A Chemical Approach for the Future of PLA Upcycling: From Plastic Wastes to New 3D Printing Materials

Lin Shao, Yu-Chung Chang*, Cheng Hao, Ming-en Fei, Baoming Zhao, Brian J. Bliss, Jinwen

Zhang*

School of Mechanical and Materials Engineering, Composite Materials and Engineering Center,

Washington State University, 2001 Grimes Way, Pullman, Washington 99164, USA

*Corresponding authors: <u>yu-chung.chang@wsu.edu</u> and <u>jwzhang@wsu.edu</u>

Fig. S1 Full factorial analysis of degradation degree.

Fig. S2 ¹³C-NMR spectrum of N-LEA.

Fig. S3 LC-Mass spectra of N-LEA: (a) LC trace; (b) Mass spectrometry.

Fig. S4 DSC curve of DME.

Fig. S5 ¹³C-NMR spectrum of DME.

Fig. S6 Full range of FTIR spectra of 3D printed DME-ACMO resins.

Fig. S7 Storage modulus (E') of 3D printed DME-ACMO resins from DMA measurement.

Fig. S8 Storage modulus (E') of 3D printed commercial resins from DMA measurement.

	T _g (°C)		T_{d5}^{a}	Density	Gel	Swelling	Tensile properties		IS ^e	
			(°C)	(g/cm^3)	content	ratio				(KJ/m^2)
	DSC	DMA	-		(%)		σ^b	ε	\mathbf{E}^{d}	
							(MPa)	(%)	(MPa)	
10DME-	151.2	166.5	332	1.25	97.66	1.05	35.96±2	1.70	2521±	4.38 ± 0.48
90ACMO							.93		68	
20DME-	166.3	173.9	327	1.29	97.37	1.04	50.58 ± 0	2.29	$2630\pm$	7.18 ± 0.38
80ACMO							.52		99	
30DME-	173.0	180.7	326	1.24	98.38	1.03	58.58 ± 0	2.41	$2818\pm$	5.13±0.33
70ACMO							.87		113	
ANYCUBIC	73.8	79.2	335	1.20	98.03	1.16	21.59±1	1.67	$1533\pm$	4.61 ± 0.04
							.30		58	
MONOPRICE	83.2	88.9	331	1.18	99.63	1.17	47.54±1	5.21	$1461\pm$	4.21±0.08
							.02		18	

Table S1 Physical, thermal, and mechanical properties of 3D printed DME-ACMO photocurable resins and commercial photo-curable resins

^{*a*}The temperature at 5 wt% loss from TGA results (Fig. 3f). ^{*b*}Tensile strength. ^{*c*}Elongation at break. ^{*d*}Young's modulus. ^{*e*}Impact strength.

Fig. S9 FT-IR spectra of injection molded PLA and PLA 3D printed waste.

Fig. S10 ¹H-NMR spectra of EA and rEA.

Fig. S11 FT-IR spectra of N-LEA from injection molded PLA and 3D printed PLA waste.

Fig. S12 (a) ¹H-NMR spectra, and (b) ¹³C-NMR spectra of N-LEA from injection molded PLA and 3D printed PLA waste.

Fig. S13 FT-IR spectra of DME from injection molded PLA and 3D printed PLA waste.

Fig. S14 (a) ¹H-NMR spectra, and (b) ¹³C-NMR spectra of DME from injection molded PLA and 3D printed PLA waste.

Table S2. Solvent resistance (Swelling ratio, SR) of DME-ACMO 3D printed resins.

	Distilled	Ethyl acetate	5% acetic	10% sodium	Methyl
	water		acid	hydroxide	Alcohol
				solution	
10DME-	110.2%	2.5%	101.5%	266.4%	23.6%
90ACMO					
20DME-	53.5%	0%	54.3%	477.4%	22.4%
80ACMO					
30DME-	33.7%	0.2%	36.6%	298.3%	19.7%
70ACMO					

Table S3. Solvent resistance (weight remaining, w_r) of DME-ACMO 3D printed resins.

	Distilled water	Ethyl acetate	5% acetic acid	10% sodium hydroxide solution	Methyl Alcohol
10DME- 90ACMO	98.76%	98.58%	98.15%	116.54%	97.77%
20DME-	95.02%	96.52%	97.94%	140.01%	98.51%
30DME- 70ACMO	95.29%	98.19%	98.12%	112.84%	99.55%