Supplemental Materials

Multi-stage explosion of lignin: A new horizon for constructing defect-rich carbon towards advanced lithium ion storage

Caiwei Wang^a, Dongjie Yang^{a,*}, Si Huang^a, Yanlin Qin^{b,c}, Wenli Zhang^{b,c} and Xueqing Oiu^{b,c,*}

^a School of Chemistry and Chemical Engineering, Guangdong Provincial Engineering

Research Center for Green Fine Chemicals, South China University of Technology,

Guangzhou 510640, China

^b School of Chemical Engineering and Light Industry, Guangdong University of

Technology, Guangzhou, 510006, China

^c Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, 100 Waihuan Xi Road, Panyu District, Guangzhou 510006, China

*Corresponding Authors: Prof. Dongjie Yang, Xueqing Qiu

E-mail address: <u>cedjyang@scut.edu.cn</u> (D. Yang), <u>cexqqiu@scut.edu.cn</u> (X. Qiu).

Table of Contents

Supplementary Figures1	
Supplementary Tables7	
References	

Supplementary Figures

Fig. S1. DTG curves of SL and CaC₂O₄.

Fig. S2. XRD patterns of CaC₂O₄ carbonized at 600-800 °C. The diffraction peak of pure CaC₂O₄ fits well with that of CaC₂O₄·H₂O (JCPDS #20-0231). The diffraction peak of CaC₂O₄ carbonized at 600 °C accords well with those of CaCO₃ (JCPDS #05-0586), indicating that CaC₂O₄ was completely decomposed into CaCO₃ at 600 °C. CaC₂O₄ carbonized at 700 °C presents the diffraction peak in good agreement with CaCO₃ (JCPDS #05-0586) and CaO (JCPDS #48-1467), indicating that CaCO₃ was partially decomposed into CaO at 700 °C. The diffraction peak of CaC₂O₄ carbonized at 800 °C coincides with those of CaO (JCPDS 48-1467), indicating CaCO₃ was completely decomposed into CaO at 800 °C.

Fig. S3. SEM images of (a) PLPCC-600, (b) PLPCC-700, (c) PLPCC-800. HRTEM images of (d) PLPCC-600, (e) PLPCC-700, (f) PLPCC-800.

Fig. S4. Deconvolution of high-resolution O 1s spectra of PLPCCs and SLCM.

Fig. S5. Deconvolution of high-resolution N 1s spectra of PLPCCs and SLCM.

Fig. S6. TG curves of SL under air atmosphere. After air heat treatment at 900 °C, the ash residue of SL is 21.97 wt.%.

Fig. S7. Nitrogen adsorption and desorption isotherms.

Fig. S8. SEAD pattern of PLPCC-700.

Fig. S9. The first CV curves of electrodes.

Fig. S10. Comparison of lithium storage capabilities of the lignin-derived carbons prepared by CaCO₃, CaC₂O₄ and ZnCO₃. (a) GCD curves at $0.2 \text{ A} \cdot \text{g}^{-1}$. (b) Rate performance at $0.05 \cdot 1 \text{ A} \cdot \text{g}^{-1}$. (c) Long-cycling performance at $1 \text{ A} \cdot \text{g}^{-1}$.

Fig. S11. (a) CV curves of SLCM at different scan rates. (b) Determination of b values.

Fig. S12. (a) Capacitance-controlled and diffusion-controlled contribution of SLCM.

Supplementary Tables

Samples	Percentage of O-containing groups			Percentag	Percentage of N-containing groups			
	C=O	С-ОН СООН		N-6	N-5	N-Q		
SLCM	28.2	47.2	24.6	15.9	46.2	37.9		
PLPCC-600	53.3	27.3	19.4	24.5	37.0	38.5		
PLPCC-700	52.3	25.0	22.7	13.2	43.9	42.8		
PLPCC-800	43.2	31.5	25.3	17.7	27.6	54.7		

Table S1 Surface O and N configurations of SLCM and PLPCCs.

Table S2 Textural properties of SLCM and the PLPCC samples at 600-800°C.

Samples	$S_{\rm BET}$	V _{total}	$V_{ m mic}$	V _{meso}	$V_{\rm mic}/V_{\rm total}$	Vmeso/Vtotal	$D_{\mathrm{avg}}\left(\mathrm{nm}\right)$
	(m ² /g)	(cm ³ /g)	(cm ³ /g)	(cm ³ /g)	(%)	(%)	
SLCM	385.5	0.15	0.12	0.02	80.0	13.3	1.87
PLPCC-600	491.3	0.49	0.17	0.23	34.7	46.9	3.01
PLPCC-700	1028.7	0.75	0.35	0.32	46.7	42.7	2.58
PLPCC-800	1175.6	0.87	0.41	0.36	47.1	41.4	2.57

 S_{BET} : Specific surface area was determined using the Brunauer-Emmett-Teller (BET) equation.

V_{total}: Total pore volume was determined by NLDFT model.

 $V_{\rm mic}$: Micropore volume was determined by NLDFT model.

V_{meso}: Mesopore volume was determined by NLDFT model.

Electrodes	Specific capacity (mAh·g ⁻¹)						
	$0.2 \text{A} \cdot \text{g}^{-1}$		$1 \text{ A} \cdot \text{g}^{-1}$				
	25th	200th	100th	600th			
SLCM	235.1	256.1	165.0	209.7			
PLPCC-600	455.5	543.2	322.9	386.5			
PLPCC-700	642.5	706.3	436.9	530.4			
PLPCC-800	445.8	618.5	289.3	448.7			

Table S3 Specific capacities of PLPCCs tested under the current density of 0.2 and $1 \text{ A} \cdot \text{g}^{-1}$.

Table S4 Comparison of lithium storage performance of PLPCC-700 with different carbonaceous
materials in the reported literatures.

Materials	Specific surface	ICE ^a	Cycling datab	Rate	Ref.
	area $(m^2 \cdot g^{-1})$	(%)		capacity ^c	
PLPCC-700	1029	49.2	706/200/200	530/1000	This work
Hierarchical porous carbon (HPC)	420	40.4	390/50/37	266/1860	[1]
Hierarchical porous carbon (LHPC)	907	41.6	470/275/200	268/1000	[2]

Hierarchical porous carbon	531	54.9	550/200/200	315/1000	[3]
(HLPC-ZnCO ₃ -600)					
Hierarchical porous carbon	735	47.3	650/60/100	346/5000	[4]
(KHPC-600)					
Macroporous carbon (MPC-3)	631	54.3	501/120/200	306/1000	[5]
Nanoporous hard carbon	753	45.0	230/30/100	157/1490	[6]
microspheres (NHCS-6)					
Carbon nanofibers/nanosheets	847	-	592/200/100	508/1000	[7]
hybrid (CNFS)					
Graphene aerogels (GA)	530	-	439/30/100	250/1000	[8]
N-doped carbon nitride	-	-	430/60/50	323/2500	[9]
(CNNC)					

^a Initial coulombic efficiency

 b Capacity (mAh $\cdot\,g^{\text{-1}})$ /cycle numbers/current density (mA $\cdot\,g^{\text{-1}})$

^c Capacity (mAh·g⁻¹)/current density (mA·g⁻¹).

References

[1] J. Yang, X. Y. Zhou, Y. L. Zou and J. J. Tang, *Electrochim Acta*, 2011, 56, 8576-8581.

[2] W. L. Zhang, J. Yin, Z. Q. Lin, H. B. Lin, H. Y. Lu, Y. Wang and W. M. Huang, *Electrochim Acta*, 2015, **176**, 1136-1142.

[3] Y. B. Xi, S. Huang, D. J. Yang, X. Q. Qiu, H. J. Su, C. H. Yi and Q. Li, *Green Chem*, 2020, **22**, 4321-4330.

[4] D. P. Qiu, C. H. Kang, M. Li, J. Y. Wei, Z. W. Hou, F. Wang and R. Yang, *Carbon*, 2020, **162**, 595-603.

[5] Y. X. Fu, X. Y. Pei, D. C. Mo and S. S. Lyu, J Mater Sci-Mater El, 2019, 30, 5092-5097.

[6] S. M. Jafari, M. Khosravi and M. Mollazadeh, Electrochim Acta, 2016, 203, 9-20.

[7] S. B. Wang, C. L. Xiao, Y. L. Xing, H. Z. Xu and S. C. Zhang, *J Mater Chem A*, 2015, **3**, 6742-6746.

[8] Y. X. Xu, Z. Y. Lin, X. Zhong, B. Papandrea, Y. Huang and X. F. Duan, *Angew Chem Int Edit*, 2015, **54**, 5345-5350.

[9] W. L. Zhang, J. Yin, C. L. Chen and X. Q. Qiu, *Chem Eng Sci*, 2021, 241, 116709.