Supporting Information (SI)

Development of a Ni-Promoted, Selective Electrochemical Reductive Cleavage of the C-O bond in Lignin Model Compound Benzyl Phenyl Ether

Fang Lin,^{1,2} Ho-Yin TSE,^{2,3} Hanno C Erythropel,^{2,4,5} Predrag V Petrović,^{2,5} Mahlet Garedew², Jinshan Chen², Jason Chun-Ho Lam,^{*6} and Paul T Anastas^{*1,2,4,5,7}

¹ Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT, USA

² Center for Green Chemistry & Green Engineering at Yale, 370 Prospect St, New Haven, CT, USA

³ Department of Civil & Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong

⁴ Department of Chemicals and Environmental Engineering, Yale University, 17 Hillhouse Ave, New Haven, CT, USA

⁵ Yale School of the Environment, 195 Prospect St, New Haven, CT, USA

⁶City University of Hong Kong, School of Energy and Environment, Kowloon Tong, Hong Kong

⁷ Yale School of Public Health, 60 College St, New Haven, CT, USA

*Corresponding author

Supplementary Table 1.

Cathode materials screening for reaction in the divided cell

Supplementary Table 2.

Product yields and calculated Faraday efficiency for different substrate concentrations and NiCl₂·6H₂O concentrations at 12 hours

Supplementary Table 3.

Product yields and calculated Faraday efficiency for reactions with constant ratio of NiCl₂·6H₂O/BPE and varying absolute concentrations AT 12 hours

Supplementary Figure S1.

Kinetic plot of electrochemical reductive cleavage of 0.2 mmol BPE in 10 mL methanol, 0.1M TBAPF₆, 20 mA constant current, Ni foam _{anode} and Ni foam _{cathode} in the undivided cell

Supplementary Figure S2.

CV curves of different Ni salts (40 mM) in 15 mL 0.10 M TBAPF₆-MeOH, scan rate: 50 mV/s.

Supplementary Figure S3.

CV curves of CuCl₂, CoCl₂·6H₂O, and FeCl₂· 4H₂O in 15mL 0.10 M TBAPF₆-MeOH, 40 mM of metal chloride salts, 10 mM BPE, scan rate: 50 mV/s.

Supplementary Figure S4.

Reusability experiments of carbon paper cathode

Supplementary Figure S5.

1-(benzyloxy)-4-(tert-butyl)benzene (d) ¹H NMR

Supplementary Figure S6.

1-(benzyloxy)-4-(tert-butyl)benzene (d) ¹³C NMR

Supplementary Figure S7.

1-(benzyloxy)-4-methylbenzene (e) ¹H NMR

1-(benzyloxy)-4-methylbenzene (e) ¹³C NMR

Supplementary Figure S9. 1-(Benzyloxy)-4-methoxybenzene (f) ¹H NMR

Supplementary Figure S10. 1-(Benzyloxy)-4-methoxybenzene (f) ¹³C NMR

<u>Supplementary Figure S11</u>.
1-(phenoxymethyl)-4-(trifluoromethyl) benzene (g)
<u>Supplementary Figure S12</u>.
1-(phenoxymethyl)-4-(trifluoromethyl) benzene (g) ¹³C NMR

Supplementary Figure S13. 1-(tert-butyl)-4-(phenoxymethyl)benzene (h) ¹H NMR

Supplementary Figure S14. 1-(tert-butyl)-4-(phenoxymethyl)benzene (h) ¹³C NMR

Supplementary Figure S15. 4-Methylbenzylphenyl ether (i) ¹H NMR

Supplementary Figure S16. 4-Methylbenzylphenyl ether (i) ¹³C NMR

Supplementary Figure S17. 1-methoxy-4-(phenoxymethyl) benzene (j) ¹H NMR

Supplementary Figure S18. 1-methoxy-4-(phenoxymethyl)benzene (j) ¹³C NMR

<u>Supplementary Figure S19.</u> 4-(phenoxymethyl) phenol (k) ¹H NMR

<u>Supplementary Figure S20.</u> 4-(phenoxymethyl) phenol (k) ¹³C NMR

Supplementary Table S1

Entry	Cathode	Toluene Yield (%)	Phenol Yield (%)
1	Ni foam	66	68
2	Pt	50	60
3	Active carbon cloth	72	70
4	Graphite	61	60
5	Glassy carbon	63	64
6	Stainless steel	64	58
7	Carbon paper	80	76

Cathode materials screening for reaction in the divided cell

Reaction conditions: divided cell, 15 mL MeOH, 0.1 M TBAPF₆, constant current at 10 mA, 2 cm² cathode, Pt anode, 12 hours; three replicates of the measurements were produced, and the reported value is the average within = 5% of error

Supplementary Table S2

Product yields and calculated Faraday efficiency for different substrate concentrati	ons
and NiCl ₂ ·6H ₂ O concentrations at 12 hours	

Entry	BPE (mM)	NiCh·6H2O (mM)	Mole Ratio of NiCl ₂ ·6H ₂ O/BPE	Conversion — (%)	Product Yield (%)		Faraday
					$\langle \rangle$	С	Efficiency (%)
1	5	40	8	98	85	80	2.8
2	10	40	4	98	90	84	5.9
3	20	40	2	92	80	78	9.2
4	30	40	1.33	97	81	83	14.1
5	50	40	0.8	69	55	54	14.3

Reaction conditions: divided cell, 15 mL MeOH, 0.1 M TBAPF₆, constant current at 10 mA, 2 cm² carbon paper electrode, 12 hours; three replicates of the measurements were produced, and the reported value is the average within = 5% of error

Supplementary Table S3

Entry	BPE (mM)	NiCl2·6H2O (mM)	Mole Ratio of NiCl2·6H2O/ BPE	Conversion – (%)	Product Yield (%)		Faraday
					\bigcirc	() OH	Efficiency (%)
1	10	40	4	98	88	80	5.9
2	20	80	4	91	68	73	9.0
3	30	120	4	70	51	55	10.1
4	5	40	8	99	85	80	2.8
5	10	80	8	89	70	69	4.7

Product yields and calculated Faraday efficiency for reactions with a constant ratio of NiCl₂·6H₂O/BPE and varying absolute concentrations at 12 hours

Reaction conditions: divided cell, 15 mL MeOH, 0.1 M TBAPF₆, constant current at 10 mA, 2 cm² carbon paper electrode, 12 hours; three replicates of the measurements were produced, and the reported value is the average within = 5% of error

Kinetic plot of electrochemical reductive cleavage of 0.2 mmol BPE in 10 mL methanol, 0.1 M TBAPF₆, 20 mA constant current, Ni foam _{anode} and Ni foam _{cathode} in the undivided cell

CV curves of different Ni salts (40 mM) in 15 mL 0.10 M TBAPF₆-MeOH, scan rate: 50 mV/s.

CV curves of CuCl₂, CoCl₂· $6H_2O$, and FeCl₂· $4H_2O$ in 15 mL 0.10 M TBAPF₆-MeOH, 40 mM of metal chloride salts, 10 mM BPE, scan rate: 50 mV/s.

Reusability experiments of carbon paper cathode

1-(benzyloxy)-4-(tert-butyl)benzene (d) ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, cdcl₃) δ 7.43 (d, J = 6.9 Hz, 2H), 7.40 – 7.34 (m, 2H), 7.31 (ddt, J = 8.0, 6.7, 1.4 Hz, 3H), 6.95 – 6.87 (m, 2H), 5.04 (s, 2H), 1.29 (d, J = 1.4 Hz, 9H).

1-(benzyloxy)-4-(tert-butyl)benzene (**d**) ¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, cdcl₃) δ 156.57, 143.58, 137.28, 128.54, 127.86, 127.47, 126.23, 114.23, 70.00, 34.06, 31.50.

1-(benzyloxy)-4-methylbenzene (e) ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.40 – 7.34 (m, 2H), 7.34 – 7.28 (m, 1H), 7.12 – 7.04 (m, 2H), 6.91 – 6.84 (m, 2H), 5.03 (s, 2H), 2.28 (s, 3H).

1-(benzyloxy)-4-methylbenzene (e) ¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, CDCl₃) δ 156.65, 137.24, 130.14, 129.90, 128.54, 127.86, 127.44, 114.67, 70.04, 20.48.

1-(Benzyloxy)-4-methoxybenzene (**f**) ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, acetone) δ 7.46 (ddt, *J* = 0.7, 1.5, 7.5 Hz, 2H), 7.41 – 7.34 (m, 2H), 7.34 – 7.27 (m, 1H), 6.98 – 6.90 (m, 2H), 6.89 – 6.81 (m, 2H), 5.05 (s, 2H).

1-(Benzyloxy)-4-methoxybenzene (**f**) ¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, acetone) δ 154.08, 152.93, 137.82, 128.32, 127.60, 127.44, 115.67, 114.48, 70.07, 54.91

1-(phenoxymethyl)-4-(trifluoromethyl) benzene (g) ¹H NMR (400 MHz, acetone-d₆) ¹H NMR (400 MHz, acetone) δ 7.84 – 7.60 (m, 4H), 7.37 – 7.21 (m, 2H), 7.06 – 6.99 (m, 2H), 6.95 (tt, *J* = 7.3, 1.1 Hz, 1H), 5.23 (d, *J* = 1.0 Hz, 2H).

1-(phenoxymethyl)-4-(trifluoromethyl) benzene (**g**) ¹³C NMR (101 MHz, acetone-d₆) ¹³C NMR (101 MHz, acetone) δ 158.57, 142.30, 129.47, 127.76, 125.29, 125.25, 123.09

120 110 f1 (ppm) -10 120.98, 114.75, 68.49

1-(tert-butyl)-4-(phenoxymethyl)benzene (**h**) ¹H NMR (101 MHz, CDCl₃) ¹H NMR (400 MHz, cdcl₃) δ 7.48 – 7.34 (m, 4H), 7.33 – 7.25 (m, 2H), 7.04 – 6.86 (m, 3H), 5.02 (s, 2H), 1.32 (s, 9H).

1-(tert-butyl)-4-(phenoxymethyl)benzene (**h**) ¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, cdcl₃) δ 158.88, 151.00, 133.95, 129.46, 127.48, 125.54, 120.82, 114.76, 69.74, 34.58, 31.34.

4-Methylbenzylphenyl ether (i) ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, cdcl₃) δ 7.41 – 7.26 (m, 4H), 7.22 (d, *J* = 14.6 Hz, 2H), 7.04 – 6.93 (m, 3H), 5.04 (s, 2H), 2.38 (s, 3H).

4-Methylbenzylphenyl ether (i) ¹³C NMR (101 MHz, CDCl₃) ¹³C NMR (101 MHz, cdcl₃) δ 158.86, 137.74, 134.02, 129.39 (d, *J* = 19.3 Hz), 127.66, 120.86, 114.85, 77.28, 69.83, 21.24.

1-methoxy-4-(phenoxymethyl) benzene (**j**) ¹H NMR (101 MHz, CDCl₃) ¹H NMR (400 MHz, cdcl₃) δ 7.40 – 7.33 (m, 2H), 7.33 – 7.26 (m, 2H), 7.02 – 6.87 (m, 5H), 4.99 (s, 2H), 3.82 (s, 3H).

1-methoxy-4-(phenoxymethyl) benzene (**j**) ¹³C NMR (101 MHz, acetone) δ 159.53, 158.99, 129.38, 129.33, 129.24, 120.52, 114.73, 113.71, 69.16, 54.62

4-(phenoxymethyl) phenol (k) ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.26 (m, 4H), 7.02 – 6.91 (m, 3H), 6.88 – 6.79 (m, 2H), 4.98 (s, 2H), 4.85 (s, 1H).

4-(phenoxymethyl) phenol (**k**) ¹³C NMR (101 MHz, cdcl₃) δ 158.77, 155.35, 129.43, 129.27, 120.87, 115.40, 114.83, 69.63.

