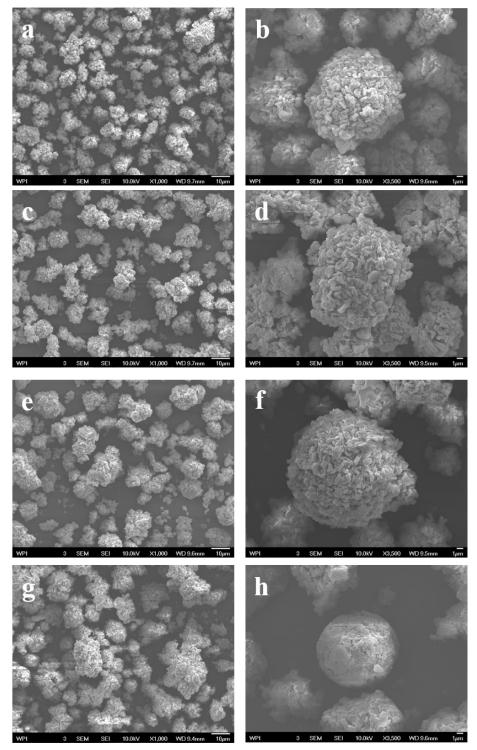
Supporting Information

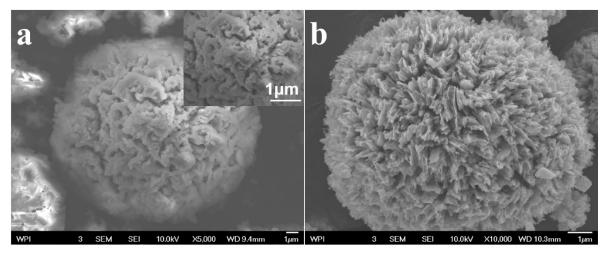
Green Closed-Loop Process for Selective Recycling of Lithium from Spent

Lithium-ion Batteries

Jiahui Hou, ^a[‡] Xiaotu Ma, ^a[‡] Jinzhao Fu, ^a Panawan Vanaphuti, ^a Zeyi Yao, ^a Yangtao Liu, ^a and Zhenzhen Yang, ^b Yan Wang ^{*a}


a. Department of Mechanical and Materials Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA

b. Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA


‡ These authors contribute equally.

*Correspondence: <u>yanwang@wpi.edu</u>

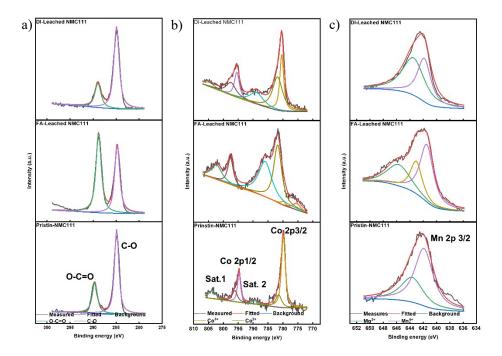

15 pages, 6 Figures and 6Tables

Figure S1. Insoluble salt shell formed on the surface of particles as temperature increases; (a) the aggormeration of leached particles at 50° C for 1 hr, (b) the insoluble salt shell formed on the surface of the particles at 50° C for 1 hr, (c) the aggormeration of leached particles at 60° C for 1 hr, (d) the unsoluable salt shell formed on the surface of the particles at 60° C for 1 hr, (e) the aggormeration of leached particles at 70° C for 1 hr, (f) the insoluble salt shell formed on the surface of the particles at 70° C for 1 hr, (g) the aggormeration of leached particles at 80° C for 1 hr, (g) the aggormeration of leached particles at 80° C for 1 hr, (h) the insoluble salt shell formed on the surface of the particles at 80° C for 1 hr, (h) the insoluble salt shell formed on the surface of the particles at 80° C for 1 hr, and (h) the insoluble salt shell formed on the surface of the particles at 80° C for 1 hr.

Figure S2. The porous structure of particles after leaching treatment; (a) the leached particle after formic acid washed, and(b) the particle after water washed.

Figure S3. (a) C1s valance bind for Pristine-NMC111, FA-Leached NMC111, and DI-Leached NMC111, (b)Mn 2p valance bind for pristine-NMC111, FA-Leached NMC111, and DI-Leached NMC111, (c) Co 2p valance bind for pristine-NMC111, FA-Leached NMC111, and DI-Leached NMC111

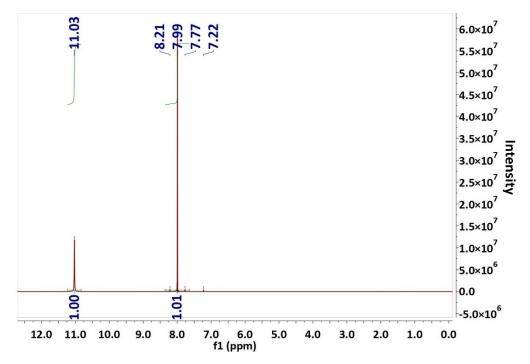


Figure S4. H¹ NMR spectra for pure formic acid.

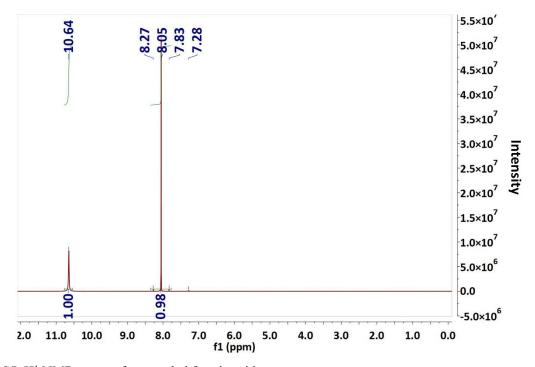
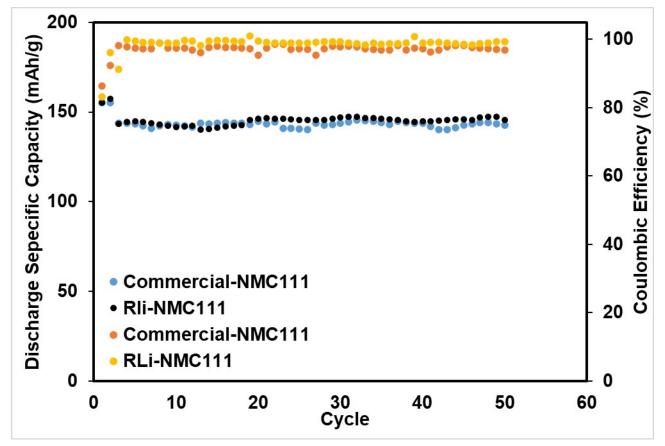



Figure S5. H¹ NMR spectra for recycled formic acid

Figure S6. Half-cell cycling performance of Rli-NMC111 and TODA-NMC111 at a current density of 1C (1C=155mAh g-1)

Table S1. Summarized stoichiometric elemental ratio obtained from ICP-OES analysis for different raw

 materials

Materials	Li	Ni	Mn	Со
NMC111	1	0.38	0.27	0.35
NMC622	1	0.63	0.18	0.19
NMC811	1	0.84	0.048	0.11
Black mass	0.87	0.17	0.61	0.22

70°C	89.70%	2.78%						
	90.06%	2.91%	1					
NMC111			NMC622			NMC811		
	Li	TMs		Li	TMs		Li	TMs
20°C	67.50%	2.09%	50°C	38.01%	1.30%	50°C	49.20%	1.53%
	65.83%	1.94%		37.51%	1.29%		48.53%	1.59%
	68.51%	2.06%		39.12%	1.16%		50.12%	1.50%
Mean	67.28%	2.03%	Mean	38.21%	1.25%	Mean	49.28%	1.54%
Standard	1.35%	0.08%	Standard	0.82%	0.08%	Standard	0.80%	0.05%
Deviation			Deviation			Deviation		
Standard Error	0.78%	0.31%	Standard Error	0.48%	0.04%	Standard Error	0.46%	0.03%
30°C	76.80%	2.23%	60°C	66.51%	1.52%	60°C	86.55%	2.97%
	75.91%	2.53%		65.73%	1.46%		88.51%	2.87%
	77.03%	2.03%		67.16%	1.64%		85.03%	3.13%
Mean	76.58%	2.26%	Mean	66.47%	1.54%	Mean	86.70%	2.99%
Standard	0.59%	0.25%	Standard	0.72%	0.09%	Standard	1.74%	0.13%
Deviation			Deviation			Deviation		
Standard Error	0.34%	0.29%	Standard Error	0.41%	0.05%	Standard Error	1.01%	0.08%
40°C	82.90%	2.48%	70°C	60.41%	1.10%	70°C	81.42%	2.59%
	81.79%	2.59%		58.61%	1.01%		80.43%	2.51%
	83.03%	2.31%		61.26%	1.22%		82.65%	2.66%
Mean	82.57%	2.46%	Mean	60.09%	1.11%	Mean	81.50%	2.59%
Standard	0.68%	0.14%	Standard	1.35%	0.11%	Standard	1.11%	0.08%
Deviation			Deviation			Deviation		
Standard Error	0.39%	0.35%	Standard Error	0.78%	0.06%	Standard Error	0.64%	0.04%
50°C	95.00%	3.14%	80°C	45.60%	1.27%	80°C	55.63%	1.98%
	96.06%	3.43%		44.09%	1.21%		54.16%	1.92%
	94.25%	2.94%		46.16%	1.35%		56.03%	2.06%
Mean	95.10%	3.17%	Mean	45.28%	1.28%	Mean	55.27%	1.99%
Standard	0.91%	0.25%	Standard	1.07%	0.07%	Standard	0.98%	0.07%
Deviation			Deviation			Deviation		
Standard Error	0.53%	0.43%	Standard Error	0.62%	0.04%	Standard Error	0.57%	0.04%
60°C	100.00%	3.44%						
	100.01%	3.36%						
	100.03%	3.51%						
Mean	100.01%	3.44%						
Standard	0.02%	0.08%						
Deviation								
Standard Error	0.01%	0.04%						

Table S2.The detaild leaching effiency and calculated uncertainties for NMC111, NMC622, andNMC811

					1 2
	88.95%	2.69%			
Mean	89.57%	2.79%			
Standard	0.57%	0.11%			
Deviation					
Standard Error	0.33%	0.06%			
80°C	87.10%	2.60%			
	88.05%	2.65%			
	86.56%	2.53%			
Mean	87.24%	2.59%			
Standard	0.75%	0.06%			
Deviation					
Standard Error	0.44%	0.03%			

Materials (ppm)	Li	Ni	Mn	Со	Al	Cu	Fe	Mg
FA-NMC111	2.513	131.94	109.93	94.54				
DI-NMC111	0	115.15	107.53	70.26				
NMC111-leaching solution	1447.76	16.16	124.03	10.14				
NMC622-leaching solution	1432.18	41.42	61.21	0.17				
NMC811-leaching solution	1427.01	38.61	17.17	4.85				
Mixed-leaching solution	2021.85	98.47	67.21	9.85				
Black mass-leaching solution	1299.69	133.85	47.04	89.53				
Commercial Li2CO3	875.5	30.5	14.2	10.4	0.5	1.3	6.3	1.5
Recovered Li2CO3	887.3	1.6	0.3	1.7	0.4	0.2	0.1	0.0
Commercial formic acid	0.087	0.063	0.0	0.0	0.103	0.084	0.0	0.0
Recycled formic acid	0.164	0.173	0.148	0.105	0.226	0.141	0.332	0.884

Table S3. Summarized elemental concentration obtained from ICP-MS analysis for FA-NMC111, DI

 NMC111, commercial lithium carbonate, recovered lithium carbonate, and recycled formic acid.

Stracturar mouch					
Sample	A-axis (Å)	C-axis (Å)	Volume (Å3)	Rwp(%)	χ2
TODA- NMC111	2.862	14.236	100.71	4.35	1.91
Rli-NMC111	2.861	14.234	100.31	5.55	2.67

Table S4. Refinement data of XRD patterns in Fig. 7 using FullProf Suite software with LiTMO₂ as structural model.

Cost items	General	A closed-loop lithium
	Hydrometallurgical	recovery
1 Direct cost (\$/year) ²	35,566,971	20,222,430
A. Equipment	13,028,194	7,145,735
B. Buildings, process and	3,257,049	1,786,434
auxiliary		
C. Service facilities and yard	6,514,097	4,287,441
improvements		
D. Land	1,042,256	571,659
(2) Indirect cost $(\$/year)^3$	7,113,394	4,044,486
A. Engineering and supervision	3,556,697	2,022,243
B. Construction expense and	3,556,697.05	2,022,243.04
contractor's fee		
C. Contingency	-	-
③ Fixed capital Investment	42,680,365	24,266,916
(\$/year)		
(4) Working capital (\$/year)	-	-
5 Total capital investment	42,680,365	24,266,916.5
(\$/year)		
6 Manufacturing costs (\$/year) ⁴	18,376,514	21,278,087.88
A. Direct product costs	9,729,701	16,363,966
B. Fixed charges	8,646,813	4,914,122
C. Plant overhead costs	-	-
(7)General expenses (\$/year)	-	-
(8)Total product cost (\$/year) ⁵	18,376,514	21,248,088
(9)Battery fee (\$/kg black mass)	0.2	0.2
10 Total Cost of recipient (\$/kg	2.25	2.45
black mass)		

Table S5. Detailed cost for general hydrometallurgical and closed-loop lithium recovery¹

Spent materials	Efficiency	Purity	Chemicals	Referenes
LIB scraps	90.00%	99.95%	HNO ₃ , Na ₂ CO ₃	6
Electrode materials	80.00%	98.00%	C, CO ₂	7
LIB scraps	80.00%	>98%	H ₂ SO ₄ , glucose, Na ₂ CO ₃	8
NMC111	94.00%	/	$H_2SO_4, H_2O_2, Na_2CO_3$	9
LIB scraps	72.00%	99.70%	$H_2SO_4, H_2O_2, Na_2CO_3$	10
LCO	86.20%	74.20%	HCl, Na ₂ CO ₃	9
NMC532	81.20%	>99.5%	NH ₃ .H ₂ O, NH ₄ HCO ₃ , Na ₂ CO ₃	11
LIB scraps	96.30%	/	Oxalic acid, Na ₂ CO ₃	12
LIB scraps	91.23%	99.00%	H_2SO_4 , NaS_2O_8	13
LIB scraps	99.8%	99.994%	НСООН	This work

Table S6. Summary of condition and result of lithium recycling of waste LIBs investigated in the literature

References:

1. Dai, Q.; Spangenberger, J. S.; Ahmed, S.; Gaines, L.; Kelly, J. C.; Wang, M. Q. In *EverBatt: A Closed-loop Battery Recycling Cost and Environmental Impacts Model*, 2019.

2. Ahmed, S.; Nelson, P. A.; Gallagher, K. G.; Susarla, N.; Dees, D. W., Cost and energy demand of producing nickel manganese cobalt cathode material for lithium ion batteries. *Journal of Power Sources* **2017**, *342*, 733-740.

3. Caterpillar, Estimating Owning & Operating Costs. Edition 41. 2012.

4. Hannah Stratton, H. F., Yuting Chen, Camilla Dunham, and Alison Williams, WATER AND WASTEWATER RATE HIKES OUTPACE CPI. 2016.

5. Dai, Q. K., J.C.; Dunn, J.; Benavides, P., Update of Bill-of-Materials and Cathode

Materials Production for Lithium-Ion Batteries in the GREET Model. 2018a.

6. Peng, C.; Liu, F.; Wang, Z.; Wilson, B. P.; Lundström, M., Selective extraction of lithium (Li) and preparation of battery grade lithium carbonate (Li2CO3) from spent Li-ion batteries in nitrate system. *Journal of Power Sources* **2019**, *415*, 179-188.

7. Pindar, S.; Dhawan, N., Carbothermal Reduction of Spent Mobile Phones Batteries for the Recovery of Lithium, Cobalt, and Manganese Values. *JOM* **2019**, *71* (12), 4483-4491.

8. Granata, G.; Moscardini, E.; Pagnanelli, F.; Trabucco, F.; Toro, L., Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: Lab scale tests and process simulations. *Journal of Power Sources* **2012**, *206*, 393-401.

9. Chen, W.-S.; Ho, H.-J., Recovery of Valuable Metals from Lithium-Ion Batteries NMC Cathode Waste Materials by Hydrometallurgical Methods. *Metals* **2018**, *8* (5).

10. Atia, T. A.; Elia, G.; Hahn, R.; Altimari, P.; Pagnanelli, F., Closed-loop hydrometallurgical treatment of end-of-life lithium ion batteries: Towards zero-waste process and metal recycling in advanced batteries. *Journal of Energy Chemistry* **2019**, *35*, 220-227.

11. Wang, H.; Huang, K.; Zhang, Y.; Chen, X.; Jin, W.; Zheng, S.; Zhang, Y.; Li, P., Recovery of Lithium, Nickel, and Cobalt from Spent Lithium-Ion Battery Powders by Selective Ammonia Leaching and an Adsorption Separation System. *ACS Sustainable Chemistry & Engineering* **2017**, *5* (12), 11489-11495.

12. Zhang, Y.; Wang, W.; Hu, J.; Zhang, T.; Xu, S., Stepwise Recovery of Valuable Metals from Spent Lithium Ion Batteries by Controllable Reduction and Selective Leaching and Precipitation. *ACS Sustainable Chemistry & Engineering* **2020**, *8* (41), 15496-15506.

13. Lv, W.; Wang, Z.; Zheng, X.; Cao, H.; He, M.; Zhang, Y.; Yu, H.; Sun, Z., Selective Recovery of Lithium from Spent Lithium-Ion Batteries by Coupling Advanced Oxidation Processes and Chemical Leaching Processes. *ACS Sustainable Chemistry & Engineering* **2020**, *8* (13), 5165-5174.