Supplementary information

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

A hemicellulose and lignin-first process for corn stover valorization catalyzed by aluminum sulfate in γbutyrolactone/water co-solvent

Yiping Luo^a, Min Wei^a, Bin Jiang^a, Mingyi Zhang^a, Qian Miao^a, Hongquan Fu^{c*}, James H. Clark^b and Jiajun Fan^{b*}

^o College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan 610059, PR China.

^b Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York, YO10 5DD, UK. Email:alice.fan@york.ac.uk.

^c College of Chemistry and Chemical Engineering, Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong, Sichuan 637000, China. Email: fubestone@163.com

II. Optimization of reaction conditions for corn stover fractionation

Figure S2 Effects of temperature (A and D), time (B and E) and $Al_2(SO_4)_3$ amounts (C and F) in 25% GBL/H₂O-Al₂(SO₄)₃ on the transformation of corn stover and the three main components in corn stover (A and D, 3 g corn stover, 60 mL 25% GBL/H₂O, 0.9 mmol Al₂(SO₄)₃, 120-200 °C for 2 h; B and E, 3 g corn stover, 60 mL 25% GBL/H₂O, 0.9 mmol Al₂(SO₄)₃, 160 °C for 0-6 h; C and F, 3 g corn stover, 60 mL 25% GBL/H₂O, 160 °C for 0.5 h; 0-1.5 mmol Al₂(SO₄)₃)

III. Ion strength of different solutions

Sulfate salt solution	Ion strength (I)/	Chlorido colt colution	lon strength (I)/
	(mol/kg)ª	Chloride sait solution	(mol/kg) ^a
H ₂ SO ₄ ^b	0.06	HCI	0.09
$AI_2(SO_4)_3$	0.31	AICI ₃	0.25
$Fe_2(SO_4)_3$	0.31	FeCl ₃	0.25
K ₂ SO ₄	0.19	KCI	0.12
Na ₂ SO ₄	0.19	NaCl	0.12
CaSO ₄	0.25	CaCl ₂	0.19

Table S1 Ion strength of different solutions without considering salt hydrolysis

^a Ion strength of different solutions was calculated using the equation $(I=1/2\sum b(B)*z(B)^2$, b(B) is the molar concentration (mol/kg) of B ion, Z(B) is ion valence of B); ^b Ion strength of H₂SO₄ which considered the secondary ionization is incomplete in Figure S3.

Figure S3 The relationship between H_2SO_4 concentration and its secondary ionization degree

 H_2SO_4 is a binary strong acid with a two-stage ionization characteristic. As shown in Figure S3, the first ionization can be complete to produce H⁺ and HSO₄⁻, while the degree of secondary ionization is related to the concentration of H_2SO_4 . The concentration of H_2SO_4 used in this work was 0.0465 mol/L, and the secondary ionization degree was 15.68%, indicating that the secondary ionization was incomplete.

Reaction condition: 3 g corn stover, 60 mL 25% GBL/H ₂ O, sulfate salts with 2.8 mmol
$SO_4{}^{2\text{-}}$ or chloride salts with 5.6 mmol Cl $^{-}$ or mineral acids (2.8 mmol H_2SO_4 and 5.6 mmol
HCl), 160 °C for 2 h. pH values were measured after the complete dissolution of metal
salts in water at room temperature (initial pH), and after reaction (final pH).

IV. pH values of different salt solutions

Journal Name

Solvent systems	Initial pH	Final pH
25% GBL/H ₂ O	5.43	3.70
25% GBL/H ₂ O-H ₂ SO ₄	1.45	1.63
25% GBL/H ₂ O-Al ₂ (SO ₄) ₃	2.97	1.99
25% GBL/H ₂ O-Fe ₂ (SO ₄) ₃	2.14	2.97
25% GBL/H ₂ O-K ₂ SO ₄	5.21	3.72
25% GBL/H ₂ O-Na ₂ SO ₄	5.06	3.70
25% GBL/H ₂ O-Ca ₂ SO ₄	4.93	3.60
25% GBL/H ₂ O-HCl	1.12	1.42
25% GBL/H ₂ O-AlCl ₃	2.86	2.28
25% GBL/H ₂ O-FeCl ₃	1.84	2.70
25% GBL/H ₂ O-KCl	4.44	3.61
25% GBL/H ₂ O-NaCl	4.42	3.52
25% GBL/H ₂ O-CaCl ₂	4.91	3.43

Table S2 pH values of different solvent systems before and after reaction

Please do not adjust margins

ARTICLE

V. Quantum Chemical Calculation

Figure S4 Geometric structures and the relative Gibbs free energy (Δ G, Kcal/mol) of possible [Al(HSO₄)_p(OH)_m(H₂O)_n]^{3-m-p} species

VI. The yield of small molecular products mainly from hemicellulose

Figure S5 Effects of sulfate salts, chloride salts and mineral acids (H₂SO₄ and HCl) in 25% GBL/H₂O co-solvent on the yield of small molecular products mainly from hemicellulose in corn stover at 160 °C for 2 h (Reaction condition: 3 g corn stover, 60 mL 25% GBL/H₂O, 160 °C for 2 h, sulfate salts with 2.8 mmol SO₄²⁻ or chloride salts with 5.6 mmol Cl⁻ or mineral acids (2.8 mmol H₂SO₄ and 5.6 mmol HCl), the yield of small molecular products was based on the weight of corn stover)

Journal Name

VII. GC-FID analysis of monophenol yield from lignin

Table S3 The yield of monophenols obtained from different systems

Droducto	Yield/% (based on the weight of lignin)							
Products	H_2O^a	25GBL ^a	50GBL ^a	75GBL ^a	100 GBL ^a	Al ₂ (SO ₄) ₃ -2h ^b	Al ₂ (SO ₄) ₃ -0.5h ^c	
Phenol	0.000	0.026	0.058	0.103	0.172	0.075	0.045	
O-cresol	0.051	1.375	11.969	5.251	1.009	0.029	0.000	
2,3-dihydrobenzofuran	0.000	0.020	0.000	0.000	0.000	0.068	0.304	
P-cresol	0.003	0.000	0.000	0.000	0.033	0.047	0.039	
Guaiacol	0.000	0.117	0.274	0.392	0.963	0.046	0.042	
4-ethylphenol	0.000	0.010	0.000	0.039	0.047	0.011	0.361	
4-methyl guaiacol	0.000	0.038	0.046	0.050	0.217	0.049	0.269	
4-vinylphenol	0.455	1.127	2.388	1.461	1.915	1.684	3.287	
4-propyl phenol	0.007	0.009	0.133	0.160	0.351	0.385	1.770	
4-ethyl guaiacol	0.000	0.028	0.079	0.000	0.083	0.187	0.418	
4-vinyl guaiacol	0.574	1.184	1.994	0.884	0.690	2.055	4.317	
Syringol	0.000	0.035	0.000	0.043	0.127	0.032	0.022	
Eugenol	0.001	0.021	0.069	0.000	0.000	0.095	0.062	
3-(4-Hydroxy-3-	0.001	0.000	0.066	0.000	0.000	0.040	0.040	
methoxyphenyl)-1-propanol	0.001	0.001 0.000	0.000	0.000	0.000	0.000	0.040	0.049
Syringaldehyde	0.014	0.000	0.000	0.000	0.000	0.135	0.187	
4-(3-Hydroxypropyl)-2,6-	0.010	0.000	0.000	0.000	0.000	0.000	0.033	
dimethoxyphenol	0.010	0.000	0.000	0.000	0.000	0.000	0.055	
Total yield	1.115	3.989	17.077	8.384	5.607	4.937	11.204	

^a GBL/H₂O co-solvent with different contents of GBL

 $^{\rm b}$ 25%GBL/H_2O with 0.9 mmol Al_2(SO_4)_3 at 160 °C for 2 h

 $^{\rm c}$ 25%GBL/H_2O with 0.9 mmol Al_2(SO_4)_3 at 160 °C for 0.5 h

VIII.GC-FID spectra

Figure S6 GC-FID spectra of monophenol mixture standards (A), liquid fraction obtained from 25% GBL/H₂O (B) and 25% GBL/H₂O-Al₂(SO₄)₃ (C) system

This journal is © The Royal Society of Chemistry 20xx

IX. 2D HSQC NMR analysis

Figure S7 2D HSQC NMR results of liquid fraction obtained from 25% GBL/H₂O-Al₂(SO₄)₃ system at 160 °C for 0.5 h

Table S4 Assignment of main lignin ¹³C-¹H correlation signals in 2D HSQC NMR spectra[1-2]

Lables	$\delta_{\rm C}/\delta_{\rm H}$	Assignment
Α _γ	59.8/3.61	C_{γ} -H _{γ} in β -O-4' structure(A)
A'γ	63.0/4.36	C_{γ} – H_{γ} in γ -acylated β –O–4 (A')
Bγ	62.2/3.76	C_{γ} -H _{γ} in phenylcoumaran (B)
Cγ	71.2/3.82-4.18	C_{γ} – H_{γ} in β - β ' resinol (C)
H' _{2,6}	130.8/7.56	C _{2,6} -H _{2,6} in oxidized(C=O) p-hydroxyphenyl units(H')
H _{2,6}	128.2/7.19	C _{2,6} -H _{2,6} in p-hydroxyphenyl units(H)
G ₅	115.3/6.80	C_5 -H ₅ in guaiacyl units(G)
MeO	56.0/3.71	C-H in methoxyls
PCA _{3,5}	115.5/6.77	C_3 - H_3 and C_5 - H_5 in p-coumarate structure (PCA)
PCA_{α}/FA_{α}	144.4/7.51	$C_{\alpha}\text{-}H_{\alpha}\text{in}$ p-coumarate structure (PCA) and ferulate (FA)
S _{2,6}	104.4/6.72	C _{2,6} -H _{2,6} in syringyl units(S)

10 | J. Name., 2012, **00**, 1-3

Figure S8 Main structures present in 2D HSQC NMR spectra assignment of Table S4

ARTICLE

X. ESI-MS results

The lignin-derived oligomers according to the molecular weights described in Figure 4 (C-F) were listed below:

m/z(166.09)=m(148.05)+NH₄⁺

m/z(182.06)=m(164.05)+NH₄+

m/z(217.11)=m(194.06)+Na+

m/z(261.13)=m(260.10)+H⁺

m/z(283.16)=m(260.10)+Na+

m/z(309.18)=m(290.12)+H₂O+H⁺

m/z(325.15)=m(302.08)+Na+

m/z(347.16)=m(346.16)+ H⁺

 $m/z(365.16)=m(346.16)+H_2O+H^+$

m/z(437.13)=m(3xylose-2H₂O)+Na⁺=m(414.14) +Na⁺

m/z(453.10)=m(3xylose-2H₂O)+K⁺= m(414.14)+K⁺

Entry	Molecular weight	Molecular formula	Chemical structure
1	148.0524	C ₉ H ₈ O ₂	СНО
2	164.0473	$C_9H_8O_3$	но
3	194.0579	$C_{10}H_{10}O_4$	HO H ₃ CO OH
4	260.1049	$C_{15}H_{16}O_4$	HO HO OH
5	290.1154	C ₁₆ H ₁₈ O ₅	OH OCH ₃ OH
6	302.0790	$C_{16}H_{14}O_6$	он осна
7	346.1569	C ₂₃ H ₂₂ O ₃	OH OH

Table S5 Possible chemical structures of lignin-derived oligomers

References

- [1] J. L. Wen, S. L. Sun, B. L. Xue and R. C. Sun, *Materials*, 2013, 6, 359.
- [2] H. Kim, J. Ralph, Organic & Biomolecular Chemistry, 2010, 8, 576.