H), 3.49 (dd, J = 13.4, 4.2 Hz, 1H), 2.91 – 2.79 (m, 2H), 2.52 – 2.35 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.5, 152.7, 138.1, 134.7, 132.4, 130.6, 129.5, 129.3, 129.2, 129.2, 127.7, 126.7, 125.9, 123.1, 121.8, 59.9, 59.5, 47.8, 37.8, 28.2.
HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₄H₂₃BrNO₄S₃⁺563.9967; found 563.9972.
2-(4-(benzylsulfonyl)-1-(naphthalen-1-ylsulfonyl)butan-2-yl)benzo[*d*]thiazole(5i)

White solid, yield 43% (46.4 mg). M.p. = 145–146 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.64 (d, *J* = 8.6 Hz, 1H), 8.14 (d, *J* = 7.3 Hz, 1H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.80 (d, *J* = 8.2 Hz, 1H), 7.74 – 7.66 (m, 2H), 7.60 – 7.53 (m, 2H), 7.39 – 7.31 (m, 3H), 7.26 – 7.23 (m, 3H), 7.22 – 7.14 (m, 2H), 4.22 (dd, *J* = 14.3, 7.4 Hz, 1H), 4.15 (s, 2H), 3.98 – 3.89 (m, 1H), 3.64 (dd, *J* = 14.4, 5.3 Hz, 1H), 2.91 – 2.77 (m, 2H), 2.52 – 2.33 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.6, 152.6, 135.3, 134.7, 134.1, 133.8, 130.8, 130.6, 129.3, 129.1, 129.1, 129.1, 128.7, 127.7, 127.1, 126.3, 125.6, 124.2, 123.9, 123.0, 121.6, 59.4, 47.9, 37.9, 28.4.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₈H₂₆NO₄S₃⁺536.1018; found 536.1025.

2-(4-(benzylsulfonyl)-1-(naphthalen-2-ylsulfonyl)butan-2-yl)benzo[d]thiazole(5j)

White solid, yield 47% (50.4 mg). M.p. = 133–135 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.82 – 7.77 (m, 2H), 7.74 (t, *J* = 7.5 Hz, 2H), 7.65 (t, *J* = 7.1 Hz, 2H), 7.57 (t, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.33 – 7.25 (m, 5H), 7.23 – 7.18 (m, 2H), 4.18 (s, 2H), 4.05 – 3.94 (m, 2H), 3.57 (dd, *J* = 13.7, 4.8 Hz, 1H), 2.90 – 2.80 (m, 2H), 2.54 – 2.39 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.7, 152.6, 135.8, 135.2, 134.6, 132.0, 130.6, 130.1, 129.6, 129.4, 129.1, 129.1, 127.9, 127.7, 126.4, 125.6, 122.9, 122.4, 121.6, 59.8, 59.4, 47.9, 37.9, 28.3.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₈H₂₆NO₄S₃⁺536.1018; found 536.1021.

2-(4-(benzylsulfonyl)-1-((2,3-dihydrobenzofuran-5-yl)sulfonyl)butan-2-yl)benzo[*d*|thiazole(5k)

White solid, yield 65% (68.5 mg). M.p. = 146–148 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 – 7.77 (m, 2H), 7.59 (dd, *J* = 8.5, 2.0 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.43 – 7.37 (m, 1H), 7.31 – 7.27 (m, 2H), 7.25 – 7.17 (m, 2H), 6.70 (d, *J* = 8.5 Hz, 1H), 4.55 – 4.38 (m, 2H), 4.18 (s, 2H), 3.99 – 3.81 (m, 2H), 3.53 – 3.42 (m, 1H), 3.03 – 2.93 (m, 1H), 2.92 – 2.71 (m, 3H), 2.52 – 2.31 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.2, 164.7, 152.9, 134.9, 130.6, 130.3, 129.9, 129.2, 129.1, 128.6, 127.7, 126.5, 125.6, 125.3, 123.1, 121.8, 109.8, 72.4, 60.2, 59.4, 47.9, 38.1, 28.7, 28.3.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₆H₂₆NO₅S₃⁺ 528.0968; found 528.0972.

2-(4-(benzylsulfonyl)-1-(ethylsulfonyl)butan-2-yl)benzo[d]thiazole(5l)

White solid, yield 50% (44.0 mg). M.p. = 125–127 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 1H), 7.87 (d, *J* = 7.9 Hz, 1H), 7.51 (t, *J* = 7.7 Hz, 1H), 7.43 (t, *J* = 7.6 Hz, 1H), 7.32 – 7.22 (m, 5H), 4.21 (s, 2H), 4.06 – 3.98 (m, 1H), 3.81 (dd, *J* = 14.3, 6.9 Hz, 1H), 3.33 (dd, *J* = 14.3, 6.1 Hz, 1H), 3.03 – 2.77 (m, 4H), 2.58 – 2.40 (m, 2H), 1.33 (t, *J* = 7.5 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.4, 152.9, 134.9, 130.6, 129.1, 129.1, 127.7, 126.7, 125.8, 123.2, 122.0, 59.3, 55.3, 48.7, 47.9, 37.1, 28.3, 6.6.

HRMS(ESI) m/z: [M+H]⁺Calcd forC₂₀H₂₄NO₄S₃⁺438.0862; found 438.0866.

2-(4-(benzylsulfonyl)-1-((4-methoxyphenyl)sulfonyl)butan-2-yl)-6-chlorobenzo[d] thiazole(5m)

White solid, yield 57% (62.6 mg). M.p. = 139–141 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 (d, J = 2.0 Hz, 1H), 7.72 (d, J = 8.7 Hz, 1H), 7.68 (d, J = 8.9 Hz, 2H), 7.42 (dd, J = 8.7, 2.1 Hz, 1H), 7.33 – 7.26 (m, 5H), 6.79 (d, J = 8.9 Hz, 2H), 4.20 (s, 2H), 3.91 – 3.82 (m, 2H), 3.74 (s, 3H), 3.45 (dd, J = 13.4, 4.5 Hz, 1H), 2.89 – 2.80 (m, 2H), 2.51 – 2.35 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.7, 163.9, 151.4, 136.0, 131.6, 130.6, 130.4, 130.3, 129.2, 129.2, 127.7, 127.2, 123.9, 121.3, 114.4, 60.0, 59.5, 55.7, 47.9, 37.9, 28.0.
HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₅H₂₅ClNO₅S₃⁺550.0578; found 550.0580.
2-(4-(benzylsulfonyl)-1-tosylbutan-2-yl)benzo[*d*]oxazole(5n)

SO₂Bn

White solid, yield 59% (57.0 mg). M.p. = 139–141 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, *J* = 7.9 Hz, 2H), 7.59 – 7.52 (m, 1H), 7.37 – 7.24 (m, 8H), 7.10 (d, *J* = 7.9 Hz, 2H), 4.19 (s, 2H), 3.87 (dd, *J* = 14.3, 7.9 Hz, 1H), 3.79 – 3.70 (m, 1H), 3.44 (dd, *J* = 14.3, 4.9 Hz, 1H), 2.98 – 2.79 (m, 2H), 2.49 – 2.32 (m, 2H), 2.22 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 163.8, 150.5, 145.1, 140.6, 135.4, 130.6, 129.8, 129.1, 129.1, 128.1, 127.7, 125.4, 124.7, 120.0, 110.8, 59.4, 58.0, 48.0, 34.0, 26.1, 21.5.
HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₅H₂₆NO₅S₂⁺484.1247; found 484.1252.

2-(4-(benzylsulfonyl)-1-((4-methoxyphenyl)sulfonyl)butan-2-yl)thiophene(50)

White solid, yield 38% (35.3 mg). M.p. = 38–40 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.77 – 7.71 (m, 2H), 7.40 – 7.35 (m, 5H), 7.13 (dd, J = 5.1, 0.8 Hz, 1H), 6.97 – 6.92 (m, 2H), 6.83 (dd, J = 5.1, 3.5 Hz, 1H), 6.71 (dd, J = 3.4, 0.8 Hz, 1H), 4.21 (s, 2H), 3.86 (s, 3H), 3.73 – 3.65 (m, 1H), 3.43 – 3.35 (m, 2H), 2.78 – 2.68 (m, 2H), 2.64 – 2.56 (m, 1H), 2.11 – 2.01 (m, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 164.0, 143.4, 131.0, 130.7, 130.2, 129.2, 129.2, 127.9, 127.2, 125.9, 125.0, 114.7, 62.8, 59.3, 55.9, 48.7, 34.9, 29.8.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₂H₂₅O₅S₃⁺465.0859; found 465.0860.

2-(4-(benzylsulfonyl)-1-((4-methoxyphenyl)sulfonyl)butan-2-yl)pyrimidine(5p)

White solid, yield 43% (39.8 mg). M.p. = 161–163 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.57 (d, *J* = 4.9 Hz, 2H), 7.73 (d, *J* = 8.9 Hz, 2H), 7.38 – 7.32 (m, 5H), 7.11 (t, *J* = 4.9 Hz, 1H), 6.93 (d, *J* = 8.9 Hz, 2H), 4.17 (s, 2H), 3.97 (dd, *J* = 14.3, 8.0 Hz, 1H), 3.85 (s, 3H), 3.59 – 3.50 (m, 1H), 3.31 (dd, *J* = 14.3, 5.0 Hz, 1H), 2.89 – 2.78 (m, 1H), 2.71 – 2.60 (m, 1H), 2.40 – 2.24 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 168.8, 163.8, 157.3, 130.7, 130.7, 130.4, 129.2, 127.9, 119.6, 114.5, 59.3, 59.2, 55.8, 48.4, 42.3, 27.4.

HRMS(ESI) m/z: $[M+H]^+$ Calcd for C₂₂H₂₅N₂O₅S₂⁺461.1199; found 461.1203.

2-(5-(allylsulfonyl)-1,1,1-trifluoropentan-3-yl)benzo[d]thiazole(6a)

Colorless oil, yield 75% (54.5 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 7.9 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 7.42 (t, J = 7.6 Hz, 1H), 5.91 – 5.77 (m, 1H), 5.41 – 5.31 (m, 2H),

3.74 – 3.65 (m, 3H), 2.99 – 2.85 (m, 3H), 2.65 – 2.56 (m, 1H), 2.51 – 2.41 (m, 2H). ¹³**C NMR** (100 MHz, CDCl₃) δ 170.1, 153.1, 134.7, 126.6, 125.9 (q, *J* = 277.2 Hz), 125.7, 125.0, 124.8, 123.2, 121.9, 57.9, 48.3, 39.1 (q, *J* = 28.9 Hz), 37.3 (q, *J* = 2.5 Hz), 27.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.96 (t, *J* = 10.4 Hz, 3F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd forC₁₅H₁₇F₃NO₂S₂+364.0647; found 364.0650.

2-(4-(allylsulfonyl)-1-((4-methoxyphenyl)sulfonyl)butan-2-yl)benzo[*d*]thiazole(6b)

Light yellow solid, yield 71% (66.3 mg). M.p. = 111-112 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (t, *J* = 7.6 Hz, 2H), 7.72 – 7.63 (m, 2H), 7.43 (td, *J* = 8.2, 1.3 Hz, 1H), 7.36 (td, *J* = 8.2, 1.3 Hz, 1H), 6.83 – 6.72 (m, 2H), 5.89 – 5.77 (m, 1H), 5.42 – 5.33 (m, 2H), 3.98 – 3.86 (m, 2H), 3.73 – 3.64 (m, 5H), 3.52 (dd, *J* = 13.9, 5.4 Hz, 1H), 3.05 – 2.93 (m, 2H), 2.58 – 2.39 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.1, 163.8, 152.8, 134.8, 130.4, 130.2, 126.4, 125.6, 125.1, 124.7, 123.0, 121.8, 114.4, 60.0, 57.6, 55.6, 48.1, 38.0, 27.9.

HRMS(ESI) m/z: $[M+H]^+$ Calcd for C₂₁H₂₄NO₅S₃⁺ 466.0811; found 466.0813.

2-(1,1,1-trifluoro-5-(methylsulfonyl)pentan-3-yl)benzo[d]thiazole(6c)

White solid, yield 60% (40.4 mg). M.p. = 121–123 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 1H), 3.78 – 3.68 (m, 1H), 3.08 – 2.92 (m, 3H), 2.88 (s, 3H), 2.67 – 2.58 (m, 1H), 2.53 – 2.44 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 170.1, 153.1, 134.7, 126.6, 125.9 (q, J = 277.2 Hz), 125.8, 123.3, 122.0, 51.8, 40.9, 39.1 (q, J = 28.8 Hz), 37.3 (q, J = 2.4 Hz), 27.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -63.98 (t, J = 10.3 Hz, 3F). **HRMS**(ESI) m/z: $[M+H]^+$ Calcd for C₁₃H₁₅F₃NO₂S₂+338.0491; found 338.0493.

2-(1-((4-methoxyphenyl)sulfonyl)-4-(methylsulfonyl)butan-2-yl)benzo[d]thiazole(6d)

White solid, yield 66% (57.7 mg). M.p. = 95–97 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.81 (t, *J* = 8.9 Hz, 2H), 7.70 (d, *J* = 8.9 Hz, 2H), 7.43 (td, *J* = 7.4, 1.1 Hz, 1H), 7.36 (td, *J* = 7.4, 1.1 Hz, 1H), 6.78 (d, *J* = 8.9 Hz, 2H), 4.04 – 3.95 (m, 1H), 3.89 (dd, *J* = 14.3, 7.0 Hz, 1H), 3.70 (s, 3H), 3.55 (dd, *J* = 14.3, 6.0 Hz, 1H), 3.11 – 2.98 (m, 2H), 2.87 (s, 3H), 2.61 – 2.44 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 163.8, 152.8, 134.8, 130.4, 130.2, 126.4, 125.6, 123.1, 121.8, 114.4, 59.8, 55.7, 51.4, 40.7, 37.9, 28.1.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₁₉H₂₂NO₅S₃⁺440.0655; found 440.0660.

ethyl 2-((3-(benzo[d]thiazol-2-yl)-5,5,5-trifluoropentyl)sulfonyl)acetate(6e)

Colorless oil, yield 73% (60.0 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 8.2 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 4.16 (q, J = 7.2 Hz, 2H), 3.93 (s, 2H), 3.77 – 3.69 (m, 1H), 3.32 – 3.23 (m, 2H), 2.99 – 2.88 (m, 1H), 2.68 – 2.58 (m, 1H), 2.54 – 2.47 (m, 2H), 1.20 (t, J = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 170.0, 162.8, 153.1, 134.8, 126.6, 125.9 (q, *J* = 277.6 Hz), 125.7, 123.3, 121.9, 62.9, 57.7, 50.7, 39.0 (q, *J* = 28.7 Hz), 37.2 (q, *J* = 2.5 Hz), 27.6, 13.9.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -63.97 (t, *J* = 10.4 Hz, 3F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd forC₁₆H₁₉F₃NO₄S₂⁺410.0702; found 410.0704.

Ethyl2-((3-(benzo[*d*]thiazol-2-yl)-4-((4-methoxyphenyl)sulfonyl)butyl)sulfonyl)ac etate(6f)

Colorless oil, yield 69% (70.3 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (t, *J* = 8.7 Hz, 1H), 7.70 (d, *J* = 8.9 Hz, 2H), 7.44 (td, *J* = 7.4, 1.1 Hz, 1H), 7.37 (td, *J* = 7.4, 1.1 Hz, 1H), 6.78 (d, *J* = 8.9 Hz, 2H), 4.17 (q, *J* = 7.1 Hz, 2H), 4.04 – 3.88 (m, 4H), 3.70 (s, 3H), 3.56 (dd, *J* = 14.2, 5.7 Hz, 1H), 3.38 – 3.23 (m, 2H), 2.64 – 2.46 (m, 2H), 1.21 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 169.0, 163.8, 162.9, 152.8, 134.8, 130.4, 130.3, 126.4, 125.6, 123.1, 121.8, 114.4, 62.8, 59.9, 57.3, 55.7, 50.4, 37.9, 27.8, 13.9.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₂H₂₆NO₇S₃⁺512.0866; found512.0863.

3-(benzo[d]thiazol-2-yl)-5,5,5-trifluoropentane-1-sulfonyl fluoride(6g)

Colorless oil, yield 60% (40.9 mg).

¹**H** NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.1 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.3 Hz, 1H), 7.44 (t, *J* = 8.2 Hz, 1H), 3.77 – 3.70 (m, 1H), 3.47 – 3.37 (m, 2H), 2.96 – 2.86 (m, 1H), 2.67 – 2.55 (m, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 169.1, 153.1, 134.7, 126.8, 126.0, 125.8 (q, *J* = 277.7 Hz), 123.4, 122.0, 48.2 (q, *J* = 17.9 Hz), 39.1 (q, *J* = 29.2 Hz), 36.7 (q, *J* = 2.1 Hz), 28.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ 53.81 (t, *J* = 5.0 Hz, 1F), -63.95 (t, *J* = 10.9 Hz, 3F). **HRMS**(ESI) m/z: [M+H]⁺Calcd forC₁₂H₁₂F₄NO₂S₂⁺342.0240; found 342.0243.

3-(benzo[*d*]thiazol-2-yl)-4-((4-methoxyphenyl)sulfonyl)butane-1-sulfonyl fluoride(6h)

White solid, yield 47% (41.6 mg). M.p. = 120–121 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.87 (d, *J* = 7.8 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 8.9 Hz, 2H), 7.47 (td, *J* = 7.3, 1.2 Hz, 1H), 7.40 (td, *J* = 7.3, 1.2 Hz, 1H), 6.83 (d, *J* = 8.9 Hz, 2H), 4.04 – 3.95 (m, 1H), 3.86 (dd, *J* = 14.4, 6.5 Hz, 1H), 3.74 (s, 3H), 3.52 (dd, *J* = 14.4, 6.5 Hz, 1H), 3.48 – 3.40 (m, 2H), 2.70 – 2.60 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 168.3, 164.1, 152.9, 134.8, 130.3, 126.7, 125.9, 123.3, 121.9, 114.6, 60.0, 55.7, 48.0 (d, *J* = 18.2 Hz), 37.6, 28.8.

¹⁹**F NMR** (376 MHz, CDCl₃) δ 53.79 (t, *J* = 4.4 Hz, 1F).

HRMS(ESI) m/z: $[M+H]^+$ Calcd for C₁₈H₁₉FNO₅S₃⁺444.0404; found444.0408.

3-(benzo[d]thiazol-2-yl)-4-((4-methoxyphenyl)sulfonyl)butane-1-sulfonamide(6i)

White solid, yield 54% (47.3 mg). M.p. = 70–72 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.64 (d, *J* = 8.9 Hz, 2H), 7.43 – 7.36 (m, 1H), 7.35 – 7.28 (m, 1H), 6.70 (d, *J* = 8.9 Hz, 2H), 5.41 (s, 2H), 4.05 – 3.97 (m, 1H), 3.94 – 3.86 (m, 1H), 3.70 – 3.57 (m, 4H), 3.24 – 3.07 (m, 2H), 2.62 – 2.40 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 169.8, 163.7, 152.7, 134.8, 130.3, 130.2, 126.3, 125.4, 123.0, 121.8, 114.3, 60.0, 55.6, 51.9, 37.9, 30.0.

HRMS(ESI) m/z: $[M+H]^+$ Calcd for $C_{18}H_{21}N_2O_5S_3^+441.0607$; found 441.0611.

2-(4-(benzylsulfonyl)-2-methyl-1-tosylbutan-2-yl)benzo[d]thiazole(6j)

White solid, yield 56% (57.5 mg). M.p. = 132–133 °C.

¹**H** NMR (400 MHz, CDCl₃) δ 7.83 (d, J = 8.0, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.3 Hz, 2H), 7.46 (td, J = 7.3, 1.2 Hz, 1H), 7.38 (td, J = 7.3, 1.2 Hz, 1H), 7.29 – 7.26 (m, 3H), 7.22 – 7.17 (m, 2H), 7.13 (d, J = 8.0 Hz, 2H), 4.19 (s, 2H), 3.85 (d, J = 14.5 Hz, 1H), 3.65 (d, J = 14.5 Hz, 1H), 2.93 – 2.86 (m, 2H), 2.71 – 2.62 (m, 1H), 2.43 – 2.35 (m, 1H), 2.28 (s, 3H), 1.87 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 152.7, 144.8, 137.6, 134.8, 130.7, 129.7, 129.1, 129.0, 127.8, 127.6, 126.4, 125.5, 123.2, 121.8, 64.2, 59.0, 47.2, 43.4, 35.0, 25.1, 21.6.

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₆H₂₈NO₄S₃⁺514.1175; found514.1179.

2-(4-(benzylsulfonyl)-1-((4-methoxyphenyl)sulfonyl)-2-methylbutan-2-yl)benzo[*d* |thiazole(6k)

White solid, yield 58% (61.4 mg). M.p. = 73-75 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.81 (t, *J* = 8.7 Hz, 2H), 7.66 (d, *J* = 8.9 Hz, 2H), 7.46 (t, *J* = 7.6 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.30 – 7.26 (m, 3H), 7.23 – 7.15 (m, 2H), 6.76 (d, *J* = 8.9 Hz, 2H), 4.19 (s, 2H), 3.85 (d, *J* = 14.5 Hz, 1H), 3.72 (s, 3H), 3.65 (d, *J* = 14.5 Hz, 1H), 2.93 – 2.84 (m, 2H), 2.72 – 2.59 (m, 1H), 2.43 – 2.33 (m, 1H), 1.86 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 174.3, 163.7, 152.8, 134.9, 132.1, 130.7, 130.0, 129.1, 129.0, 127.6, 126.4, 125.5, 123.2, 121.8, 114.2, 64.5, 59.0, 55.7, 47.2, 43.3, 35.0, 25.0.

HRMS(ESI) m/z: $[M+H]^+$ Calcd for $C_{26}H_{28}NO_5S_3^+530.1124$; found 530.1127.

2-(5-(benzylsulfonyl)-1,1,1-trifluoro-3-methylpentan-3-yl)benzo[d]thiazole(6l)

Colorless oil, yield 74% (63.0 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.97 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 8.2 Hz, 1H), 7.41 (t, J = 8.2 Hz, 1H), 7.26 – 7.20 (m, 3H), 7.20 – 7.10 (m, 2H), 4.14 (s, 2H), 3.01 – 2.90 (m, 1H), 2.88 – 2.71 (m, 2H), 2.67 – 2.55 (m, 1H), 2.48 (td, J = 13.1, 4.5 Hz, 1H), 2.21 (td, J = 13.1, 4.4 Hz, 1H), 1.65 (s, 3H).

¹³**C NMR** (100 MHz, CDCl₃) δ 175.0, 152.9, 134.8, 130.5, 129.1, 129.0, 127.7, 126.4, 125.9 (q, *J* = 278.7 Hz), 125.5, 123.3, 121.8, 59.2, 46.8, 43.7 (q, *J* = 27.4 Hz), 41.2 (q, *J* = 1.5 Hz), 34.9, 24.1.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -59.41 (t, *J* = 10.9 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₀H₂₁F₃NO₂S₂⁺428.0960; found 428.0965.

2-(6-(benzylsulfonyl)-1,1,1-trifluorohexan-3-yl)benzo[d]thiazole(6m)

Colorless oil, yield 74% (63.2 mg).

¹**H NMR** (400 MHz, CDCl₃) δ 7.99 (d, J = 8.1 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 7.3 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 7.34 – 7.27 (m, 5H), 4.15 (s, 2H), 3.54 – 3.44 (m, 1H), 2.93 – 2.77 (m, 3H), 2.61 – 2.48 (m, 1H), 2.05 – 1.94 (m, 2H), 1.84 – 1.70 (m, 2H).

¹³**C NMR** (100 MHz, CDCl₃) δ 171.5, 153.1, 134.7, 130.5, 129.2, 128.0, 126.5, 126.1 (q, *J* = 277.5 Hz), 125.5, 123.2, 121.9, 59.9, 50.6, 39.1 (q, *J* = 28.4 Hz), 38.4 (q, *J* = 2.7 Hz), 34.3, 19.5.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -64.03 (t, J = 10.6 Hz, 3F).

HRMS(ESI) m/z: [M+H]⁺Calcd for C₂₀H₂₁F₃NO₂S₂⁺428.0960; found 428.0966.

2-(5-(benzylsulfonyl)-1-tosylpentan-2-yl)benzo[d]thiazole(6n)

White solid, yield 49% (50.7 mg). M.p. = 159-160 °C.

¹**H NMR** (400 MHz, CDCl₃) δ 7.84 – 7.78 (m, 2H), 7.64 (d, *J* = 8.1 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 1H), 7.33 – 7.27 (m, 5H), 7.12 (d, *J* = 8.1 Hz, 2H), 4.15 (s, 2H), 3.89 (dd, *J* = 14.2, 7.2 Hz, 1H), 3.80 – 3.72 (m, 1H), 3.47 (dd, *J* = 14.2, 5.6 Hz, 1H), 2.83 – 2.72 (m, 2H), 2.25 (s, 3H), 2.08 – 2.02 (m, 2H), 1.82 – 1.70 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 170.2, 152.9, 144.9, 136.3, 134.8, 130.5, 129.8, 129.2, 128.0, 128.0, 126.3, 125.4, 123.0, 121.8, 60.0, 59.8, 50.6, 39.1, 34.3, 21.6, 19.3.
HRMS(ESI) m/z: [M+H]⁺Calcd forC₂₆H₂₈NO₄S₃⁺514.1175; found 514.1178.

5.Reference

- D. A. Evans, D. M. Fitch, T. E. Smith and V. J. Cee, J. Am. Chem. Soc., 2000, 122, 10033-10046.
- H. V. Trinh, L. Perrin, P. G. Goekjian and D. Gueyrard, *Eur. J. Org. Chem.*, 2016, 2016, 2944-2953.
- X.-Y. Liu, S.-Y. Tian, Y.-F. Jiang, W. Rao and S.-Y. Wang, Org. Lett., 2021, 23, 8246-8251.
- M. Rehman, S. Surendran, N. Siddavatam and G. Rajendar, Org & Biom. Chem., 2022, 20, 329-333.
- 5. R. Gianatassio, M. Lopchuk Justin, J. Wang, C.-M. Pan, R. Malins Lara, L. Prieto,

A. Brandt Thomas, R. Collins Michael, M. Gallego Gary, W. Sach Neal, E. Spangler Jillian, H. Zhu, J. Zhu and S. Baran Phil, *Science*, **2016**, *351*, 241-246.

6. X. Zhou, J. Luo, J. Liu, S. Peng and G.-J. Deng, Org. Lett., 2011, 13, 1432-1435.

6.NMR spectra

¹H NMR spectrum (400MHz, CDCl₃) of compound 1e

£±88	561	880 775 773 773 773 773 773 773 773 773 773	52 59 50 51	63 63 61
				ri ri ri ri
		-		

¹H NMR spectrum (400MHz, CDCl₃) of compound 1f

¹H NMR spectrum (400MHz, CDCl₃) of compound 1j

150 140 130 120 110 100 90 fl (ppm) -10 -20 180 170 160

¹H NMR spectrum (400MHz, CDCl₃) of compound 1m

¹H NMR spectrum (400MHz, CDCl₃) of compound 3a'

¹³C NMR spectrum(100MHz, CDCl₃) of compound 3a

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 3a

-63.97 -64.00 -64.03

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 3b

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 3d

¹H NMR spectrum (400MHz, CDCl₃) of compound 3e

4.18

୶୶୶୶୶ ଌଌଌଌଌ ଌଌଌଌଌ ଌଌଌଌଌ

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 3f

¹H NMR spectrum (400MHz, CDCl₃) of compound 3g

¹H NMR spectrum (400MHz, CDCl₃) of compound 3h

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 3h

¹³C NMR spectrum(100MHz, CDCl₃) of compound 3j

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 3j

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 31

¹H NMR spectrum (400MHz, CDCl₃) of compound 3m

5.69 5.68 5.67

ŧŢĸIJĊĸĸĸIJĸŎĸĊŢĊĸŦſŢĊĸŦĸĨŎĿĿĬŦĿĬŢĬĸſŢĸŎſĸĬĊĸŎŗŎĔĊĔĸŎĸŎġĸĿĸĸŎĸĊĹĸĸŎĸŦĸŊĸĬŊĸŎŗĸŎĸġŔĸġſĸŢŎĸŎĸŢŎĸŎĸĊĬĸĸĬĸŊĸĹĸŗţŎĬŔĸĸĸŢŎĸĬĸĸĸĿŎĸĬŢŎĬ

0 -10 -20 -30 -40 -50 -60 -70 -80 -10 -110 -120 -130 -140 -150 -160 -170 -180 -190 -21 f1 (ppm)

¹H NMR spectrum (400MHz, CDCl₃) of compound 5a

¹H NMR spectrum (400MHz, CDCl₃) of compound 5b

¹H NMR spectrum (400MHz, CDCl₃) of compound 5k

¹H NMR spectrum (400MHz, CDCl₃) of compound 5m

¹H NMR spectrum (400MHz, CDCl₃) of compound 50

¹H NMR spectrum (400MHz, CDCl₃) of compound 5p

¹H NMR spectrum (400MHz, CDCl₃) of compound 6a

3.73 3.71 3.69 3.68 3.68

¹H NMR spectrum (400MHz, CDCl₃) of compound 6b

¹³C NMR spectrum(100MHz, CDCl₃) of compound 6b

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 6c

¹H NMR spectrum (400MHz, CDCl₃) of compound 6d

¹H NMR spectrum (400MHz, CDCl₃) of compound 6k

¹⁹F NMR spectrum(376MHz, CDCl₃) of compound 6l

¹H NMR spectrum (400MHz, CDCl₃) of compound 6m

