Supporting Information

Electrochemical multi-component reaction of potassium metabisulfite with alkenes and alcohols enabling synthesis of sulfonate esters

Jiang Liu, Jingcheng Xu, Haibo Mei,* and Jianlin Han*
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
Email: meihb@njfu.edu.cn; hanj1@njfu.edu.cn

Table of Contents

\qquad1. General informationS2
2. Optimization of reaction conditions S2
3. General procedure for the electrochemical reaction S3
4. Procedure for large-scale synthesis S3
5. Control experiment S4
6. X-ray crystallography of 3va S5
7. Cyclic voltammetry (CV) experiment. S6
8. Electrosynthesis equipment. S7
9. Characterization data of compounds 3 and 4 S8
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 and 4 S18

1. General information

All the commercial reagents including solvents (anhydrous) were used directly without further purification. All the experiments were monitored by thin layer chromatography (TLC) with UV light. The anode electrode and cathode electrode were graphite flakes $(10 \times 10 \times 3 \mathrm{~mm})$. The TLC employed 0.25 mm silica gel coated on glass plates. Purification of products was carried out by silica gel $60 \mathrm{~F}-254 \mathrm{TLC}$ plates of $20 \mathrm{~cm} \times 20 \mathrm{~cm}$. Melting points were recorded without correction on RY-1G of Tianjin Xintianguang instrument company. NMR spectra were recorded on Bruker 400 MHz and 600 MHz spectrometers. High resolution mass spectra (HRMS) were measured on Agilent $6210 \mathrm{ESI} /$ TOF MS instrument. Cyclic voltammetry (CV) was performed on a CHI660D electrochemical workstation (CHI Instruments Co., Shanghai, China). The X-ray data were collected at 100 K on a Rigaku Oxford Diffraction Supernova Dual Source, Cu at Zero equipped with an Atlas S 2 CCD using $\mathrm{Cu} \mathrm{K} \alpha$ radiation.

2. Optimization of reaction conditions

Table S1 Optimization of reaction solvent. ${ }^{a, b}$

 1a	$+\mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$	$\begin{array}{r} +\mathrm{MeOH} \\ \mathbf{2 a} \end{array}$				
Entry	Electrolyte	Time (h)	Solvent	Electrode	Current density $\left(\mathrm{mA} / \mathrm{cm}^{2}\right.$	Yield (\%)
1	$n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}$	2.5	MeOH	C/C	6.0	67^{c}
2	$n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}$	2.5	MeCN	C/C	6.0	trace ${ }^{\text {d }}$

[^0]solvent (8.0 mL), electrolyte (3.0 equiv), $4 \AA \mathrm{MS}(150 \mathrm{mg}$), in undivided cell at room temperature.
${ }^{b}$ Isolated yield based on α-methylstyrene 1a. ${ }^{c} \mathrm{MeOH}(8 \mathrm{~mL})$ used. ${ }^{d}$ Acetonitrile (8 mL) and $\mathrm{MeOH}(0.5 \mathrm{mmol})$ used.

3. General procedure for the electrochemical reaction

Into the cell were taken alkene $1(0.2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(1.2$ equiv, 0.24 mmol$), n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}(3.0$ equiv, 0.6 mmol$), 4 \AA \mathrm{MS}(150 \mathrm{mg})$, alcohol $2(4.0 \mathrm{~mL})$ and $\mathrm{MeCN}(4.0 \mathrm{~mL})$. The mixture was electrolyzed under constant current $\left(6 \mathrm{~mA} / \mathrm{cm}^{2}\right)$ with a graphite anode $\left(1.0 \mathrm{~cm}^{2}\right)$ and a graphite cathode $\left(1.0 \mathrm{~cm}^{2}\right)$ at room temperature for 2.5 h . Then, $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added and the organic layer was taken, followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide a residue. The crude product 3 was purified by TLC plate of $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ using petroleum ether/ethyl acetate $(4: 1, \mathrm{v} / \mathrm{v})$ as eluent.

4. Procedure for large-scale synthesis

α-Methylstyrene $1 \mathbf{1 a}(10 \mathrm{mmol}, 1.18 \mathrm{~g})$, potassium metabisulfite (1.2 equiv, $12 \mathrm{mmol}, 2.66 \mathrm{~g}$), $n \mathrm{Bu}_{4} \mathrm{NBF}_{4}(3.0$ equiv, $6 \mathrm{mmol}, 1.97 \mathrm{~g})$, methanol $(25 \mathrm{~mL})$, acetonitrile $(25 \mathrm{~mL}), 4 \AA \mathrm{MS}(2.0 \mathrm{~g})$ were placed in a dried 100 mL glass beaker. The bottle was equipped with graphite plate $(10 \times 10 \times 3 \mathrm{~mm})$. The mixture was stirred at a constant current of 50 mA at room temperature for 50 h . The solvent was removed under reduced pressure, then $\mathrm{H}_{2} \mathrm{O}(25 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added and the organic layer was taken, followed by extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated to provide
a residue. The crude product 3aa was purified by flash column chromatography on silica gel using petroleum ether/ethyl acetate $(4: 1, \mathrm{v} / \mathrm{v})$ as eluent.

5. Control experiment

Into a cell were taken α-methylstyrene $\mathbf{1 a}(0.2 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}(1.2$ equiv, 0.24 mmol$), n$ - $\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ (3.0 equiv, 0.6 mmol), TEMPO (5.0 equiv), $4 \AA \mathrm{MS}(150 \mathrm{mg})$, methanol (4 mL) and $\mathrm{MeCN}(4$ $\mathrm{mL})$. The mixture was stirred under constant current (6 mA) with a graphite anode and a graphite cathode at room temperature for 2.5 h .

6. X-ray crystallography of 3va

Figure S1. ORTEP diagram showing of 3va.
(CCDC number is 2173393)

Suitable crystals of compound 3va were obtained by slowly evaporating a mixture of petroleum ether and ethyl acetate solution at ambient temperature

7. Cyclic voltammetry (CV) experiment

Figure S2. Cyclic voltammetry experiment

Cyclic voltammetry experiments were performed in a three-electrode cell connected to a schlenk line at room temperature. The working electrode was a glass carbon electrode, the counter electrode a glass carbon electrode. The reference was an $\mathrm{Ag} \mid \mathrm{AgCl}$ electrode submerged in saturated $\mathrm{KCl}(3 \mathrm{M})$ solution, and separated from reaction by a salt bridge. $\mathrm{MeCN}(5.0 \mathrm{~mL})$ and $\mathrm{MeOH}(5.0 \mathrm{~mL})$ containing $2.0 \mathrm{mmol} n-\mathrm{Bu}_{4} \mathrm{NBF}_{4}$ was tested as blank background. The scan rate is $100 \mathrm{mV} / \mathrm{s}$.

The concentration of compounds is: α-methylstyrene $\mathbf{1 a}(0.05 \mathrm{mM})$; potassium metabisulfite $(0.05 \mathrm{mM})$.

8. Electrosynthesis equipment

Micro electrosynthesis equipment

Figure S3. Micro electrosynthesis equipment.
a: graphite sheet electrode $(1.0 \mathrm{~cm} \times 1.0 \mathrm{~cm}) ; \mathrm{b}: 10 \mathrm{~mL}$ three-necked flask; c: plug

Figure S4. Macro electrosynthesis equipment.

9. Characterization data of compounds 3

Compound 3aa: $37.8 \mathrm{mg}, 77 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.46-7.40(\mathrm{~m}$, 4H), 7.36-7.33 (m, 1H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}$, $3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=142.0,128.7,128.1,126.2,77.0,61.6,55.8$, 50.5, 21.0. HRMS (ESI) m/z: calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$267.0662, found 267.0673.

Compound 3ba: $35.8 \mathrm{mg}, 69 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{~d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=14.70$ $\mathrm{Hz}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=139.0,137.9$, 129.3, 126.2, 76.8, 61.6, 55.8, 50.4, 21.0. HRMS (ESI) m/z: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{4} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}$281.0818, found 281.0827.

Compound 3ca: $32.4 \mathrm{mg}, 63 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31-7.28(\mathrm{~m}$, $1 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{~d}, J=$ $14.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.1$, $138.3,128.8,128.6,126.8,123.3,76.9,61.6,55.8,50.5,21.6,21.0$. HRMS (ESI) m/z: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$281.0818, found 281.0828.

Compound 3da: $27.1 \mathrm{mg}, 52 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31-7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 3 \mathrm{H}), 3.73(\mathrm{~d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.07$ $(\mathrm{s}, 3 \mathrm{H}), 2.56(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.3$, 137.0 132.9, 128.4, 128.3, 126.1, 78.4, 59.4, 55.6, 50.0, 23.0, 21.2. HRMS (ESI) m/z: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{4} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}$281.0818, found 281.0828.

Compound 3ea: $36.6 \mathrm{mg}, 67 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.36(\mathrm{~d}, J=$ $8.22 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.10 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=14.70 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=$ $14.70 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{q}, J=7.62 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.62 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=144.2,139.3,128.1,126.2,76.9,61.7,55.8,50.4,28.4,21.0,15.4$. HRMS (ESI) m/z: calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$295.0975, found 295.0981.

Compound 3fa: $38.2 \mathrm{mg}, 70 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.25-7.21(\mathrm{~m}$, $1 \mathrm{H}), 6.92-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H})$, $3.34(\mathrm{~d}, J=14.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.9$, 144.0, 129.7, 118.5, 113.1, 112.3, 76.9, 61.5, 55.9, 55.3, 50.6, 21.0. HRMS (ESI) m/z: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$297.0767, found 297.0768.

Compound 3ga: 47.8 mg , 87% yield, white solid, $\mathrm{mp} 53-54{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
7.36-7.35 (m, 2H), 6.93-6.92(m, 2H), 3.83(s, 3H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.60(\mathrm{~d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ $(\mathrm{d}, J=14.76 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=159.3,133.8$, 127.6, 113.9, 76.6, 61.7, 55.7, 55.3, 50.2, 21.0. HRMS (ESI) m/z: calculated for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{5} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+}$297.0767, found 297.0778.

Compound 3ha: $29.5 \mathrm{mg}, 56 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.43-7.41(\mathrm{~m}$, 2H), 7.11-7.08 (m, 2H) $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~d}, J=14.70 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=14.70 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ $(\mathrm{s}, 3 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.2(\mathrm{~d}, J=245.85 \mathrm{~Hz}), 137.7(\mathrm{~d}, J=3.23$ $\mathrm{Hz}), 128.2(\mathrm{~d}, J=8.12 \mathrm{~Hz}), 115.6(\mathrm{~d}, J=21.24 \mathrm{~Hz}), 76.6,61.6,55.7,50.3,21.2 .{ }^{19} \mathrm{~F}$ NMR (565 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-114.1$ HRMS (ESI) m / z : calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{FNaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$285.0567, found 285.0578.

Compound 3ia: $45.5 \mathrm{mg}, 82 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.40-7.37(\mathrm{~m}$, 4H), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=140.5,134.1,128.8,127.8,76.6,61.4,55.7,50.4,21.1$. (ESI) m / z : calculated for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{ClNaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$301.0272, found 301.0274.

Compound 3ja: $40.1 \mathrm{mg}, 74 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.94(\mathrm{~s}, 2 \mathrm{H})$,
$6.88(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=14.80 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H})$, $2.26(\mathrm{~s}, 6 \mathrm{H}), 1.80(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=142.2,138.2,129.7,123.9,76.9,61.7$, 55.8, 50.6, 21.5, 21.0. HRMS (ESI) m/z: calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 295.0975$, found 295.0975.

Compound 3ka: 44.2 mg , 75\% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.92-7.86(\mathrm{~m}$, 4H), 7.61-7.58 (m, 1H), 7.55-7.53 (m, 2H), 3.75-3.71 (m, 4H), 3.57 (d, $J=14.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}$, $3 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=139.5,133.1,132.9,128.6,128.3,127.6$, 126.6, 126.5, 125.8, 123.8, 61.3, 55.8, 50.6, 21.2. HRMS (ESI) m/z: calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{4} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{Na}]^{+} 317.0818$, found 317.0832. 335.1288

Compound 3la: 55.5 mg , 89% yield, white solid, mp 100-100.5 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=15.06 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-$ $3.83(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.06-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.67(\mathrm{~m}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=$ $13.20 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.84(\mathrm{~m}, 1 \mathrm{H}), 0.74-0.67(\mathrm{~m}, 1 \mathrm{H}), 0.51-0.44(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}): $\delta=138.2,127.6,127.4,127.2,82.5,55.4,52.0,51.0,44.8,28.6,26.5$, 26.4, 26.2, 26.1. HRMS (ESI) m/z: calculated for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$335.1288, found 335.1285

Compound 3ma: 26.5 mg , 43% yield, white solid, $\mathrm{mp} 153-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $=7.37-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.30-7.29(\mathrm{~m}, 2 \mathrm{H}), 4.29(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.8,128.3,127.6,126.6,80.4,77.2,55.5,51.5$. HRMS (ESI) m/z: calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$329.0818, found 329.0814.

Compound 3na: $36.2 \mathrm{mg}, 60 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.37(\mathrm{~d}, J=$ $8.72 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.65-6.64(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.52(\mathrm{~m}, 2 \mathrm{H})$, $3.10(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.06-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.94-$ $1.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=159.2,140.5,128.8,127.9,113.4,113.0,76.6$, $60.1,56.0,55.2,50.4,29.7,28.2,20.8$. HRMS (ESI) m/z: calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{5} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$ 323.0924, found 323.0927

Compound 3oa: $34.9 \mathrm{mg}, 60 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.28-7.21(\mathrm{~m}$, $3 \mathrm{H}), 3.90-3.86(\mathrm{~m}, 4 \mathrm{H}), 3.43(\mathrm{~d}, J=14.68 \mathrm{~Hz}, 1 \mathrm{H}), 3.14-2.90(\mathrm{~m}, 5 \mathrm{H}), 2.70-2.52(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=146.5,139.2,135.5,127.1,125.6,125.1,85.4,57.5,55.9,50.7,33.4$, 30.0. HRMS (ESI) m/z: calculated for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{ClNaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$313.0272, found 313.0284.

Compound 3pa: 35.5 mg , 77% yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.41-7.39(\mathrm{~m}$, 2H), 7.36-7.34 (m, 3H), $4.74(\mathrm{dd}, J=3.12,9.18 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{dd}, J=3.12,9.18 \mathrm{~Hz}$, 1H), 3.31-3.28 (m, 4H). ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=138.6,129.0,128.8,126.5,78.4,57.2$, 57.0, 56.1. HRMS (ESI) m/z: calculated for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$231.0686, found 231.0670.

Compound 3qa: $31.6 \mathrm{mg}, 65 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.22-7.29(\mathrm{~m}$, $1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 3 \mathrm{H}), 4.62(\mathrm{dd}, J=2.94,9.30 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=9.30,14.88$ $\mathrm{Hz}, 1 \mathrm{H}), 3.22-3.19(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=138.8,138.5,129.6$, 128.9, 127.1, 123.6, 78.4, 57.2, 57.0, 56.1, 21.4. HRMS (ESI) m/z: calculated for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{O}_{4} \mathrm{~S}^{+}$ $[\mathrm{M}+\mathrm{H}]^{+}$245.0842, found 245.0842.

Compound 3ra: $43.6 \mathrm{mg}, 76 \%$ yield, white solid, $\mathrm{mp} 44-45{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.34-7.32 (m, 2H), 7.19-7.18 (m, 2H), $4.64(\mathrm{dd}, J=2.88,9.42 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=$ $9.42,14.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.23-3.20(\mathrm{~m}, 4 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=151.9$, 135.5, 126.2, 125.9, 78.1, 57.2, 56.9, 56.1, 34.7, 31.3. HRMS (ESI) m/z: calculated for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$309.1131, found 309.1143.

Compound 3sa: $17.5 \mathrm{mg}, 30 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.39(\mathrm{~d}, J=$ $8.34 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.76(\mathrm{dd}, J=2.82,9.18 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J$ $=9.18,14.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.28(\mathrm{~m}, 4 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=169.4$, 150.9, 136.1, 127.6, 122.2, 77.8, 57.1, 57.0, 56.1, 21.1. HRMS (ESI) m / z : calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{6} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 311.0560$, found 311.0569. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNaO}_{4} \mathrm{~S}^{+} 271.0411$

Compound 3ta: $28.9 \mathrm{mg}, 58 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.27-7.24(\mathrm{~m}$, 2H), 7.03-7.00 (m, 2H), $4.65(\mathrm{dd}, J=3.42,8.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=8.94,14.82$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21-3.18(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=163.7(\mathrm{~d}, J=246.1 \mathrm{~Hz}), 134.4(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}), 128.4(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 77.7,57.1,56.9,56.1 .{ }^{19} \mathrm{~F}$ NMR (565 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-112.83 . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}$: calculated for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{FNaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$271.0411, found 271.0419

Compound 3ua: $31.8 \mathrm{mg}, 60 \%$ yield, white solid, $\mathrm{mp} 61-62{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.41-7.39 (m, 2H), 7.32-7.30 (m, 2H), $4.74(\mathrm{dd}, J=3.42,8.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{dd}, J=$ 8.94, $14.82 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.27(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.1,134.7,129.2$, 127.9, 77.8, 57.1, 57.0, 56.1. HRMS (ESI) m/z: calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{ClO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 3265.0296$, found 265.0296 .

Compound 3va: $35.1 \mathrm{mg}, 57 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.56(\mathrm{~d}, J=$ $8.34 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.72(\mathrm{dd}, J=3.36,8.94 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=$ $9.00,14.88 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=137.6,132.2,128.3$, 122.8, 77.8, 57.1, 57.0, 56.1. HRMS (ESI) m/z: calculated for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{BrO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+} 308.9791$, found 308.9796 .

Compound 3wa: $27.9 \mathrm{mg}, 57 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.33-7.31(\mathrm{~m}$, $1 \mathrm{H}), 7.19-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.10(\mathrm{~m}, 1 \mathrm{H}), 4.93(\mathrm{dd}, J=2.58,9.21 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{dd}$, $J=9.24,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.17(\mathrm{dd}, J=2.64,15.00 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=136.6,135.4,131.0,128.4,126.7,125.7,75.1,56.9,56.2,56.1,18.9$. HRMS (ESI) m/z: calculated for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$267.0662, found 267.0670.

Compound 3ab: $30.8 \mathrm{mg}, 57 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.22-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{~d}, J=14.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-$ $3.38(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.10(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=14.24 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=13.96 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.8,128.6,128.0,126.1,76.7,66.5,62.2,58.0,21.7$, 15.5, 14.9. HRMS (ESI) m/z: calculated for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$295.0975, found 295.0987.

Compound 3ac: $38.5 \mathrm{mg}, 64 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.45(\mathrm{~m}$, 2H), 7.42-7.38 (m, 2H), 7.35-7.31 (m, 1H), 4.08-3.97 (m, 2H), 3.63 (d, J=14.68 Hz, 1H), 3.47 (d, $J=14.72 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.07-3.01(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.69-1.55(\mathrm{~m}, 4 \mathrm{H}), 0.95-$ $0.91(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=142.8,128.5,128.0,126.3,76.4,71.6,64.1,62.3$, 23.3, 22.6, 21.6, 10.7, 10.0. HRMS (ESI) m/z: calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$323.1288, found 323.1288.

Compound 3ad: $24.5 \mathrm{mg}, 37 \%$ yield, colorless oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.47-7.44(\mathrm{~m}$, $2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{~d}, J=14.68 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}$, $J=14.68 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.43-$ $1.32(\mathrm{~m}, 4 \mathrm{H}), 0.84-0.89(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=142.7,128.5,127.9,126.3$, 76.4, 69.9, 62.3, 62.2, 32.1, 31.1, 21.6, 19.3, 18.6, 14.0, 13.5. HRMS (ESI) m/z: calculated for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 351.1601$, found 351.1610.

Compound 3ae: $29.1 \mathrm{mg}, 48 \%$ yield, white solid, $\mathrm{mp} 42-43{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$
$7.53-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.32(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.82(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.43(\mathrm{~m}, 3 \mathrm{H})$, $2.00(\mathrm{~s}, 3 \mathrm{H}), 1.32-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.20(\mathrm{~d}, J=6.06 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.12 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=143.2,128.1,128.0,126.9,76.9,76.3,65.9,64.1,24.9,24.3,23.1,23.0$, 22.2. HRMS (ESI) m / z : calculated for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{NaO}_{4} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$323.1288, found 323.1288.

Compound 4: $18.2 \mathrm{mg}, 26 \%$ yield, white solid, mp $128-129{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.37-7.28 (m, 5H), 7.24-7.20(m, 1H), 2.76-2.69 (m, 2H), 2.01-1.97 (m, 3H), 1.77-1.68 (m, 6H), 1.59-1.58 (m, 6H), $1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.9,127.8,126.3,126.2$, 126.1, 126.0, 77.2, 71.9, 71.8, 40.1, 37.4, 35.2, 35.0, 34.9, 33.9, 28.5, 24.9, 24.7. HRMS (ESI) m/z: calculated for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{NaO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+} 369.1495$, found 369.1495 .
10. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 3 and 4
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3aa:

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3aa:

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3ba:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ba:

$$
\begin{aligned}
& \overline{\bar{b}} \\
& \stackrel{\overline{\tilde{p}}}{\prime}
\end{aligned}
$$

170	160	150	140	130	120	110	100			70	60	50	40	30	20	10	0	-1

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ca:

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3ca:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3da:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3da:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ea:

			\%
Y\%	384	シัท	\dagger
$1 \mid$	$\iint 1$		¢

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ea:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 f a}$:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 f a}$:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ga:

riveg	 314%	$\stackrel{8}{8}$	
1	$\\| \sqrt{1} 1$	1	

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ga:

[^1]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ha:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ha:

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ha:

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3ia:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ia:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 j a}$:
$\stackrel{y}{9}$

Js
$\operatorname{lif}_{1 / 1}^{1}$

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of $\mathbf{3 j a}$:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ka:

$\underbrace{9.5}_{8}$
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ka:

$\stackrel{\text { 总 }}{\square}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3la:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 31a:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ma:

${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) of 3ma:

	\% \%

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3na:

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3na:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3oa:

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3oa:

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3pa:

${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) of 3pa:

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3qa:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of $\mathbf{3 q a}$:

 $\stackrel{\approx}{\overline{1}}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ra:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ra:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3sa:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3sa:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ta:

${ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of 3ta:

${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ta:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ua:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ua:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3va:

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3va:

筑良

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3wa:

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3wa:

		䶃通
$\frac{18}{11}$	\%	\%

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ab:

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ab:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ac:

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ac:

[^2]${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ad:

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ad:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 3ae:

${ }^{13} \mathrm{C}$ NMR (150 MHz, CDCl_{3}) of 3ae:

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 4:

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) of 4:

[^0]: ${ }^{a}$ Reaction conditions: α-methylstyrene ($\mathbf{1 a}, 0.2 \mathrm{mmol}$), potassium metabisulfite (1.2 equiv),

[^1]:

[^2]:

