Supporting Information

Practical synthesis of quinolone drugs *via* novel TsClmediated domino reaction sequence

Jie Lei,^a Yong Ding,^a Hao-Yi Zhou,^a Xin-Yan Gao,^a Yi-Hua Cao,^a Dian-Yong Tang,^a Hong-yu Li^{*b}, Zhi-Gang Xu^{*a}, Zhong-Zhu Chen^{*a}

^aCollege of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China. Email: xzg@cqwu.edu.cn; 18883138277@163.com.

^bDepartment of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA. Email: HLi2@uams.edu

Table of Contents

General Experimental	2
General procedures for compounds 4	2
Transformation from 4a to 4x	2
General procedures for compounds 5, 8, 11, 12 and 13	3
General procedures for compounds 6, 7, 9, 10	3
General procedures for compound 14	.3
General procedures for compound 15	3
NMR Characterization Data and Figures of Products	31

Page

General Experimental

¹H and ¹³C NMR were recorded on a Bruker 400 spectrometer. ¹H NMR data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constant (Hz), relative intensity. ¹³C NMR data are reported as follows: chemical shift in ppm (δ). LC/MS analyses were performed on a Shimadzu-2020 LC-MS instrument using the following conditions: Shim-pack VP-ODS C18 column (reverse phase, 150 x 4.6 mm); a linear gradient from 10% water and 90% acetonitrile to 75% acetonitrile and 25% water over 6.0 min; flow rate of 0.5 mL/min; UV photodiode array detection from 200 to 400 nm. High-resolution mass spectra (HRMS) were recorded on Thermo Scientific Exactive Plus System. UV-VIS spectrophotometer TU-1950. The products were purified by Biotage IsoleraTM Spektra Systems and hexane/EtOAc solvent systems. All reagents and solvents were obtained from commercial sources and used without further purification.

General procedures for compound 4

A solution of chromone-3-carboxaldehyde (0.2 mmol), amine (0.22 mmol), sulfochloride (0.2 mmol) and 'BuOLi (0.4 mmol) was stirred in toluene (2.0 mL) under 100 °C for 8 h with a sealed system. The reaction mixture was monitored by TLC. When the reaction was completed, the mixture was extracted with EtOAc (15.0 mL), washed with brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product.

Transformation from 4a to 4x

A solution of **4a** (0.2 mmol) and 1 mol/L of HCl (2.0 equiv.) was stirred in MeCN (5.0 mL) under 80 °C for 6 h in a sealed system. The reaction mixture was monitored by TLC. When the reaction was completed, the mixture was extracted with EtOAc (15.0 mL), washed with brine three times. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford **4x** with the yield 87%.

General procedures for compounds 5, 8, 11, 12, and 13

4 (0.5 mmol) was treated with NH₂SO₃H (4.0 equiv.) and NaClO₂ (5.0 equiv.) in DCM (5.0 mL) under room temperature for 4 h. The reaction mixture was monitored by TLC. When the reaction was completed, the mixture was extracted with EtOAc (30.0 mL), washed with brine. The organic layer was dried over Na₂SO₄ and concentrated. The crude product was purified by silica gel column chromatography using a gradient of MeOH/DCM (0-10%). For gram scale synthesis of Oxilinic acid: **4e** (5.0 mmol) was treated with NH₂SO₃H (4.0 equiv.) and NaClO₂ (5.0 equiv.) under same reaction condition, providing Oxilinic acid with the yield of 80%.

General procedures for compounds 6, 7, 9, and 10

A solution of F-substituted quinolone (2.0 mmol) and secondary amine (2.5 equiv.) in DMSO was treated with microwave 120 °C for 30 min. When the reaction was completed, the mixture was cooled to room temperature and washed with MeOH (3x10 mL). The final compound was purified by recrystallization in MeOH/H₂O (v:v = 1:1).

General procedures for compound 14

9a, 5-amino-2,4-di-*tert*-butylphenol (1.1 equiv.) and Et₃N (3.0 equiv.) were added into the solvent of DCM at room temperature. Then condensation reagent of TBTU (1.2 equiv.) was added during 10 min. The mixture was stirred at room temperature for 12 h, which was monitored by TLC. When the reaction was completed, the mixture was extracted with EtOAc (30.0 mL), washed with brine. The organic layer was dried over Na₂SO₄ and concentrated. The final compound was purified by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) (**14**, 93%). For gram scale synthesis: **9a** (4.0 mmol), 5-amino-2,4-di-*tert*-butylphenol (1.1 equiv.) and Et₃N (3.0 equiv.) TBTU (1.2 equiv.) were treated with the standard condition, affording the desired product 87%.

General procedures for compound 15

A solution of chromone-3-carboxaldehyde (0.2 mmol), *tert*-butylamine (0.22 mmol) and *p*-toluenesulfonyl chloride (0.2 mmol) was stirred in toluene (2.0 mL) under room temperature for 12 h. The reaction mixture was monitored by TLC. When the reaction was completed, the mixture was extracted with EtOAc (15.0 mL), washed with brine. The organic layer was dried over Na₂SO₄ and concentrated. The residue was purified

by silica gel column chromatography using a gradient of ethyl acetate/hexane (0-100%) to afford the relative targeted product.

NMR Characterization Data and Figures of Products

1-(tert-butyl)-4-oxo-1,4-dihydroquinoline-3-carbaldehyde **4a**, 86%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 8.66 (s, 1H), 8.56 (d, *J* = 7.9 Hz, 1H), 7.92 (d, *J* = 8.8 Hz, 1H), 7.64 (t, *J* = 7.7 Hz, 1H), 7.42 (t, *J* = 7.5 Hz, 1H), 1.84 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 188.66, 175.52, 142.13, 138.40, 130.65, 129.94, 126.95, 124.28, 119.37, 115.09, 62.73, 29.83. HRMS (ESI) m/z calcd for C₁₄H₁₅NO₂⁺ (M+H)⁺ 230.1176, found 230.1177.

1-ethyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde **4b**, 81%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 8.48 (dd, *J* = 8.0, 1.1 Hz, 1H), 8.27 (s, 1H), 7.72 – 7.65 (m, 1H), 7.49 – 7.42 (m, 2H), 4.23 (q, *J* = 7.2 Hz, 2H), 1.51 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.49, 176.95, 145.50, 139.13, 133.27, 129.69, 127.64, 125.71, 117.26, 116.15, 49.20, 14.56. HRMS (ESI) m/z calcd for C₁₂H₁₂NO₂⁺ (M+H)⁺ 202.0863, found 202.0865.

1-(cyclopropylmethyl)-4-oxo-1,4-dihydroquinoline-3-carbaldehyde **4c,** 89%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.46 (d, *J* = 7.9 Hz, 1H), 8.36 (s, 1H), 7.65 (t, *J* = 7.8 Hz, 1H), 7.49 – 7.40 (m, 2H), 4.86 – 4.73 (m, 1H), 2.62 (dd, *J* = 9.6, 6.3 Hz, 2H), 2.49 – 2.35 (m, 2H), 1.98 – 1.89 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.49, 176.88, 141.92, 139.42, 133.02, 129.34, 127.39, 125.80, 116.62, 55.91, 29.83, 14.60. HRMS (ESI) m/z calcd for C₁₄H₁₄NO₂⁺ (M+H)⁺ 228.1019, found 228. 1022.

1-(*4-methylbenzyl*)-*4-oxo-1,4-dihydroquinoline-3-carbaldehyde* **4d**, 77%, light yellow solid, (EA/Hex = 25%, R_f = 0.20), ¹H NMR (400 MHz, CDCl₃) δ 10.47 (d, *J* = 1.1 Hz, 1H), 8.54 (d, *J* = 8.0 Hz, 1H), 8.43 (s, 1H), 7.65 – 7.56 (m, 1H), 7.44 (dd, *J* = 16.5, 8.3 Hz, 2H), 7.17 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 7.8 Hz, 2H), 5.38 (s, 2H), 2.34 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.53, 177.08, 146.63, 139.69, 138.81, 133.23, 130.67, 129.63, 127.39, 126.23, 125.79, 117.22, 57.65, 21.14. HRMS (ESI) m/z calcd for C₁₈H₁₆NO₂⁺ (M+H)⁺ 278.1176, found 278.1177.

1-cyclopropyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde **4e**, 85%, light yellow solid, (EA/Hex = 25%, R_f = 0.20), ¹H NMR (400 MHz, CDCl₃) δ 10.33 (d, J = 1.1 Hz, 1H), 8.42 (d, J = 8.0 Hz, 1H), 8.37 (s, 1H), 7.92 (d, J = 8.5 Hz, 1H), 7.69 (dd, J = 8.4, 7.2 Hz, 1H), 7.44 (t, J = 7.6 Hz, 1H), 3.50 – 3.40 (m, 1H), 1.29 (d, J = 6.8 Hz, 2H), 1.12 – 1.03 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.40, 177.02, 145.58, 141.05, 133.08,

128.93, 127.13 , 125.82, 117.08, 117.01, 34.81, 8.16. HRMS (ESI) m/z calcd for $C_{14}H_{14}NO_2^+\,(M\!+\!H)^+\,214.0863,$ found 214.0865.

4-oxo-1-phenyl-1,4-dihydroquinoline-3-carbaldehyde **4f**, 80%, light yellow solid, (EA/Hex = 25%, R_f = 0.20), ¹H NMR (400 MHz, CDCl₃) δ 10.51 (d, J = 1.1 Hz, 1H), 8.58 (d, J = 8.0 Hz, 1H), 8.37 (d, J = 1.1 Hz, 1H), 7.65 (d, J = 5.4 Hz, 3H), 7.60 (dd, J = 8.4, 7.2 Hz, 1H), 7.50 (t, J = 7.5 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.06 (d, J = 8.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.62, 177.04, 145.91, 141.11, 140.41, 133.00, 130.55, 130.31, 128.80, 127.22, 126.99, 125.91, 118.36, 117.20. HRMS (ESI) m/z calcd for C₁₆H₁₂NO₂⁺ (M+H)⁺ 250.0863, found 250.0863.

1-(4-methoxyphenyl)-4-oxo-1,4-dihydroquinoline-3-carbaldehyde **4g**, 73%, ¹H NMR (400 MHz, CDCl₃) δ 10.50 (s, 1H), 8.56 (d, *J* = 8.0 Hz, 1H), 8.36 (s, 1H), 7.59 (t, *J* = 7.8 Hz, 1H), 7.34 (t, *J* = 6.1 Hz, 2H), 7.14 – 7.09 (m, 2H), 7.07 (d, *J* = 8.5 Hz, 1H), 3.94 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.66, 177.09, 160.65, 146.31, 141.52, 133.02, 132.96, 128.81, 128.36, 126.92, 125.84, 118.46, 117.12, 115.50, 55.77. HRMS (ESI) m/z calcd for C₁₇H₁₄NO₃⁺ (M+H)⁺ 280.0969, found 280.0967.

5-*ethyl*-8-*oxo*-5,8-*dihydro*-[1,3]*dioxolo*[4,5-*g*]*quinoline*-7-*carbaldehyde* **4h**, 80%, light yellow solid, (EA/Hex = 30%, $R_f = 0.15$), ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.16 (s, 1H), 8.50 (s, 1H), 7.59 (s, 1H), 7.49 (s, 1H), 6.24 (s, 2H), 4.40 (q, *J* = 7.0 Hz, 2H), 1.35 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 189.02, 174.84, 153.03, 146.80, 145.93, 136.63, 125.08, 116.27, 103.14, 97.95, 49.29, 14.96. HRMS (ESI) m/z calcd for C₁₃H₁₂NO₂⁺ (M+H)⁺ 246.0761, found 246.0761.

1-ethyl-6-methyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde **4i**, 85%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.26 (d, *J* = 0.8 Hz, 1H), 8.23 (s, 1H), 7.49 (dd, *J* = 8.6, 2.0 Hz, 1H), 7.35 (d, *J* = 8.7 Hz, 1H), 4.21 (q, *J* = 7.3 Hz, 2H), 2.43 (s, 3H), 1.49 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 189.58, 176.95, 144.99, 137.08, 136.00, 134.50, 129.53, 127.12, 117.05, 116.08, 49.17, 20.99, 14.59. HRMS (ESI) m/z calcd for C₁₃H₁₄NO₂⁺ (M+H)⁺ 216.1019, found 216.1019.

1-ethyl-6-isopropyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4j**, 73%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 10.35 (s, 1H), 8.32 (d, *J* = 2.0 Hz, 1H), 8.24 (s, 1H), 7.55 (dd, *J* = 8.7, 2.1 Hz, 1H), 7.39 (d, *J* = 8.7 Hz, 1H), 4.21 (q, *J* = 7.2 Hz, 2H), 3.01 (dt, *J* = 13.8, 6.9 Hz, 1H),

1.49 (t, J = 7.3 Hz, 3H), 1.25 (d, J = 6.9 Hz, 7H). ¹³C NMR (101 MHz, CDCl₃) δ 189.65, 177.09, 146.85, 144.99, 137.32, 132.16, 129.63, 124.55, 117.01, 116.25, 49.18, 33.79, 23.85, 14.62. HRMS (ESI) m/z calcd for C₁₅H₁₈NO₂⁺ (M+H)⁺ 244.1332, found 244.1333.

1-isopropyl-6-methyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4k**, 90%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 8.39 (s, 1H), 8.30 (s, 1H), 7.52 – 7.43 (m, 2H), 7.20 (s, 1H), 4.85 (dt, *J* = 13.3, 6.6 Hz, 1H), 2.43 (s, 3H), 1.55 (d, *J* = 6.6 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 189.56, 176.69, 140.51, 137.70, 135.82, 134.41, 129.65, 127.26, 117.01, 115.47, 51.51, 22.14, 20.86. HRMS (ESI) m/z calcd for C₁₄H₁₆NO₂⁺ (M+H)⁺ 230.1176, found 230.1177.

1-cyclopropyl-6-methyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4**I, 84%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.32 (d, *J* = 1.4 Hz, 1H), 8.33 (s, 1H), 8.21 (s, 1H), 7.80 (d, *J* = 8.6 Hz, 1H), 7.49 (d, *J* = 8.6 Hz, 1H), 3.47 – 3.39 (m, 1H), 2.43 (s, 3H), 1.27 (d, *J* = 6.7 Hz, 2H), 1.20 (d, *J* = 11.9 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.49, 177.01, 145.06, 139.03, 136.08, 134.31, 128.78, 126.64, 116.92, 34.78, 20.98, 8.05. HRMS (ESI) m/z calcd for C₁₄H₁₄NO₂⁺ (M+H)⁺ 228.1019, found 228.1019.

1-cyclopentyl-6-methyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4m**, 77%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 8.35 (s, 1H), 8.27 (s, 1H), 7.55 – 7.45 (m, 2H), 4.88 (ddd, J = 13.2, 7.2, 5.6 Hz, 1H), 2.43 (s, 3H), 2.25 (td, J = 8.4, 7.5, 3.9 Hz, 2H), 1.98 – 1.83 (m, 5H), 1.83 – 1.74 (m, 2H), 1.66 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.49, 176.69, 140.94, 138.28, 135.82, 134.22, 129.62, 127.02, 116.29, 61.85, 33.67, 32.31, 23.73, 23.60, 20.87. HRMS (ESI) m/z calcd for C₁₆H₁₈NO₂⁺ (M+H)⁺ 256.1332, found 256.1333.

1-(cyclopropylmethyl)-6-methyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4n**, 85%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.34 (s, 1H), 8.26 (d, *J* = 13.6 Hz, 2H), 7.45 (dd, *J* = 19.8, 8.7 Hz, 2H), 3.97 (d, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 1.37 – 1.21 (m, 1H), 0.69 (dd, *J* = 10.0, 2.9 Hz, 2H), 0.39 (t, *J* = 5.0 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 189.49, 176.92, 144.79, 137.72, 135.97, 134.37, 129.39, 126.95, 116.88, 116.19, 58.18, 20.94, 10.04, 4.66. HRMS (ESI) m/z calcd for C₁₅H₁₆NO₂⁺ (M+H)⁺ 242.1176, found 242.1177.

6-chloro-1-cyclobutyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **40**, 79%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, CDCl₃) δ 10.30 (s, 1H),

8.44 – 8.31 (m, 2H), 7.87 (d, J = 9.0 Hz, 1H), 7.63 (dd, J = 9.0, 2.4 Hz, 1H), 3.49 – 3.37 (m, 1H), 1.30 (t, J = 6.6 Hz, 2H), 1.20 (d, J = 12.1 Hz, 2H), 1.09 (d, J = 3.3 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 189.05, 175.83, 145.68, 139.47, 133.30, 132.37, 130.06, 126.60, 118.73, 117.25, 34.94, 8.21. HRMS (ESI) m/z calcd for C₁₄H₁₃NO₂⁺ (M+H)⁺ 262.0629 found 262.0629.

1-(tert-butyl)-6-chloro-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4p**, 87%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, CDCl₃) δ 10.34 (d, *J* = 1.8 Hz, 1H), 8.63 (s, 1H), 8.49 (s, 1H), 7.92 – 7.82 (m, 1H), 7.57 (ddd, *J* = 9.3, 2.8, 1.8 Hz, 1H), 1.82 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 189.28, 175.28, 143.18, 137.78, 132.33, 131.80, 127.29, 121.93, 116.23, 63.99, 30.81. HRMS (ESI) m/z calcd for C₁₄H₁₅NO₂⁺ (M+H)⁺ 264.0786, found 264.0786.

6-chloro-1-isopropyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4q**, 89%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.42 (d, *J* = 1.6 Hz, 1H), 8.50 (dd, *J* = 18.8, 2.0 Hz, 2H), 7.69 (ddd, *J* = 9.1, 2.5, 1.6 Hz, 1H), 7.60 (d, *J* = 8.6 Hz, 1H), 4.90 (dt, *J* = 13.2, 6.6 Hz, 1H), 1.64 (dd, *J* = 6.6, 1.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 189.16, 175.56, 141.07, 133.37, 131.89, 131.33, 127.16, 117.34, 52.01, 22.13. HRMS (ESI) m/z calcd for C₁₃H₁₃ClNO₂⁺ (M+H)⁺ 250.0629, found 250.0629.

6-bromo-1-(cyclopropylmethyl)-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4r**, 82%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.32 (d, J = 2.9 Hz, 1H), 8.58 (t, J = 2.5 Hz, 1H), 8.32 (d, J = 2.8 Hz, 1H), 7.75 (dt, J = 9.0, 2.6 Hz, 1H), 7.42 (dd, J = 9.0, 2.7 Hz, 1H), 3.97 (dd, J = 6.9, 2.5 Hz, 2H), 1.28 (dd, J = 7.4, 4.5 Hz, 1H), 0.80 – 0.66 (m, 2H), 0.41 (d, J = 1.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 189.07, 175.63, 145.36, 138.58, 136.06, 130.94, 130.18, 119.84, 118.07, 117.44, 58.37, 9.95, 4.75. HRMS (ESI) m/z calcd for C₁₄H₁₃BrNO₂⁺ (M+H)⁺ 306.0124, found 306.0125.

6-bromo-1-cyclopropyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4s**, 85%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 8.52 (d, J = 2.1 Hz, 1H), 8.35 (s, 1H), 7.87 – 7.71 (m, 2H), 3.51 – 3.34 (m, 1H), 1.30 (q, J = 6.8 Hz, 2H), 1.09 (q, J = 6.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.96, 175.64, 145.66, 139.88, 136.03, 130.29, 129.76, 120.03, 118.88, 117.39, 34.87, 8.19. HRMS (ESI) m/z calcd for C₁₃H₁₁BrNO₂⁺ (M+H)⁺ 291.9968, found 291.9969.

 $\label{eq:chloro-1-cyclobutyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, \ensuremath{ 4aa}, 78\%, \ensuremath{ \mbox{light yellow solid, (EA/Hex = 25\%, R_f = 0.25), 1H NMR (400 MHz, CDCl_3) δ 10.41 (d, \ensuremath{ \mbox{light yellow solid, CDCl_3}) δ 10.41 (d, \ensuremath{ \mbox{light yellow$

J = 1.6 Hz, 1H), 8.43 (d, J = 1.6 Hz, 1H), 8.27 (d, J = 8.8 Hz, 1H), 7.61 (dd, J = 5.7, 1.6 Hz, 1H), 4.81 (td, J = 8.4, 7.5, 2.1 Hz, 1H), 2.82 – 2.63 (m, 2H), 2.51 (ddd, J = 11.3, 7.0, 2.1 Hz, 2H), 2.14 – 1.97 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.98, 175.35, 157.08, 154.57, 142.20, 135.97, 129.68, 127.55, 119.21, 116.29, 113.87, 56.11, 29.76, 14.53. HRMS (ESI) m/z calcd for C₁₄H₁₂ClFNO₂⁺ (M+H)⁺ 280.0535, found 280.0535.

7-*chloro-1-ethyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carbaldehyde*, **4ab**, 77%, light yellow solid, (EA/Hex = 25%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.31 (s, 1H), 8.25 (s, 1H), 8.19 (d, *J* = 8.8 Hz, 1H), 7.53 (d, *J* = 5.6 Hz, 1H), 4.20 (q, *J* = 7.3 Hz, 2H), 1.52 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ ¹³C NMR (101 MHz, CDCl₃) δ 188.93, 175.40, 157.00, 154.49, 145.68, 135.79, 129.90, 118.69, 117.00, 114.08, 49.54, 14.48. HRMS (ESI) m/z calcd for C₁₂H₁₀ClFNO₂⁺ (M+H)⁺ 254.0379, found 254.0380.

7-*chloro-1-cyclopropyl-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carbaldehyde,* **4ac**, 81%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 8.42 (s, 1H), 8.21 (d, *J* = 8.7 Hz, 1H), 8.06 (d, *J* = 5.8 Hz, 1H), 3.50 (dt, *J* = 7.0, 3.8 Hz, 1H), 1.41 (d, *J* = 6.8 Hz, 2H), 1.18 (d, *J* = 2.1 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.87, 175.49, 157.23, 154.73, 145.87, 137.66, 129.14, 127.70, 119.60, 116.74, 113.62, 35.08, 8.29. HRMS (ESI) m/z calcd for C₁₃H₁₀ClFNO₂⁺ (M+H)⁺ 266.0379, found 266.0381.

7-*chloro-1*-(*cyclopropylmethyl*)-6-*fluoro-4-oxo-1*,4-*dihydroquinoline-3-carbaldehyde*, **4ad**, 85%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, CDCl₃) δ 10.41 (s, 1H), 8.42 (s, 1H), 8.28 (d, *J* = 8.8 Hz, 1H), 7.71 (d, *J* = 5.6 Hz, 1H), 4.05 (d, *J* = 7.0 Hz, 2H), 1.48 – 1.31 (m, 1H), 0.85 (d, *J* = 8.1 Hz, 2H), 0.52 (d, *J* = 5.2 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.94, 175.45, 157.02, 154.52, 145.41, 136.39, 129.82, 127.77, 118.84, 116.77, 113.71, 58.65, 9.83, 4.87. HRMS (ESI) m/z calcd for C₁₄H₁₂ClFNO₂⁺ (M+H)⁺ 280.0535, found 280.0537.

1-cyclopropyl-6, *7-difluoro-4-oxo-1*, *4-dihydroquinoline-3-carbaldehyde*, **4ae**, 79%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, CDCl₃) δ 10.36 (s, 1H), 8.43 (s, 1H), 8.27 (dd, J = 9.7, 9.0 Hz, 1H), 7.80 (dd, J = 11.2, 6.4 Hz, 1H), 3.53 – 3.44 (m, 1H), 1.40 (q, J = 6.7 Hz, 2H), 1.18 (q, J = 6.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 188.96, 175.38, 154.97, 150.13, 147.75, 145.94, 138.06, 126.11, 116.80, 115.08, 106.37, 35.12, 8.24. HRMS (ESI) m/z calcd for C₁₃H₁₀ClFNO₂⁺ (M+H)⁺ 250.0674, found 250.0675.

1-ethyl-6,7-difluoro-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4af**, 76%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$) ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.14 (s,

1H), 8.64 (s, 1H), 8.19 – 8.04 (m, 2H), 4.43 (q, J = 7.1 Hz, 2H), 1.37 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 188.24, 174.48, 148.16, 137.02, 126.74, 116.53, 114.06, 113.88, 108.23, 108.01, 49.32, 14.92. HRMS (ESI) m/z calcd for C₁₂H₁₀F₂NO₂⁺ (M+H)⁺ 280.0674, found 280.0675.

7-*bromo-1-cyclopropyl-8-methyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde,* **4ag**, 80%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$) ¹H NMR (400 MHz, DMSO- *d*₆) δ 10.09 (s, 1H), 8.51 (s, 1H), 7.99 (d, *J* = 8.5 Hz, 1H), 7.75 (d, *J* = 8.5 Hz, 1H), 4.26 (dt, *J* = 10.7, 3.5 Hz, 1H), 2.29 (s, 3H), 1.16 (d, *J* = 5.8 Hz, 2H), 0.86 (d, *J* = 1.5 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 188.29, 175.65, 151.95, 146.59, 130.29, 129.71, 128.99, 125.28, 117.17, 41.04, 22.90, 21.26, 10.86. HRMS (ESI) m/z calcd for C₁₄H₁₃BrNO₂⁺ (M+H)⁺ 306.0124, found 306.0125.

4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4ah**, 75%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, DMSO- d_6) δ 12.71 (s, 1H), 10.20 (s, 1H), 8.49 (s, 1H), 8.22 (dd, J = 8.0, 1.1 Hz, 1H), 7.76 (dd, J = 7.1, 1.3 Hz, 1H), 7.67 (d, J = 8.1 Hz, 1H), 7.52 – 7.43 (m, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 189.18, 176.69, 143.67, 139.84, 133.55, 128.20, 125.87, 119.87, 116.77. HRMS (ESI) m/z calcd for $C_{10}H_8NO_2^+$ (M+H)⁺ 174.0550, found 174.0551.

ethyl (*E*)-3-(1-cyclopropyl-3-formyl-4-oxo-1,4-dihydroquinolin-6-yl)acrylate, **4ai**, 73%, light yellow solid, (EA/Hex = 30%, $R_f = 0.2$), ¹H NMR (400 MHz, CDCl₃) δ 10.33 (s, 1H), 8.54 (d, *J* = 1.8 Hz, 1H), 8.36 (s, 1H), 7.93 (d, *J* = 8.8 Hz, 1H), 7.81 (dd, *J* = 8.8, 1.9 Hz, 1H), 7.72 (d, *J* = 16.0 Hz, 1H), 6.52 (d, *J* = 16.0 Hz, 1H), 3.77 (s, 3H), 3.45 (qd, *J* = 7.6, 3.9 Hz, 1H), 1.31 (q, *J* = 6.7 Hz, 2H), 1.10 (q, *J* = 6.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 189.11, 176.61, 166.96, 145.67, 142.74, 141.90, 132.02, 129.12, 126.95, 119.73, 117.79, 117.57, 51.87, 34.92, 8.23. HRMS (ESI) m/z calcd for C₁₈H₁₈NO₄⁺ (M+H)⁺ 312.1230, found 312.1231.

6-((3-((6,7-bis(2-methoxy)quinazolin-4-yl)amino)phenyl)ethynyl)-1cyclopropyl-4-oxo-1,4-dihydroquinoline-3-carbaldehyde, **4aj**, 76%, white solid, (EA/Hex = 60%, R_f = 0.25), ¹H NMR (400 MHz, CDCl₃) δ 10.37 (s, 1H), 8.61 (s, 1H), 8.27 (d, *J* = 19.4 Hz, 3H), 7.98 (d, *J* = 7.9 Hz, 1H), 7.81 (d, *J* = 8.7 Hz, 1H), 7.70 – 7.60 (m, 2H), 7.48 (s, 1H), 7.28 (d, *J* = 7.9 Hz, 1H), 7.18 – 7.11 (m, 2H), 4.20 (dd, *J* = 19.0, 14.5 Hz, 4H), 3.79 – 3.71 (m, 4H), 3.37 (d, *J* = 3.5 Hz, 7H), 1.21 (dd, *J* = 10.0, 4.9 Hz, 4H). ¹³C NMR (101 MHz, CDCl₃) δ 189.45, 176.39, 156.48, 154.51, 153.47, 149.07, 147.41, 145.95, 140.32, 139.39, 135.58, 130.06, 129.09, 128.55, 126.73, 124.41, 122.93, 122.26, 120.82, 117.32, 109.56, 108.61, 102.67, 90.84, 87.82, 70.84, 69.02, 68.34, 59.24, 35.05, 29.68, 8.05. HRMS (ESI) m/z calcd for C₃₅H₃₃N₄O₆⁺ (M+H)⁺ 605.2395, found 605.2396.

1-cyclopropyl-6,7-*difluoro-4-oxo-1*,4-*dihydroquinoline-3-carboxylic* acid, **5**, 91%, light yellow solid, (MeOH/DCM=10%, $R_f = 0.2$), ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.74 (s, 1H), 8.77 (s, 1H), 8.39 (dd, *J* = 12.0, 6.8 Hz, 1H), 8.34 – 8.20 (m, 1H), 3.86 – 3.76 (m, 1H), 1.33 (d, *J* = 5.7 Hz, 2H), 1.25 – 1.21 (m, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 177.15, 165.89, 150.06, 139.30, 123.13, 113.87, 108.86, 107.91, 37.10, 8.04. HRMS (ESI) m/z calcd for C₁₃H₁₀F₂NO₃⁺ (M+H)⁺ 266.0623, found 266.0625.

1-cyclopropyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid, **6**, 91%, light yellow solid, (MeOH/DCM=15%, $R_f = 0.15$), ¹H NMR (400 MHz, D₂O) δ 8.29 (s, 1H), 7.23 (d, *J* = 7.1 Hz, 1H), 7.02 (d, *J* = 12.9 Hz, 1H), 3.47 (s, 5H), 3.38 (s, 4H), 1.28 (d, *J* = 6.5 Hz, 2H), 1.00 (s, 2H). ¹³C NMR (101 MHz, D₂O) δ 175.28 (s), 168.41, 154.31, 151.81, 147.84, 144.50, 138.62, 118.20, 110.39, 106.25, 105.24, 46.18, 46.13, 43.09, 36.02, 7.40. HRMS (ESI) m/z calcd for C₁₇H₁₉FN₃O₃⁺ (M+H)⁺ 332.1405, found 332.1408.

1-cyclopropyl-6-fluoro-7-(3-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3carboxylic acid, **7**, 87%, light yellow solid, (MeOH/DCM=15%, $R_f = 0.15$), ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.64 (s, 1H), 7.87 (d, *J* = 13.4 Hz, 1H), 7.53 (d, *J* = 7.3 Hz, 1H), 3.84 (s, 1H), 3.60 (d, J = 9.9 Hz, 2H), 3.35 (s, 1H), 3.13 – 2.93 (m, 4H), 2.66 (t, J = 11.0 Hz, 1H), 1.32 (d, J = 5.6 Hz, 2H), 1.18 (s, 2H), 1.11 (d, J = 6.2 Hz, 3H). ¹³C NMR (101 MHz, DMSO- d_6) δ 176.75, 166.40, 154.64, 152.16, 148.39, 145.66, 139.67, 118.95, 111.53, 107.15, 56.21, 50.48, 49.47, 44.91, 36.33, 18.86, 8.01. HRMS (ESI) m/z calcd for C₁₈H₂₁FN₃O₃⁺ (M+H)⁺ 346.1561, found 346.1560.

1-ethyl-6,7-*difluoro-4-oxo-1*,4-*dihydroquinoline-3-carboxylic* acid, **8**, 89%, light yellow solid, (MeOH/DCM=10%, $R_f = 0.2$), ¹H NMR (400 MHz, CDCl₃), ¹H NMR (400 MHz, DMSO-*d*₆) δ 14.87 (s, 1H), 9.09 (s, 1H), 8.39 – 8.25 (m, 2H), 4.58 (q, *J* = 6.9 Hz, 2H), 1.39 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 176.91, 166.06, 150.29, 137.36, 123.77, 113.96, 108.45, 108.22, 50.04, 14.98. HRMS (ESI) m/z calcd for C₁₂H₁₀FNO₃⁺ (M+H)⁺ 254.0623, found 254.0625.

1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid, **9**, 92%, light yellow solid, (MeOH/DCM=15%, $R_f = 0.15$), ¹H NMR (400 MHz, DMSO*d*₆) δ 8.93 (s, 1H), 7.84 (d, *J* = 13.5 Hz, 1H), 7.12 (d, *J* = 7.3 Hz, 1H), 4.58 (q, *J* = 7.0 Hz, 2H), 3.33 – 3.12 (m, 4H), 2.98 – 2.80 (m, 4H), 1.42 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 175.54, 166.61, 154.58 152.10, 148.82, 146.53, 137.66, 119.43, 111.62, 107.48, 105.93, 51.29, 49.47, 45.87, 14.79. HRMS (ESI) m/z calcd for C₁₆H₁₉FN₃O₃⁺ (M+H)⁺ 320.1405, found 320.1408.

1-ethyl-6-fluoro-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic acid, **10**, 90%, light yellow solid, (MeOH/DCM=15%, $R_f = 0.15$), ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.95 (s, 1H), 7.90 (d, *J* = 13.4 Hz, 1H), 7.17 (d, *J* = 7.2 Hz, 1H), 4.59 (q, *J* = 6.9 Hz, 2H), 3.33 (d, *J* = 4.2 Hz, 4H), 2.53 (s, 4H), 2.26 (s, 3H), 1.42 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 176.62, 166.61, 148.98, 145.89, 137.67, 119.65, 111.73, 107.51, 106.28, 54.76, 49.76, 49.51, 46.16, 14.84. HRMS (ESI) m/z calcd for C₁₇H₂₁FN₃O₃⁺ (M+H)⁺ 334.1561, found 334.1564.

5-*ethyl*-8-*oxo*-5,8-*dihydro*-[1,3]*dioxolo*[4,5-*g*]*quinoline*-7-*carboxylic* acid, **11**, 88%, light yellow solid, (MeOH/DCM=10%, $R_f = 0.2$), ¹H NMR (400 MHz, DMSO-*d*₆) δ 15.70 (s, 1H), 8.90 (s, 1H), 7.62 (d, *J* = 11.1 Hz, 2H), 6.30 (s, 2H), 4.54 (d, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 176.46, 166.79, 154.20, 147.57, 137.42, 103.74, 102.33, 97.71, 50.04, 15.09. HRMS (ESI) m/z calcd for C₁₃H₁₂NO₅⁺ (M+H)⁺ 262.0710, found 262.0715.

7-*bromo-1-cyclopropyl-8-methyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid,* **12**, 91%, light yellow solid, (MeOH/DCM=10%, $R_f = 0.2$), ¹H NMR (400 MHz, DMSO*d*₆) δ 14.68 (s, 1H), 8.87 (s, 1H), 8.06 (d, *J* = 8.6 Hz, 1H), 7.85 (d, *J* = 8.6 Hz, 1H), 4.48 – 4.31 (m, 1H), 2.92 (s, 3H), 1.22 (d, *J* = 6.3 Hz, 2H), 0.93 (s, 2H). ¹³C NMR (101 MHz, DMSO- d_6) δ 178.16, 165.79, 153.50, 143.18, 133.92, 131.06, 125.11, 108.50, 55.40, 41.95, 23.12, 11.01. HRMS (ESI) m/z calcd for C₁₄H₁₃BrNO₃⁺ (M+H)⁺ 322.0073, found 322.0073.

4-oxo-1,4-dihydroquinoline-3-carboxylic acid, **13**, 92%, light yellow solid, (MeOH/DCM=10%, $R_f = 0.2$), ¹H NMR (400 MHz, DMSO-*d*₆) δ 15.37 (s, 1H), 13.51 (s, 1H), 8.90 (s, 1H), 8.40 – 8.22 (m, 1H), 8.01 – 7.75 (m, 2H), 7.61 (dd, *J* = 11.1, 3.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 178.81, 166.87, 145.64, 139.92, 134.42, 126.69, 125.52, 124.86, 120.14, 108.03. HRMS (ESI) m/z calcd for C₁₀H₈NO₃⁺(M+H)⁺ 190.0499, found 190.0498.

N-(2,4-*di*-*tert*-*butyl*-5-*hydroxyphenyl*)-4-*oxo*-1,4-*dihydroquinoline*-3-*carboxamide*, **14**, 93%, light yellow solid, (EA/Hex = 25%, $R_f = 0.25$), ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.89 (s, 1H), 11.82 (s, 1H), 9.21 (s, 1H), 8.87 (s, 1H), 8.33 (d, *J* = 8.1 Hz, 1H), 7.78 (dd, *J* = 19.3, 7.7 Hz, 2H), 7.52 (t, *J* = 7.5 Hz, 1H), 7.13 (d, *J* = 26.1 Hz, 2H), 1.37 (d, *J* = 6.7 Hz, 18H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 176.87, 163.29, 153.75, 144.64, 139.63, 134.00, 133.40, 132.75, 131.97, 126.46, 125.62, 124.23, 119.60, 116.42, 111.35, 34.80, 34.44, 31.03, 29.88. HRMS (ESI) m/z calcd for C₂₄H₂₉N₂O₃⁺ (M+H)⁺ 393.2173, found 393.2174.

2-(3-(*tert-butylamino*)-2-formylacryloyl)phenyl 4-methylbenzenesulfonate, **15**, 97%, light yellow solid, (EA/Hex = 20%, $R_f = 0.2$), ¹H NMR (400 MHz, CDCl₃) δ 11.40 (s, 1H), 9.31 (s, 0.6H), 9.04 (s, 0.4H), 8.13 (d, J = 14.7 Hz, 0.4H), 7.97 (s, 0.6H), 7.64 (t, J = 8.6 Hz, 2H), 7.41 (dd, J = 14.0, 6.0 Hz, 1H), 7.34 – 7.29 (m, 1H), 7.24 (dd, J = 12.5, 6.9 Hz, 4H), 2.43 (s, 3H), 1.46 (s, 4H), 1.40 (s, 5H). ¹³C NMR (101 MHz, CDCl₃) δ 191.78, 190.84, 189.46, 188.43, 156.09, 145.95, 145.53, 133.76, 132.46, 131.09, 129.74, 128.51, 127.13, 123.27, 110.18, 54.85, 29.52, 21.74. HRMS (ESI) m/z calcd for C₂₁H₂₄NO₅S⁺ (M+H)⁺ 402.1370, found 402.1370.

NMR Figures of Products

¹³C NMR spectrum of **4a**

¹³C NMR spectrum of **4c**

¹³C NMR spectrum of **4d**

¹³C NMR spectrum of **4e**

¹³C NMR spectrum of **4f**

¹³C NMR spectrum of **4g**

¹³C NMR spectrum of **4h**

¹³C NMR spectrum of **4**j

¹³C NMR spectrum of **4**k

¹³C NMR spectrum of **4**l

¹³C NMR spectrum of **4m**

DEP 135° spectrum of 4n

¹³C NMR spectrum of **40**

¹³C NMR spectrum of **4p**

¹³C NMR spectrum of **4**q

 13 C NMR spectrum of **4r**

¹³C NMR spectrum of **4s**

¹³C NMR spectrum of **4aa**

— -116.54

¹⁹F NMR spectrum of **4aa**

¹³C NMR spectrum of **4ab**

¹⁹F NMR spectrum of **4ab**

¹³C NMR spectrum of **4ac**

¹³C NMR spectrum of **4ad**

¹⁹F NMR spectrum of **4ad**

¹³C NMR spectrum of **4ae**

¹³C NMR spectrum of **4af**

¹³C NMR spectrum of **4ag**

¹³C NMR spectrum of **4ah**

¹³C NMR spectrum of **4ai**

¹³C NMR spectrum of **4aj**

¹³C NMR spectrum of **5**

¹³C NMR spectrum of **6**

¹³C NMR spectrum of **7**

¹³C NMR spectrum of **8**

¹³C NMR spectrum of **9**

¹³C NMR spectrum of **10**

74

¹³C NMR spectrum of **11**

¹³C NMR spectrum of 12

¹³C NMR spectrum of **13**

¹³C NMR spectrum of **14**

¹³C NMR spectrum of **15**

DEPT 135° spectrum of 15