Supporting Information

Mechanochemistry-induced Recycling of Spent Lithium-ion Batteries for Synergistic Treatment of Mixed Cathode Powders

Youzhou Jiang^a, Xiangping Chen^{b*}, Shuxuan Yan^a, Yudie Ou^a and Tao Zhou^{a*} ^a Hunan Provincial Key Laboratory of Chemical Power Sources, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P.R. China; ^b School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P.R. China.

*Corresponding authors:

chenxiangping@sust.edu.cn (X-P. Chen); zhoutao@csu.edu.cn (T. Zhou).

Fig. S1. The proposed green approach for synergetic recovery different cathodes materials from spent LIBs though mechanochemical process. Part (I): Experimental process of mechanochemical reaction and stoichiometric acid leaching for recovering different cathodes from spent LIBs, in which pretreatments include discharge, dismantling, and detachment; Part (II): Separation and recovery of cobalt and lithium compound products; Part (III): Purification and recovery of FePO₄.

Note: During pretreatment process, LiPF₆ in electrolytes will be quickly decomposed into solid LiF and gaseous PF₅ with the detailed chemical reaction of LiPF₆(l) \rightarrow LiF(s) + PF₅(g). The gaseous PF₅ can be absorbed by specific adsorbents and the solid LiF will usually flow into the slag due to its high melting point (848°C) and boiling point (1681°C). And the composition of leaching residues after leaching of mixed cathode materials is mixture of FePO₄, little amount of Co₃O₄ impurity.

Fig. S2. Nitrogen adsorption-desorption curves of raw materials and product after mechanochemical reaction (conditions: molar ratio of LCO:LFP = 1:1, rotation speed-650 rpm, mechanical milling time- 5 h, mass ratio of ball to powder- 50:1).

Fig. S3. XRD patterns of samples under different rotation speed. (conditions: molar ratio of LCO:LFP = 1:1, mechanical milling time- 5 h, mass ratio of ball to powder-50:1)

Fig. S4. Contact angle of water on the surface of (a) raw LCO, (b) raw LFP and (c). samples after mechanochemical reaction (conditions: molar ratio of LCO:LFP = 1:1, rotation speed- 650 rpm, mechanical milling time- 5 h, mass ratio of ball to powder-50:1).

Fig. S5. Effect of (a) milling time and (b) molar ratio of LCO:LFP on the leaching efficiency of metal elements by water leaching.

Fig. S6. Illustration of different leaching behaviors for different elements before and after MR. (650 rpm, 5 h, LCO: LFP=1:1, ball to powder ratio of 50:1; 0.15M H₂SO₄).

Fig. S7. The leaching behaviors for samples (LiFePO₄ and LiNi_{0.5}Co_{0.2}Mn_{0.3}O₂) with different acid concentrations before (a) and after (b) mechanochemical reaction. (conditions: molar ratio of NCM:LFP = 1:1, rotation speed- 650 rpm, mechanical milling time- 5 h, mass ratio of ball to powder- 50:1).

Fig. S8. Leaching behaviors for samples (LiFePO₄ and LiMn₂O₄) with different acid concentrations before (a) and after (b) mechanochemical reaction (conditions: molar ratio of LMO:LFP = 1:3, rotation speed- 650 rpm, mechanical milling time- 5 h, mass ratio of ball to powder- 50:1).

Table S1 A brief	comparison	of the traditio	nal methods	with mechan	nochemical
method f	or the recycl	ing of valuable	e metals from	n Spent LIBs	S ¹⁻³

Recycling method	Advantages	Disadvantages
Pyrometallurgy	Wide application; Large-scale; Less pretreatment.	Extensive energy consumption; Significant loss of Li; Harmful gases emission.
Hydrometallurgy	High efficiency; High purified products; Low energy consumption; Flexible recycling processes for different metals.	Complicated pretreatment; Extensive chemical consumption; Eeffluent discharging; Uneconomical for (LFP) batteries.
Mechanochemistr y	Avoidance of extra wastes; Mild and safe processing environment; High reactivity derived by mechanochemical force.	Limited processing capacity; Long processing time; Additional further refining.

 Table S2 Analytical methods.

No.	Instrument	Types	Area					
1	Laser Particle Sizer	NAMO-ZS	Malvern, Britain					
2	FT-IR spectroscopy	Scientific Nicolet iS10	Thermo Fisher, U.S.A.					
3	Raman spectra	DXRxi	Thermo Fisher, U.S.A.					
4	X-ray diffraction (XDR)	Dmax-RB12KW	Rigaku, Japan					
5	Nitrogen gas adsorption instrument	ASAP 2460 sn:506	Micromeritics, U.S.A.					
6		IV 92D Kanag DCA	Dataphysics Instrument Co.,					
	Contact angle meter (sessile drop method)	JI-62D KIUSS DSA	Ltd., Germany.					
7	X-ray photoelectron spectroscopy (XPS)	AXIS SUPRA	Kratos, Britain					
0	High-resolution field emission transmission	IEM 2100E	JEOL, Japan					
0	electron microscopy (HRTEM)	JEWI-21001						
0	Inductively Coupled Plasma Optical Emission	Optima 5300 DV	Perkin Elmer Instruments,					
9	Spectrometer (ICP-OES)	Optima 5500 DV	U.S.A.					
10	Field Emission Scanning Electron	MID A 2	TESCAN					
10	Microscopy (FESEM)	IVIIKAS	IESCAN					
11	X-ray EDS Analysis	X-MAX	Oxford, Britain					

Compounds	Normal diffraction JCPDS cards
LiCoO ₂	PDF#75-0532
Co ₃ O ₄	PDF#43-1003
LiFePO ₄	PDF#81-1173
FePO ₄	PDF#29-0715

 Table S3 Normal diffraction JCPDS cards of related compounds.

Table S4 Fitting peaks of XPS spectra for the Co2p of LCO powders activated after different milling times.

		Co 2p _{3/2}		Co 2p _{1/2}			Content (wt%)				
		Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8	C_{2}^{2+}	$C a^{3+}$
		Co ³⁺	Co ²⁺	Co ²⁺ Sat	Co ³⁺ Sat	Co ³⁺	Co ²⁺	Co ²⁺ Sat	Co ³⁺ Sat	C02	CO
0	Position(eV)	779.65	780.85	781.47	789.45	794.65	795.85	797.24	805.00	20.54	70.46
0	Aera (%)	22.69	9.51	19.58	8.61	11.34	4.76	12.59	10.91	29.34	/0.40
11.	Position(eV)	779.82	781.04	783.47	789.80	794.91	796.24	798.00	804.34	53.25	16 75
Ih	Aera (%)	11.04	12.57	28.55	13.03	5.52	6.29	9.01	13.98		40.73
	Position(eV)	779.70	780.95	782.57	787.88	794.80	796.15	798.89	804.44	60.73	
3n	Aera (%)	9.52	14.24	21.41	22.06	4.29	7.12	8.73	12.63		39.27
	Position(eV)	779.67	780.81	783.24	788.12	794.66	796.01	797.77	803.06	72.00	27.21
5h	Aera (%)	5.90	16.43	26.06	20.96	2.95	7.12	5.98	14.59	/2.69	27.31
	Position(eV)	779.62	780.57	783.25	788.36	794.62	795.87	798.71	804.48	73.36	
/h	Aera (%)	6.16	16.97	24.10	15.02	3.08	8.48	11.76	14.42		20.04
	Position(eV)	779.91	781.11	783.94	788.89	795.01	796.61	799.00	803.60	73.45	2655
9h	Aera (%)	6.47	17.65	24.02	15.13	3.04	8.65	7.42	17.62		26.55

The fitting data of the Co2p XPS spectra was calculated by the XPS peak software (Casa XPS).

 $Content of Co²⁺ = (Aera_{peak2} + Aera_{peak6})/((Aera_{peak1} + Aera_{peak2} + Aera_{peak5} + Aera_{peak6}))/((Aera_{peak1} + Aera_{peak2} + Aera_{peak6}))/(Aera_{peak1} + Aera_{peak1} + Aera_{peak6}))/(Aera_{peak1} + Aera_{peak1} + Aera_{$

 $Content of Co^{3+}=(Aera_{peak1} + Aera_{peak5})/((Aera_{peak1} + Aera_{peak2} + Aera_{peak5} + Aera_{peak6}))/((Aera_{peak1} + Aera_{peak5} + Aera_{peak5})/(Aera_{peak1} + Aera_{peak5} + Aera_{peak5})/(Aera_{peak5} + Aera_{peak5} + Aera_{peak5$

		Fe 2p _{3/2}		Fe 2p _{1/2}			Content (wt%)				
		Peak1	Peak2	Peak3	Peak4	Peak5	Peak6	Peak7	Peak8	E - 2+	E - 3+
		Fe ²⁺	Fe ³⁺	Fe ²⁺ Sat	Fe ³⁺ Sat	Fe ²⁺	Fe ³⁺	Fe ²⁺ Sat	Fe ³⁺ Sat	Fe	Fest
	Position(eV)	710.44	712.20	714.15	718.10	724.04	725.80	728.32	731.88	76.26	22.74
0	Aera (%)	21.60	7.91	29.93	6.59	10.36	5.29	14.37	3.95	/6.26	23.74
11.	Position(eV)	710.47	711.93	713.96	716.9	723.87	725.33	726.68	730.60	52.65	17.25
In	Aera (%)	12.97	11.91	15.19	24.16	6.48	5.58	7.31	16.41		47.55
	Position(eV)	710.45	712.50	714.57	718.02	723.88	725.99	728.00	731.82	42.01 5	57.00
3n	Aera (%)	12.42	17.48	9.83	23.59	6.83	9.09	4.59	16.18		57.99
	Position(eV)	710.49	712.06	714.60	719.04	723.79	725.36	727.37	731.01	33.86 6	((14
5h	Aera (%)	8.16	16.27	19.59	24.48	4.08	7.64	8.53	11.25		00.14
	Position(eV)	710.49	712.14	714.63	718.69	723.86	725.59	727.40	731.89	21.15	(0.05
7h	Aera (%)	9.13	21.71	14.65	21.20	5.11	9.77	7.73	10.71	31.15	08.85
	Position(eV)	710.39	711.92	714.38	718.64	723.89	725.42	727.17	731.93	21.21	(2 (0
9h	Aera (%)	8.56	18.78	18.35	19.19	4.28	9.39	8.74	12.70	31.31	68.69

Table S5 Fitting peaks of XPS spectra for the Fe2p of LFP powders activated after different milling times.

The fitting data of the Fe2p XPS spectra was calculated by the XPS peak software (Casa XPS).

 $Content of Fe^{2+} = (Aera_{peak1} + Aera_{peak5})/((Aera_{peak1} + Aera_{peak2} + Aera_{peak5} + Aera_{peak6})$

Table 50 Thermodynamic data for the related species at 270.15 K.								
Substance	$\varDelta_f G_m^{\theta}(\text{kJ/mol})$	Ref.	Substance	$\Delta_f G_m^{\theta}(\text{kJ/mol})$	Ref.			
LiFePO ₄	-1480.97	4	LiCoPO4	-5660.10	5			
LiCoO ₂	-620.22	6	LiNi _{0.5} Co _{0.2} Mn _{0.3} O ₂	-640.04	7			
CoO	-214.00	8	LiMn ₂ O ₄	-1374.80	9			
Li ₂ O	-561.20	8	H_2SO_4	-689.90	8			
Co ₃ O ₄	-774.00	8	CoSO ₄	-782.40	8			
Li ₃ PO ₄	-2127.45	HSC 6.0	Li ₂ SO ₄	-1331.20	8			
Fe ₂ O ₃	-742.20	8	NiSO ₄	-790.30	8			
FePO ₄	-1179.30	4	MnSO ₄	-972.80	8			
FeO	-251.40	8	H ₂ O	-237.14	8			

Table S6 Thermodynamic data for the related species at 298.15 K.

No.	Reaction equation	$\Delta_r G_m$ (kJ/mol)
(4)	$10 LiFePO_4 + 10 LiNi_{0.5}Co_{0.2}Mn_{0.3}O_2 + 20H_2SO_4 = 10FePO_4 + 2CoSO_4 + 10Li_2SO_4$	-3273.4
	$+5\mathrm{NiSO}_4+3\mathrm{MnSO}_4+20\mathrm{H}_2\mathrm{O}$	
(5)	$3LiFePO_4 + LiMn_2O_4 + 4H_2SO_4 = 3FePO_4 + 2MnSO_4 + 2Li_2SO_4 + 4H_2O_4 + 2MnSO_4 + 2MnSO_4$	-517.155
(6)	$LiFePO_4 + LiCoO_2 = FePO_4 + CoO + Li_2O$	146.69
(7)	LiFePO ₄ +3LiCoO ₂ =FePO ₄ +Co ₃ O ₄ +2Li ₂ O	265.93
(8)	2LiFePO ₄ +Co ₃ O ₄ =2FePO ₄ +3CoO+Li ₂ O	174.14
(9)	$3LiFePO_4+3LiCoO_2=2Li_3PO_4+FePO_4+3CoO+Fe_2O_3$	-514.83
(10)	$2LiFePO_4 + 4LiCoO_2 = 2Li_3PO_4 + Co_3O_4 + CoO + Fe_2O_3$	-1782.72
(11)	$3LiFePO_4+6LiCoO_2=3Li_3PO_4+2Co_3O_4+Fe_3O_4$	-208.32
(12)	$3LiFePO_4+Co_3O_4=Li_3PO_4+3CoO+2FePO_4+FeO$	-162.54
(13)	2LiFePO ₄ +2LiCoO ₂ =2LiCoPO ₄ +Fe ₂ O ₃ +Li ₂ O	-8421.22

Table S7 Gibbs free energy values $(\Delta_r G_m)$ for Eq. (4)-(13) at 298.15 K.

Notes: It is worth to notice that the values of $\Delta_r G_m$ for Eq. (6)-(8) are positive, indicating that these chemical reactions cannot be spontaneously processed under such available conditions. However, it has been well acknowledged that high temperature and high pressure can be generated during the intense collision among the fine particles with balls, which can promote and realize the chemical reactions that are thermodynamic impossible^{10, 11}. Besides, it has been proved by this study from the experimental, characterization and theoretical results that the targeted products have been generated by the mechanochemical process.

Reference:

- 1. F. Arshad, L. Li, K. Amin, E. Fan, N. Manurkar, A. Ahmad, J. Yang, F. Wu and R. Chen, *ACS Sustain. Chem. Eng.*, 2020, **8**, 13527-13554.
- 2. J. J. Roy, S. Rarotra, V. Krikstolaityte, Z. K. W, Y. D. Cindy, X. Y. Tan, M. Carboni, D. Meyer, Q. Yan and M. Srinivasan, *Adv. Mater.*, 2021, DOI: 10.1002/adma.202103346, 2103346.
- 3. X. Xia and P. Li, *Sci. Total Environ.*, 2022, **814**, 152870.
- 4. A. V. Churikov, A. V. Ivanishchev, A. V. Ushakov, I. M. Gamayunova and I. A. Leenson, *Journal of Chemical & Engineering Data*, 2013, **58**, 1747-1759.
- 5. S. L. Shang, Y. Wang, Z. G. Mei, X. D. Hui and Z. K. Liu, *J. Mater. Chem.*, 2012, **22**, 1142-1149.
- 6. S. Wang, C. Wang, F. Lai, F. Yan and Z. Zhang, *Waste Manage. (Oxford)*, 2020, **102**, 122-130.
- 7. Y. Lixin, Master of Engineering Lanzhou University of Technology 2019.
- 8. J. A. Dean, *Langes handbook of chemistry*, R. R. Donnelley & Sons Company, New York 1999.
- 9. Z. Li, L. He, Z. w. Zhao, D. Wang and W. Xu, *ACS Sustainable Chemistry & Engineering*, 2019, **7**, 16738-16746.
- 10. Q. Wu, Mechanochemistry of inorganic materials, Chemical Industry Press, Beijing, 2008.
- 11. H. Yang, Mechanochemistry of materials, Science Press, Beijing, 2009.