Supporting Information

Efficient hydrodeoxygenation of guaiacol to phenol over Ru/Ti-SiO₂ catalysts: the significance of defect-rich TiO_x species

Xinchao Wang ^{*a,b,c*}, Zhuangqing Wang ^{*a,b,c*}, Leilei Zhou ^{*a,b,c*}, Yanchun Liu ^{*d*}, Yinze Yang ^{*a,b,c*}, Liyan Zhang ^{*a,b,c*}, Zongling Shang ^{*a,b,c*}, Hui Li ^{*a,b,c*}, Tingting Xiao ^{*a,b,c*}, Chao Zhang* ^{*a,c,e*}, and Fengyu Zhao* ^{*a,b,c*}

^a State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

^b School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, PR China

^c Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China

^d Department of Chemistry, Northeast Normal University, Changchun 130024, PR China

School of Environment, Northeast Normal University, Changchun 130117, PR
 China

*Corresponding author, Tel: +86-431-85262410; Fax: +86-431-85262410;

E-mail address: zhangc614@nenu.edu.cn, zhaofy@ciac.ac.cn

Number of pages: 21

Number of figures: 15

Number of tables: 7

Contents

Table S1. Physicochemical properties of Ru/SiO ₂ , Ru/Ti-SiO ₂ and Ru/TiO ₂ catalysts3
Table S2. Results of TiO ₂ crystallite sizes on reduced Ti-containing catalysts calculated using
Scherrer equation
Table S3. Results for the hydrodeoxygenation of guaiacol at comparable conversion levels5
Table S4. Influence of reduction temperature on the catalytic performance of Ru/Ti-SiO ₂ and
Ru/TiO ₂ catalysts6
Table S5. Influence of calcination temperature of Ti-SiO ₂ support on the catalytic performance of
Ru/Ti-SiO ₂ catalyst
Table S6. Results of TiO ₂ crystallite sizes on Ru/Ti-SiO ₂ catalysts with support treated at different
temperatures, as estimated according to Scherrer equation7
Table S7. HDO of guaiacol with various heterogeneous catalysts
Fig. S1. XRD patterns of Ru/Ti-SiO ₂ , Ru/TiO ₂ (P25) and Ru/TiO ₂ (Rutile) catalysts9
Fig. S2. TEM images of Ru/SiO ₂ and Ru/Ti-SiO ₂ catalysts. (a) Ru/SiO ₂ , (b) Ru/3.3Ti-SiO ₂ , (c)
Ru/6.3Ti-SiO ₂ , (d) Ru/15.6Ti-SiO ₂ , (e) Ru/22.2Ti-SiO ₂ , (f) Ru/27.1Ti-SiO ₂ , (g) Ru/30.8Ti-SiO ₂ ,
(h) Ru/33.8Ti-SiO ₂ , (i) Ru/42.0Ti-SiO ₂ . The yellow dotted line highlights Ru particles10
Fig. S3. The relationship between Ru particle size and Ti amount in Ru/Ti-SiO ₂ catalysts11
Fig. S4. TEM images of Ru/TiO ₂ catalysts. (a-b) Ru/TiO ₂ -P25; (c-d) Ru/TiO ₂ -rutile12
Fig. S5. TEM images of (a) Ru/SiO ₂ -A and (b) Ru/SiO ₂ -B13
Fig. S6. Catalytic performance of Ru/SiO ₂ , Ru/TiO ₂ and Ru/Ti-SiO ₂ catalysts. Light blue area
stands for Ru/Ti-SiO ₂ catalysts and light pink area for Ru/TiO ₂ catalysts14
Fig. S7. TEM images of (a-b) Ru/Ti-SiO ₂ and (c-d) Ru/TiO ₂ (P25) catalysts reduced at 550 °C15
Fig. S8. XRD patterns of Ru/Ti-SiO ₂ catalyst reduced at different temperatures15
Fig. S9. Ti 2p XPS spectra of Ru/Ti-SiO ₂ catalysts reduced at different temperatures16
Fig. S10. XRD patterns of Ru/Ti-SiO ₂ catalysts in which Ti-SiO ₂ support was calcined at different
temperatures in static air for 3 h16
Fig. S11. Ti 2p XPS spectra of Ru/Ti-SiO ₂ catalysts in which Ti-SiO ₂ support was calcined at
different temperatures in static air for 3 h17
Fig. S12. TEM images of Ru/Ti-SiO ₂ catalysts with different Ru loadings. (a) 1 wt % Ru, (b) 3 wt %
Ru, (c) 6 wt % Ru and (d) 9 wt % Ru18
Fig. S13. Effect of Ru loading on intrinsic reaction rates of guaiacol conversion on Ru/Ti-SiO ₂
and Ru/TiO ₂ (P25) catalysts based on (a) mass of catalyst, (b) perimeter of Ru and (c) amount of
surface Ru. Reaction conditions: 2 mmol guaiacol, 10 mL H2O, 240 °C, 0.4 MPa H2, 1 h,
guaiacol:Ru = 135:1 (mol/mol)19
Fig. S14. H ₂ -TPD profiles of Ru/Ti-SiO ₂ and Ru/TiO ₂ catalysts20
Fig. S15. CO-TPD profiles of Ru/Ti-SiO ₂ and Ru/TiO ₂ catalysts20
Notes and references

Catalyst	Volume of TiCl ₃ solution introduced to 1.0 g of SiO ₂ (mL)	BET surface area (m ² ·g ⁻¹) ^a	Average pore width (nm)	Ru particle size (nm) ^b	TiO ₂ crystallite size (nm)°	Ti amount (wt %, Ti to SiO ₂ mass ratio in 1 g support) ^d	Ti/Ru (theoretical molar ratio)	Surface Ti/ surface Si (atomic compositions) ^e
Ru/SiO ₂	0	175	26.6	8.5			0	
Ru/3.3Ti-SiO ₂	0.5	154	32.2	7.7		3.3	2.3	
Ru/6.3Ti-SiO ₂	1	179	26.3	7.3		6.3	4.4	0.039
Ru/15.6Ti-SiO ₂	3	157	16.4	5.4		15.6	11.0	
Ru/22.2Ti-SiO ₂	5	128	24.4	2.7	11.6	22.2	15.6	
Ru/27.1Ti-SiO ₂	7	114	20.4	2.5	11.1	27.1	19.1	0.089
Ru/30.8Ti-SiO ₂	9	131	18.2	1.8	12.0	30.8	21.7	
Ru/33.8Ti-SiO ₂	11	143	16.6	1.8	11.7	33.8	23.8	
Ru/36.2Ti-SiO ₂	13	168	16.0	1.6	12.2	36.2	25.5	0.056
Ru/42.0Ti-SiO ₂	20	72.7	20.2	1.0	13.2	42.0	29.6	0.075
Ru/TiO ₂ (P25)	0	57.5	35.0	2.6	21.5		42.2	
Ru/TiO ₂ (rutile)	0	17.8	12.6	4.5	59.9		42.2	

Table S1.	Physicoche	mical prop	erties of Ru/	SiO ₂ , Ru/I	Fi-SiO ₂ and	Ru/TiO ₂ catalysts.
-----------	------------	------------	---------------	-------------------------	-------------------------	--------------------------------

^a Determined by nitrogen adsorption.

^b Measured using CO pulse adsorption.

^c Calculated using the Scherrer equation from XRD results, see Table S2.

 $^{\rm d}$ Obtained via: mass of Ti divided by mass of SiO_2. To obtain the mass of Ti derived from 1 mL

of Ti-containing precursor, 1 mL of TiCl₃ aqueous solution (15-20 wt% in HCl) was dried at 80

 $^{\circ}C$ and then calcined at 400 $^{\circ}C$ to form TiO_2 and finally weighed to calculate the mass of Ti.

^e Estimated via XPS results.

Entry	Catalant	2-Theta	FWHM	TiO ₂ crystallite size
	Catalyst	(°)	(°)	(nm)
1	$Ru/22.2TiSiO_2$	27.36	0.70	11.6
2	$Ru/27.1TiSiO_2$	27.41	0.73	11.1
3	$Ru/30.8TiSiO_2$	27.36	0.67	12.0
4	$Ru/33.8TiSiO_2$	27.46	0.69	11.7
5	$Ru/36.2TiSiO_2$	27.41	0.66	12.2
6	$Ru/42.0TiSiO_2$	27.41	0.61	13.2
7	Ru/TiO ₂ (P25)	25.30	0.37	21.5
8	Ru/TiO ₂ (Rutile)	27.42	0.14	59.9

Table S2. Results of TiO_2 crystallite sizes on reduced Ti-containing catalysts calculated using Scherrer equation.

The crystallite sizes of TiO₂ in reduced Ru/Ti-SiO₂, Ru/TiO₂ (P25) and Ru/TiO₂ (Rutile) catalysts were estimated from the (110) diffraction signal of rutile (for Timodified catalysts and rutile-supported catalyst) and (101) diffraction signal of anatase (for P25 supported catalyst) using the Scherrer equation, $d = K\lambda/FWHM \cdot \cos \theta$, where λ is the wavelength of X-ray sources (for Cu K α , $\lambda = 1.54$ Å), K = 0.89, θ is half of the diffraction angle and FWHM is the peak width at half of the maximum value of the diffraction peak. The structural parameters and the TiO₂ crystallite sizes calculated are shown in Table S1 above.

Entry	Catalyst	t	Conv. (%)	Carbon	Selectivity (%)			
	Catalyst	(h)		(%)	Phenol	Cyclohexanone	Cyclohexanol	
1	Ru/SiO_2	24	17.7	88.9	78.3	10.4	11.3	
2	Ru/3.3TiSiO ₂	6	23.5	90.6	85.7	6.5	7.8	
3	Ru/6.3TiSiO ₂	3	14.6	94.5	81.8	8.2	10.0	
4	Ru/15.6TiSiO ₂	3	21.8	96.0	89.5	5.4	5.1	
5	Ru/27.1TiSiO ₂	1	15.1	95.8	82.5	7.3	10.2	
6	Ru/33.8TiSiO ₂	1	16.2	95.9	85.1	6.9	8.0	
7	Ru/36.2TiSiO ₂	1	18.9	96.2	85.3	8.1	6.6	

Table S3. Results for the hydrodeoxygenation of guaiacol at comparable conversion levels.

Reaction conditions: 2 mmol guaiacol, 10 mL H₂O, 50 mg catalysts, 240 °C, 0.4 MPa H₂.

Enter	Catalyst	Reduction	Conv	Carbon	Selectivity (%)				
Entry	Catalyst	(°C)	. (%)	(%)	Phenol	Cyclohexanone	Cyclohexanol	Benzene	
1		250	40.1	88.0	81.3	4.8	4.8	9.1	
2	Ru/Ti-SiO ₂	350	38.0	90.4	82.9	3.7	4.3	9.1	
3		450	35.9	94.0	83.7	3.0	4.6	8.7	
4		550	40.3	91.2	85.2	3.0	3.5	8.3	
5		250	35.5	93.0	82.4	3.8	4.9	8.9	
6	Ru/TiO ₂	350	35.9	93.8	80.3	2.8	8.6	8.3	
7		450	29.8	88.6	75.6	5.7	5.3	13.4	
8		550	23.1	98.3	79.4	4.5	5.3	10.8	

Table S4. Influence of reduction temperature on the catalytic performance of Ru/Ti- SiO_2 and Ru/TiO₂ catalysts.

Reaction conditions: 2 mmol guaiacol, 10 mL H₂O, 50 mg catalyst, 240 °C, 0.4 MPa H₂, 3 h.

Table S5. Influence of calcination temperature of Ti-SiO₂ support on the catalyticperformance of Ru/Ti-SiO₂ catalyst.

(Entry t	Calcination Carbon Entry temperature . (%) (°C) . (%)	Conv	Carbon	Selectivity (%)					
Liiuy		(%)	Phenol	Cyclohexanone	Cyclohexanol	Benzene			
1	400	39.2	88.5	83.6	4.2	4.1	8.1		
2	600	37.1	94.8	82.3	4.7	4.2	8.8		
3	800	22.5	90.7	86.9	6.6	6.5			

Reaction conditions: 2 mmol guaiacol, 10 mL H₂O, 50 mg catalyst, 240 °C, 0.4 MPa H₂, 3 h.

Table S6. Results of TiO_2 crystallite sizes on Ru/Ti-SiO₂ catalysts with support treated at different temperatures, as estimated according to Scherrer equation.

Entry	Catalyst	2-Theta (°)	FWHM (°)	TiO ₂ crystallite size (nm)
1	Ru/Ti-SiO ₂ -400	27.41	0.730	11.1
2	Ru/Ti-SiO ₂ -600	27.45	0.560	14.4
3	Ru/Ti-SiO ₂ -800	27.41	0.337	24.0

Entry	Catalyst	Reactor	T(°C)	P(bar)	Solvent	Conv. (%)	Product/ Sele. (%)	Ref.
1	Unsupported Mo ₂ N-A	batch	300	50	decalin	95	phenol/~90	1
2	(Mo ₂ C@C)	batch	340	28	methanol	76	phenol/69	2
3	W ₂ C/CNF	batch	375	55	dodecane	>99	phenol/~70	3
4	Mo ₂ C/CNF	batch	375	55	dodecane	>99	phenol/~50	3
5	Mo/C	fixed-bed	400	40		98	phenol/76.5	4
6	Au/TiO ₂	batch	300	65	toluene	~43	phenol/~59	5
7	Ag/TiO ₂	batch	300	30	heptane	~75	phenol/~59	6
8	Ni/TiO ₂	batch	300	40	decane	~99	phenol/~83	7
9	NiFe/CNF	fixed-bed	300	30		47	phenol/83	8
10	Au/TiO ₂	fixed-bed	280	40		~57	phenol/~82	9
11	Fe/CeO ₂	fixed-bed	400	1		pheno	ol yield: 56%	10
12	PtFe/CeO ₂	fixed-bed	400	1		pheno	ol yield: 57%	11
13	Pt/WC	fixed-bed	300	30		78.6	phenol/89.0	12
14	α-MoSn	batch	300	40	n-hexane	100	phenol/92.5	13
15	Ru/Cl/TiO ₂	batch	240	4	1,4-dioxane	~64	phenol/~40	14
16	Ru/Ti-SiO ₂	batch	240	4	H_2O	83.6	phenol/70.4 benzene/10.6	This work

 Table S7. HDO of guaiacol with various heterogeneous catalysts.

Fig. S1. XRD patterns of Ru/Ti-SiO₂, Ru/TiO₂ (P25) and Ru/TiO₂ (Rutile) catalysts.

Fig. S2. TEM images of Ru/SiO₂ and Ru/Ti-SiO₂ catalysts. (a) Ru/SiO₂, (b) Ru/3.3Ti-SiO₂, (c) Ru/6.3Ti-SiO₂, (d) Ru/15.6Ti-SiO₂, (e) Ru/22.2Ti-SiO₂, (f) Ru/27.1Ti-SiO₂, (g) Ru/30.8Ti-SiO₂, (h) Ru/33.8Ti-SiO₂, (i) Ru/42.0Ti-SiO₂. The yellow dotted line highlights Ru particles.

Fig. S3. The relationship between Ru particle size and Ti amount in Ru/Ti-SiO₂ catalysts.

Fig. S4. TEM images of Ru/TiO₂ catalysts. (a-b) Ru/TiO₂-P25; (c-d) Ru/TiO₂-rutile.

Fig. S5. TEM images of (a) Ru/SiO₂-A and (b) Ru/SiO₂-B.

Fig. S6. Catalytic performance of Ru/SiO₂, Ru/TiO₂ and Ru/Ti-SiO₂ catalysts. Light blue area stands for Ru/Ti-SiO₂ catalysts and light pink area for Ru/TiO₂ catalysts.

Fig. S7. TEM images of (a-b) Ru/Ti-SiO₂ and (c-d) Ru/TiO₂ (P25) catalysts reduced at 550 °C.

Fig. S8. XRD patterns of Ru/Ti-SiO₂ catalyst reduced at different temperatures.

Fig. S9. Ti 2p XPS spectra of Ru/Ti-SiO₂ catalysts reduced at different temperatures.

Fig. S10. XRD patterns of Ru/Ti-SiO₂ catalysts in which Ti-SiO₂ support was calcined at different temperatures in static air for 3 h.

Fig. S11. Ti 2p XPS spectra of Ru/Ti-SiO₂ catalysts in which Ti-SiO₂ support was calcined at different temperatures in static air for 3 h.

Fig. S12. TEM images of Ru/Ti-SiO₂ catalysts with different Ru loadings. (a) 1 wt % Ru, (b) 3 wt % Ru, (c) 6 wt % Ru and (d) 9 wt % Ru.

Fig. S13. Effect of Ru loading on intrinsic reaction rates of guaiacol conversion on Ru/Ti-SiO₂ and Ru/TiO₂ (P25) catalysts based on (a) mass of catalyst, (b) perimeter of Ru and (c) amount of surface Ru. Reaction conditions: 2 mmol guaiacol, 10 mL H_2O , 240 °C, 0.4 MPa H_2 , 1 h, guaiacol:Ru = 135:1 (mol/mol).

Fig. S14. H₂-TPD profiles of Ru/Ti-SiO₂ and Ru/TiO₂ catalysts.

Fig. S15. CO-TPD profiles of Ru/Ti-SiO₂ and Ru/TiO₂ catalysts.

Notes and references

- I. T. Ghampson, C. Sepúlveda, R. Garcia, B. G. Frederick, M. C. Wheeler, N. Escalona and W. J. DeSisto, *Appl. Catal. A*, 2012, 413-414, 78-84.
- R. Li, A. Shahbazi, L. Wang, B. Zhang, A. M. Hung and D. C. Dayton, *Appl. Catal. A*, 2016, 528, 123-130.
- A. L. Jongerius, R. W. Gosselink, J. Dijkstra, J. H. Bitter, P. C. A. Bruijnincx and B. M. Weckhuysen, *ChemCatChem*, 2013, 5, 2964-2972.
- 4. J. Chang, T. Danuthai, S. Dewiyanti, C. Wang and A. Borgna, *ChemCatChem*, **2013**, 5, 3041-3049.
- J. Mao, J. Zhou, Z. Xia, Z. Wang, Z. Xu, W. Xu, P. Yan, K. Liu, X. Guo and Z. C. Zhang, ACS Catal., 2016, 7, 695-705.
- 6. K. Liu, P. Yan, H. Jiang, Z. Xia, Z. Xu, S. Bai and Z. C. Zhang, J. Catal., 2019, 369, 396-404.
- X. Zhang, P. Yan, B. Zhao, K. Liu, M. C. Kung, H. H. Kung, S. Chen and Z. C. Zhang, ACS Catal., 2019, 9, 3551-3563.
- H. Fang, J. Zheng, X. Luo, J. Du, A. Roldan, S. Leoni and Y. Yuan, *Appl. Catal. A*, 2017, 529, 20-31.
- 9. T.-S. Nguyen, D. Laurenti, P. Afanasiev, Z. Konuspayeva and L. Piccolo, *J. Catal.*, **2016**, 344, 136-140.
- C. Li, Y. Nakagawa, M. Tamura, A. Nakayama, K. Tomishige, ACS Catal., 2020, 10, 14624-14639.
- 11. C. Li, Y. Nakagawa, M. Yabushita, A. Nakayama, K. Tomishige, *ACS Catal.*, **2021**, 11, 12794-12814.
- 12. H. Fang, L. Wu, W. Chen, Y. Yuan, Appl. Catal. A., 2021, 613, 118023.
- X. Diao, N. Ji, T. Li, Z. Jia, S. Jiang, Z. Wang, C. Song, C. Liu, X. Lu, Q. Liu, J. Catal., 2021, 401, 234-251.
- 14. X. Wang, P. Wu, Z. Wang, L. Zhou, Y. Liu, H. Cheng, M. Arai, C. Zhang, F. Zhao, ACS Sustainable. Chem. Eng., 2021, 9, 3083-3094.