Supplementary materials

Insights into the molecular mechanism of a new efficient whole-cell biocatalyst *Enterobacter ludwigii* YYP3 in 5-hydroxymethylfurfural reduction

Xin Pan^a[†] *, Xue Wang^a[†], Sihua Wu^{c d}[†], Lei Xu^a, Leilei Zhang^a, Zhan Zhang^e, Bingfeng Li^b, Xuejun He^b, Siyuan Chang^b^{*}

^a Central Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, Jiangsu, China

^b College of life and health, Nanjing Polytechnic Institute, 625 Geguan Road, Nanjing 210048, Jiangsu, China

^c State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, P. R. China

^d Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, Japan

^e School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, Jiangsu, China

[†]These authors contributed equally to this article

*Corresponding authors: Xin Pan (xinpanphd@163.com), Siyuan Chang (fenwuyi@163.com)

16S rDNA gene sequence 1506 bp

GAGTTTGATCATGGCTTCAGATTGAACGCTGGCGGCAGGCCTAACACATGCAAGTCGA ACGGTAGCACAGAGAGCTTGCTCTCGGGTGACGAGTGGCGGACGGGTGAATAATGTCT GGGAAACTGCCTGATGGAGGGGGGATAACTACTGGAAACGGTAGCTAATACCGCATAAC GTCGCAAGACCAAAGAGGGGGGGCCTTCGGGGCCTCTTGCCATCAGATGTGCCCAGATGG GATTAGCTAGTAGGTGGGGTAACGGCTCACCTAGGCGACGATCCCTAGCTGGTCTGAG AGGATGACCAGCCACACTGGAACTGAGACACGGTCCAGACTCCTACGGGAGGCAGCA GTGGGGAATATTGCACAATGGGCGCAAGCCTGATGCAGCCATGCCGCGTGTATGAAGA GCAGCAATTGACGTTACCCGCAGAAGAAGCACCGGCTAACTCCGTGCCAGCAGCCGC GGTCTGTCAAGTCGGATGTGAAATCCCCGGGCTCAACCTGGGAACCGCATTCGAGACT GGCAGGCTAGAGTCTTGTAGAGGGGGGGGGGAGAATTCCAGGTGTAGCGGTGAAATGCGTA GGGATCTGGAGGAATACCGGTGGCGAAGGCGGCCCCCTGGACAAAGACTGACGCTCA GGTGCGAAAGCGTGGGGGGGGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAAC GATGTCGACTTGGAGGTTGTGCCCTTGAGGCGTGGCTTCCGGAGCTAACGCGTTAAGT CGACCGCCTGGGGGGGGGGCCGCCAAGGTTAAAACTCAAATGAATTGGCGGGGGGCC CGCACAAGCGGTGGAGCATGTGGTTTAATTCGATGCAACGCGAAGAACCTTACCTTAC TCTTGACATCCAGAGAACTTTCCAGAAGATGGATTGGTGCCTTCGGGAACTCTGAGAA CAGGTGCTGCATGGCTGTCGTCAGCTCGTGTTGTGAAATGTTGGGTTAAGTCCCGCAA CCAGTGATAAACTGGAGGAAGGTGGGGGATGACGTCAAGTCATCATGGCCCTTACGAGT AGGGCTACACGTGCTACAATGGCGCATACAAGAGAAGCGAACTCGCGAGAGCAA GCGGACCTCATAAAGTGCGTCGTAGTCCGGATTGGAGTCTGCAACTCGACTCCATGAA GTCGGAATCGCTAGTAATCGTAGATCAGAATGCTACGGTGAATACGTTCCCGGGCCTTG TCGGGAGGGCGCTTACCACTTTGTGATTCATGACTGGGGTGAAGTCGTAACAAGGTAA CC

The GenBank accession number for the 16S rDNA gene sequence of the strain *E. ludwigii* YYP3 is MK968765.

Full-length gene sequence of SDR family oxidoreductase *El*SDR-ykvO

Full-length gene sequence of SDR family oxidoreductase ElSDR-SSP1627

Mutant		Primer sequence (5'-3')
S143A	F	CACATTATCAACACCGCTGCCGTTGCGGCGCACC
	R	GGTGCGCCGCAACGGCAGCGGTGTTGATAATGTG
Y156A	F	TCCAGAGCAGCGCGGTTGCCTCTGCGACCAAATTC
	R	GAATTTGGTCGCAGAGGCAACCGCGCTGCTCTGGA
K160A	F	GGTTTACTCTGCGACCGCATTCGCGGTTCGTGCG
	ĸ	CGCACGAACCGCGAATGCGGTCGCAGAGTAAACC

Table S1 Primers used for mutation analysis.

Table S2 The templates used to build the conformation of enzymes analyzed in this study.

Enzyme	Template (PDB)	Resolution (Å)	Sequence Identity (%)	Ligands in active center
reductive aminase AspRedAm	5G6R	1.82	100	NADPH
alcohol dehydrogenase MgAAD1669	3UYI	2.31	35.93	None
NADH-dependent reductase CmCR	3GDF	2.50	50.19	None
<i>El</i> SDR-ykvO	4FGS	1.8	43.21	None
	3TFO	2.1	50.84	None
EISDD SSD1627				NADPH,
<i>EISD</i> R- 551 1027	6IHI	1.8	34.48	(13R, 17S)-ethyl
				secol

Catalyst	Solvent	H-donor	HMF (mM)	Reaction conditions	Yield (%)	Selectivity (%)	Time (h)	Space time yield (g L ⁻¹ ·h ⁻¹)	Ref.
Noble metal cata	alyst								
Pd/C	Tetrahydrofuran	H_2	238	80 °C, 100 bar	97	82	20	1.2	1
Pt/MCM-41	Water	H_2	2000	35 °C, 8 bar	100	98.9	2	126.7	2
Pt/CeO ₂ -ZrO ₂	Ethanol	H_2	206	170 °C, 10 bar	97.0	100	8	3.2	3
Ru(OH) _x /ZrO ₂	1-butanol	H_2	323	120 °C, 15 bar	99.0	99.0	6	6.8	4
Ir-ReO _x /SiO ₂	Water	H_2	1000	30 °C, 8 bar	>99	>99.0	6	20.9	5
Au/Al_2O_3	Water	H_2	100	120 °C, 65 bar	100	96.0	2	6.2	6
Non-noble metal	l catalyst								
Cu-ZnO	1,4-dioxane	H_2	340	100 °C, 15 bar	100	99.1	2	21.6	7
Cu/SiO_2	1,4-dioxane	H_2	158	100 °C, 50 bar	99.6	97.5	2	9.8	8
Cu/Al ₂ O ₃	Methanol	H_2	50	130 °C, 30 bar	>99	93.0	1	5.9	9
Ni-Fe/CNT	1-butanol	H_2	200	110 °C, 30 bar	100	96.1	18	1.4	10
Co-400	Methanol	H_2	100	90 °C, 20 bar	94	93.0	1	11.2	11
Acid-base cataly	st								
ZrO(OH) ₂	Ethanol	Ethanol	162	150 °C, 1 bar	94.1	83.7	2.5	6.5	12
ZrPN	Isopropanol	Isopropanol	250	140 °C, 1 bar	99	98	2	15.5	13
Hf-DTMP	sec-butanol	sec-butanol	132	130 °C, 1 bar	99.1	96.8	3	5.4	14
Hf–LigS	2-propanol	2-propanol	100	100 °C, 1 bar	97.3	92.2	2	5.7	15

Table S3 Representative chemical processes for the reduction of HMF to BHMF.

Table S4 Scale-up production of BHMF by fed-batch via various whole-cell biocatalysts.

Whole-cell biocatalyst	HMF (mM)	Fed-batch times	Time (h)	BHMF (mM)	Ref.
M. guilliermondii SC1103	200	4	24.5	191	16
Immobilized M. guilliermondii SC1103	200	2	7	176	17
A. subglaciale F134	500	5	15	430	18
B. contaminans NJPI-15	700	7	48	656	19
Recombinant S. cerevisiae ^a	450	3	23	345	20
E. ludwigii YYP3	300	3	9	290	This study

^a Recombinant S. cerevisiae containing the overexpressed alcohol dehydrogenase MgAAD1669.

Characteristics	Value
Raw reads size (bp) in Illumina platform	1,298,455,500
Clean reads size (bp)	1,261,843,111
Sequencing depth	259×
Total sequence length (bp) in Oxford Nanopore ONT platform	1,311,836,297
GC content (%)	54.37
Chromosome size (bp)	4,854,702
CDS in chromosome	4551
Total size (bp)	4,272,300
Mean length (bp)	938.76
Gene GC content (%)	46.22
5S rRNAs	9
16S rRNAs	8
23S rRNAs	8
tRNAs	84
Other ncRNAs	107
VFDB numbers	127
Antibiotic Resistance Genes	100
Protein coding genes	4551
nr annotation (genome)	4499
Swiss-Prot annotation (genome)	3941
COGs annotation (genome)	4267
GO annotation (genome)	3641
KEGG annotation (genome)	3031
All annotated genes	4502

 Table S5 Genome characteristics of strain E. ludwigii YYP3.

Category	GO.ID	Term	Up	Down	DEG	Total	P-value
Nucleic ac	id binding						
MF	GO:0003677	DNA binding	49	6	55	475	1.81819e-06
MF	GO:0003676	nucleic acid binding	52	11	63	634	5.04099e-05
MF	GO:0043565	sequence-specific DNA binding	13	2	15	80	0.000103422
Biofilm for	rmation						
BP	GO:0042710	biofilm formation	10	0	10	25	1.83723e-06
BP	GO:0044010	single-species biofilm formation	7	0	7	13	6.29173e-06
Cellular re	esponse to stim	ulus					
BP	GO:0070887	cellular response to chemical stimulus	7	1	8	22	4.71408e-05
MF	GO:0004364	glutathione transferase activity	5	1	6	13	6.9897e-05
BP	GO:0046677	response to antibiotic	8	0	8	24	9.65017e-05
Amino aci	d biosynthetic/1	metabolic process					
BP	GO:0009082	branched-chain amino acid biosynthetic process	0	10	10	23	7.24067e-07
BP	GO:0009081	branched-chain amino acid metabolic process	0	10	10	26	2.81357e-06
BP	GO:0000105	histidine biosynthetic process	0	6	6	9	5.67821e-06
BP	GO:0006551	leucine metabolic process	0	5	5	6	7.00398e-06
BP	GO:0009098	leucine biosynthetic process	0	5	5	6	7.00398e-06
BP	GO:1901607	alpha-amino acid biosynthetic process	2	22	24	144	1.69594e-05
BP	GO:0008652	cellular amino acid biosynthetic process	3	23	26	169	3.22802e-05
Other pro	cess						
BP	GO:0098630	aggregation of unicellular organisms	10	0	10	25	1.83723e-06
BP	GO:0098743	cell aggregation	10	0	10	25	1.83723e-06
BP	GO:0051704	multi-organism process	12	0	12	38	3.15336e-06
BP	GO:0051703	intraspecies interaction between organisms	7	0	7	13	6.29173e-06
BP	GO:0044764	multi-organism cellular process	9	0	9	26	2.45817e-05

Table S6 The significantly enriched top 20 GO terms of biological processes and molecular functions.

MF: molecular function

BP: biological process

DEG: differentially expressed gene

Microorganism	Defense process	Related Gene (Protein name)	Ref.	
	Enhance pentose phosphate pathway Maintain redox homeostasis	 ZWF1, GND1, GND2 (6-phosphogluconate dehydrogenase) HYR1 (thiol peroxidase), TRX1, TRR1 (thioredoxin), SOD1, SOD2 (superoxide dismutase), CTA1, CTT1 (catalase), GLR1 (glutathione reductase), GPX1, GPX2 (glutathione peroxidase), GTT2, GTO1, ECM4 (glutathione transferase) 		
Saccharomyces	Enhance glycolysis and TCA pathways	<i>PYK2</i> (pyruvate kinase), <i>CIT1</i> (citrate synthase), <i>ACO1</i> (aconitase), <i>FUM1</i> (fumarase)	21-24	
cerevisiae	Enhance cell membrane adaptation and biosynthesis	<i>INO1</i> (inositol-3-phosphate synthase), <i>RSB1</i> (specific transporter ATPase gene), <i>ICT1</i> (acyl-CoA-dependent lysophosphatidic acid acyltransferase)		
	Promote DNA replication and repair	FMP16 (Found in mitochondrial proteome protein 16)		
	Increase stress-response protein expression	HSP26, HSP82, HSP104, SSA4 (heat-shock proteins)		
Rhizopus oryzae	Repress protein synthesis Reduce aerobic respiration pathway and xylose metabolism Strengthen the stabilization of	-	25	
	Alter or modify the composition and structure of the cell membrane	<i>fliC</i> (flagellin domain-containing protein), <i>MreC</i> (rod shape-determining protein), <i>MscS</i> (ion channel protein), <i>ostA</i> (organic solvent tolerance protein), <i>lgt</i> (lipoprotein)		
	Repress protein synthesis	<i>rpsD</i> , <i>rpsF</i> , <i>rplI</i> , <i>rbsR</i> , <i>frr</i> , <i>rbfA</i> (ribosomal proteins), <i>proS</i> , alaS, leuS, glyS, pheT, valS (tRNA synthetases), glnA, trpA, trpB, argG, gltB, ilvE, glnB, serA, serC (amino acid metabolism-related genes)		
7	Repress terpenoid biosynthesis	<i>hpnD</i> , <i>hpnE</i> , <i>dxs</i> , <i>dxr</i> (terpenoid biosynthesis-related proteins)		
Zymomonas mobilis	Promote DNA replication and repair	<i>addA</i> (double-strand break repair helicase), <i>addB</i> (double-strand break repair protein), <i>ung</i> (uracil-DNA glycosylase), <i>radC</i> (DNA repair protein), <i>mutL</i> (DNA micmatch repair on <i>turne</i>)		
	Increase universal stress gene expression	<i>dnaJ</i> (haperone protein), <i>lon</i> (ATP-dependent protease)		
	Upregulate transcriptional regulator	<i>Lys</i> R family, <i>Lyt</i> R family, GntR family, <i>Tet</i> R family, <i>Lac</i> I family, <i>rpoD</i>		
	Upregulate putative respiratory gene	<i>rnfA</i> , <i>rnfB</i> (putative NADH/ubiquinone oxidoreductase subunit)		

Table S7 Several potential defense mechanisms of microorganisms for the toxic furanic aldehydes.

Gene_ID	Gene	Protein name	Gene_ID	Gene	Protein name
Nucleic aci	d binding				
gene1246	seqA	replication initiation negative regulator SeqA	gene1510	rpsA	30S ribosomal protein S1
gene1492	lrp	leucine-responsive transcriptional regulator Lrp	gene1707	rne	flagellar basal body P-ring protein FlgI
gene1511	ihfB	integration host factor subunit beta	gene1842	pheS	phenylalaninetRNA ligase subunit alpha
gene213	hupA	YdeI family stress tolerance OB fold protein	gene3069	rplY	50S ribosomal protein L25
gene2518	narL	two-component system response regulator NarL	gene753	tsf	translation elongation factor Ts
gene4085	fis	DNA-binding transcriptional regulator Fis			
Cellular res	sponse to	stimulus			
gene3956	garL	2-dehydro-3-deoxyglucarate aldolase			
gene1944	gstA	glutathione transferase GstA			
Amino acid	biosynth	etic/metabolic process			
gene31	ilvN	acetolactate synthase small subunit	gene2929	hisC	histidinol-phosphate transaminase bifunctional
gene4224	asd	aspartate-semialdehyde dehydrogenase	gene2930	hisB	histidinol-phosphatase/imidazoleglycerol- phosphate dehydratase HisB
gene4398	ilvC	ketol-acid reductoisomerase	gene2933	hisF	imidazole glycerol phosphate synthase subunit HisF
gene4402	ilvE	branched-chain-amino-acid transaminase	gene2934	hisI	bifunctional phosphoribosyl-AMP cyclohydrolase/phosphoribosyl-ATP diphosphatase HisIE
gene4403	ilvM	acetolactate synthase 2 small subunit	gene2418	trpC	bifunctional indole-3-glycerol-phosphate synthase TrpC/phosphoribosylanthranilate isomerase TrpF
gene4404	ilvG	acetolactate synthase 2 catalytic subunit	gene3416	glyA	serine hydroxymethyl transferase
gene664	leuD	3-isopropylmalate dehydratase small subunit	gene4522	asnA	aspartateammonia ligase
gene665	leuC	3-isopropylmalate dehydratase large subunit	gene642	folA	type 3 dihydrofolate reductase
gene666	leuB	3-isopropylmalate dehydrogenase	gene724	panD	aspartate 1-decarboxylase
gene667	leuA	2-isopropylmalate synthase	gene749	dapD	2,3,4,5-tetrahydropyridine-2,6-dicarboxyla te N-succinyltransferase
gene2927	hisG	ATP phosphoribosyltransferase	gene725	panC	pantoatebeta-alanine ligase
gene2928	hisD	bifunctional histidinal dehydrogenase/ histidinol dehydrogenase			

	1 1 1 1 1 1 1	1 • • • 1 1 1	1 1	
Table SX The downrogulate	a conec in the nucleic acid	highlim collular rock	ance and amino acid r	rococc
		DIOTITI, COTUIALION	junse, and annue actue	JIUUUSS.

Gene_ID	Gene	Protein name	Gene_ID	Gene	Protein name
Nucleic aci	d bindin	g			
gene1047		TetR Family Transcriptional Regulator	gene2439	anr	Crp/Fnr family transcriptional regulator
gene1049	ramA	transcriptional regulator	gene2448		AraC family transcriptional regulator
gene1066	bvgA	response regulator	gene270	soxS	superoxide response transcriptional regulator SoxS
gene1085	marA	AraC family transcriptional regulator	gene271	soxR	redox-sensitive transcriptional activator SoxR
gene1188	ybdO	LysR family transcriptional regulator	gene2978		winged helix-turn-helix domain-containing protein
gene1207	ybeF	YbeF family transcriptional regulator	gene3188	int	tyrosine-type recombinase/integrase
gene1290	ybgS	YbgS	gene3200	glxR	Crp/Fnr family transcriptional regulator
gene1304	ybcK	recombinase family protein	gene3201	decR	Lrp/AsnC family transcriptional regulator
gene138	yiaU	DNA-binding transcriptional LysR family regulator	gene3260	mocR	PLP-dependent aminotransferase family protein
gene1663	csgD	transcriptional regulator CsgD	gene3265		hypothetical protein F917_01746
gene1883	ariR	two-component-system connector protein AriR	gene3266	yoeC	tyrosine-type recombinase/integrase
gene1887	bluR	MerR family transcriptional regulator	gene332	ecnR	LuxR C-terminal-related transcriptional regulator
gene1954	ydgT	transcription modulator YdgT	gene3485	intA	integrase
gene1980	abgR	LysR family transcriptional regulator	gene3525	stpA	DNA-binding protein stpA
gene2043	yafC	LysR family transcriptional regulator	gene3644	gcvA	glycine cleavage system transcriptional regulator GcvA
gene2092		TetR/AcrR family transcriptional regulator	gene4056	argR	transcriptional regulator ArgR
gene2158	tehB	tellurite resistance methyltransferase TehB	gene459	intB	integrase arm-type DNA-binding domain-containing protein
gene2182	marA	Multiple antibiotic resistance protein marA	gene461		restriction endonuclease subunit S
gene2183	marR	Multiple antibiotic resistance protein marR	gene463	MJ0130	restriction endonuclease subunit S
gene2192	yneJ	LysR family transcriptional regulator	gene606	arcA	two-component system response regulator ArcA
gene2287		TetR family transcriptional regulator	gene857	yqeI	winged helix-turn-helix domain-containing protein
gene2296	yczG	helix-turn-helix domain-containing protein	gene975	hha	hemolysin expression modulator Hha
gene2312	mcbR	GntR family transcriptional regulator	gene976	tomB	Hha toxicity modulator TomB
gene2343		DUF1294 domain-containing protein	gene2398	yciH	stress response translation initiation inhibitor YciH

Table S9 The upregulated genes in the nucleic acid, biofilm, cellular response, and amino acid process.

gene2385	rob	helix-turn-helix domain-containing protein	gene3436	lepA	translation elongation factor 4
gene2389	ykgA	helix-turn-helix domain-containing protein	gene3546	csrA	carbon storage regulator CsrA
Biofilm for	mation				
gene1662	csgE	curli production assembly/transport protein CsgE	gene1885	ycgZ	hypothetical protein
gene1663	csgD	transcriptional regulator CsgD	gene2136	ydeI	YdeI family stress tolerance OB fold protein
gene1665	csgB	Minor curlin subunit	gene2543	ychH	stress-induced protein YchH
gene1680	yceO	YceO family protein	gene4057	yhcN	peroxide/acid stress response protein YhcN
gene1883	ariR	two-component-system connector protein AriR	gene976	tomB	Hha toxicity modulator TomB
Cellular re	esponse to	o stimulus			
gene1883	ariR	two-component-system connector protein AriR	gene1417	gstB	glutathione S-transferase family protein
gene1885	ycgZ	hypothetical protein	gene2045	GSTO1	glutathione S-transferase family protein
gene2136	ydeI	YdeI family stress tolerance OB fold protein	gene2298	yncG	glutathione S-transferase family protein
gene2183	marR	Multiple antibiotic resistance protein marR	gene272	gst3	glutathione S-transferase
gene2543	ychH	stress-induced protein YchH	gene2026	cat	type A chloramphenicol O-acetyltransferase
gene4057	yhcN	peroxide/acid stress response protein YhcN	gene2181	marB	multiple antibiotic resistance protein MarB
gene4308	treF	alpha,alpha-trehalase	gene2182	marA	multiple antibiotic resistance protein marA
gene1102	gstB	glutathione transferase GstA			
Amino aci	d biosynt	hetic/metabolic process			
gene1887	bluR	MerR family transcriptional regulator			
gene4056	argR	transcriptional regulator ArgR			
gene892	aroM	protein AroM			

Cono ID	Cana	Ductoin norma		FPKM value					
Gene_ID	Gene	r rotein name	Control1	Control2	Control3	HMF1	HMF2	HMF3	
gene2390	FabI	enoyl-ACP reductase FabI	318.59	269.68	259.98	345.77	445.31	616.92	
gene1476	hcp	Hydroxylamine reductase	71.84	198.51	194.41	282.41	268.68	230.24	
gene2044	ykvO	SDR family oxidoreductase	50.89	101.48	115.14	125.31	138.49	137.82	
gene3827	yqhD	alcohol dehydrogenase	84.72	213.18	225.92	329.62	316.49	340.01	
gene347	queG	tRNA epoxyqueuosine(34) reductase QueG	65.50	154.40	174.96	286.96	356.10	298.69	
gene429	nrdG	anaerobic ribonucleoside-triphosphate reductase-activating protein	131.36	223.44	230.24	350.92	412.32	343.26	
gene1131	Molybdopterin	molybdopterin-dependent oxidoreductase	21.88	48.23	58.66	73.93	121.91	150.09	
gene2046	SSP1627	SDR family oxidoreductase	54.30	115.22	125.86	173.44	261.85	285.80	
gene1189	ahpC	alkyl hydroperoxide reductase subunit C	100.68	158.08	168.13	243.93	243.69	292.67	
gene1416	yliI	PQQ-dependent sugar dehydrogenase	44.54	178.13	160.96	286.47	308.94	445.98	

 Table S10 The upregulated enzymes with redox activity in the oxidation-reduction process of GO terms

Enguna	Enzyme (mU	activity ^a mg ⁻¹)	Steady-state kinetic parameter ^b			
Епгуше	NADPH	NADH	K _m (mM)	1) k_{cat} (s ⁻¹)	k _{cat} /K _m (mM ⁻¹ s ⁻¹)	
<i>El</i> SDR-ykvO	298.56	12.22	0.1096	0.667	6.09	
ElSDR-SSP1627	466.87	7.56	0.0850	0.942	11.76	
ElSDR-SSP1627-S143A	NA ^c					
<i>El</i> SDR-SSP1627-Y156A	NA					
<i>El</i> SDR-SSP1627-K160A	NA					

 Table S11 Enzyme activities and steady-state kinetic parameters of *El*SDR-ykvO, *El*SDR-SSP1627, and *El*SDR-SSP1627 mutants in the HMF reduction.

^aReaction conditions: 0.4 mL Tris-HCl buffer (100 mM, pH 8), 5 mM HMF, 0.2 mM NADPH or NADH, 30°C, and 20 μ g mL⁻¹ purified enzyme. The values are the average of three independent experiments.

^bReaction conditions: 0.4 mL Tris-HCl buffer (100 mM, pH 8), 20 μM to 5 mM HMF, 0.2 mM NADPH, 30°C, and 20 μg mL⁻¹ purified enzyme. The values are the average of three independent experiments. °NA: not active.

Table S12	The residue	e identity	and RMSD	value of	the enzy	mes ana	lvzed in	this	study
	The residue	2 Identity		varae or	the end	ines and	ryzea m	unib	Study

	<i>El</i> SDR-ykvO		ElSDR-SSP1627	
	Identity (%)	RMSD (Å)	Identity (%)	RMSD (Å)
NADH-dependent reductase CmCR	27.9	0.88	22.9	0.97
alcohol dehydrogenase MgAAD1669	13.5	16.72	8.6	15.05
reductive aminase AspRedAm	12.9	15.65	12.5	14.14
<i>El</i> SDR-ykvO	-	-	25.0	1.056
<i>El</i> SDR-SSP1627	25.0	1.056	-	-

Fig. S1 Phylogenetic tree of YYP3 based on the 16S rDNA gene sequence.

Fig. S2 Multiple steps of BHMF production optimization. (A) Ratio of glucose to HMF, (B) initial pH, (C) temperature, and (D) HMF concentration. The initial production conditions: pH 7.0, 30°C, 50 mM HMF, and 20 mg mL⁻¹ (wet weight) of cells.

Different molar ratios of glucose to HMF, from 0:1 to 1:1, were tested and the results showed that a small amount of glucose supplementation (0.25:1) led to a clearly increased yield (97.5%) and selectivity (92.2%). When the glucose concentration was 37.5 mM (the molar ratio of glucose to HMF was 0.75:1), BHMF was produced with a yield >99% and 98.5% selectivity within 1.5 h (A). The BHMF yields increased continually from 82.1% to >99% with a variation of pH from 5.5 to 7.0, while the highest yields (>99%) were maintained at pH 7.0–8.0. Notably, excellent BHMF

selectivities (96.1%–98.5%) were observed across the entire pH range (B). The impact of reaction temperature on the biosynthesis of BHMF was examined from 20°C to 45°C. *E. ludwigii* YYP3 displayed the highest yield and selectivity at 30°C–35°C, but when the temperature exceeded 40°C, the catalytic efficiency decreased significantly (C). When the HMF concentration increased from 25 mM to 100 mM, *E. ludwigii* YYP3 retained high yield (>99%) and selectivity (98.5%). When the HMF concentration increased more than 100 mM, the decreased yield and selectivity were observed (D).

Fig. S3 Effects of various concentrations of BHMF on the whole-cell conversion of HMF. Conditions: 50 mM HMF, 0–450 mM BHMF, glucose/HMF ratio of 0.75:1, pH 7.0, 30°C, and 20 mg mL⁻¹ (wet weight) of cells. Cell viability was measured under the above conditions without HMF.

Fig. S4 Genome functional annotation of the *E. ludwigii* YYP3 chromosome against the COG database.

Function class

GO classfication

Fig. S5 Genome functional annotation of the *E. ludwigii* YYP3 chromosome against the GO database.

Fig. S6 Hierarchical cluster heat map of gene expression in *E. ludwigii* YYP3. HMF groups were incubated for 1h under the optimum reaction conditions with 100 mM HMF; control groups were incubated for 1h under the optimum reaction conditions without HMF.

Fig. S7 (A) The heterologous expression of *El*SDR-SSP1627 and *El*SDR-ykvO in *E. coli* BL21 (DE3). M, protein marker; "a" indicates the soluble fractions and "b" indicates the insoluble fractions. The *E. coli* BL21 (DE3) harboring the empty vector pET28a was used as the control. (B) The *El*SDR-SSP1627 and *El*SDR-ykvO were purified by His-tag affinity chromatography.

Fig. S8 (A) The predicted structure of MgAAD1669 by homology modeling. (B) The predicted structure of AspRedAm by homology modeling.

Fig. S9 The RMSD values of *El*SDR-SSP1627, *El*SDR-ykvO and CmCR by molecular dynamic simulation.

Fig. S10 Structures of *El*SDR-SSP1627 (A), *El*SDR-ykvO (B), and CmCR (C) colored by B-factor (low B-factor in blue, high B-factor in red). The closer to red, the greater the flexibility.

Fig. S11 (A) The reduction substrates of DHRS4, TR-II, and *El*SDR-SSP1627. (B) Binding mode analysis of the DHRS4 complex crystal structure (PDB ID: 5OJI). (C) Binding mode analysis of the TR-II complex crystal structure (PDB ID: 1IPF). (D) Docking results analysis of the *El*SDR-SSP1627 complex. (E) Superimposition of the complex structures of DHRS4, TR-II, and *El*SDR-SSP1627.

References

- 1. M. Audemar, K. D. O. Vigier, J. M. Clacens, F. De Campo and F. Jérôme, *Green Chem.*, 2014, **16**, 4110-4114.
- 2. M. Chatterjee, T. Ishizaka and H. Kawanami, *Green Chem.*, 2014, **16**, 4734-4739.
- 3. K. V. Vikanova, M. S. Chernova, E. A. Redina, G. I. Kapustin, O. P. Tkachenko and L. M. Kustov, *J. Chem. Technol. Biotechnol.*, 2021, **96**, 2421-2425.
- 4. J. Han, Y. H. Kim, H. S. Jang, S. Y. Hwang, J. Jegal, J. W. Kim and Y. S. Lee, *RSC Adv.*, 2016, **6**, 93394-93397.
- 5. M. Tamura, K. Tokonami, Y. Nakagawa and K. Tomishige, *Chem. Commun.*, 2013, **49**, 7034-7036.
- 6. J. Ohyama, A. Esaki, Y. Yamamoto, S. Arai and A. Satsuma, *RSC Adv.*, 2013, **3**, 1033-1036.
- 7. Y. Zhu, X. Kong, H. Zheng, G. Ding, Y. Zhu and Y. W. Li, *Catal. Sci. Technol.*, 2015, **5**, 4208-4217.
- 8. Y. Zhu, X. Kong, J. Yin, R. You, B. Zhang, H. Zheng, X. Wen, Y. Zhu and Y. W. Li, J. Catal., 2017, 353, 315-324.
- 9. K. T. V. Rao, Y. Hu, Z. Yuan, Y. Zhang and C. C. Xu, *Appl. Catal., A*, 2021, **609**, 117892.
- 10. L. Yu, L. He, J. Chen, J. Zheng, L. Ye, H. Lin and Y. Yuan, *ChemCatChem*, 2015, **7**, 1701-1707.
- 11. X. L. Li, K. Zhang, S. Y. Chen, C. Li, F. Li, H. J. Xu and Y. Fu, *Green Chem.*, 2018, **20**, 1095-1105.
- 12. W. Hao, W. Li, X. Tang, X. Zeng, Y. Sun, S. Liu and L. Lin, *Green Chem.*, 2016, **18**, 1080-1088.
- 13. H. Li, J. He, A. Riisager, S. Saravanamurugan, B. Song and S. Yang, ACS Catal., 2016, 6, 7722-7727.
- 14. L. Hu, X. Dai, N. Li, X. Tang and Y. Jiang, *Sustainable Energy Fuels*, 2019, **3**, 1033-1041.
- 15. S. Zhou, F. Dai, Y. Chen, C. Dang, C. Zhang, D. Liu and H. Qi, *Green Chem.*, 2019, **21**, 1421-1431.
- 16. Y. M. Li, X. Y. Zhang, N. Li, P. Xu, W. Y. Lou and M. H. Zong, *ChemSusChem*, 2017, **10**, 372-378.
- 17. Z. H. Xu, A. D. Cheng, X. P. Xing, M. H. Zong, Y. P. Bai and N. Li, *Bioresour. Technol.* ,2018, **262**, 177-183.
- 18. D. Chen, R. Cang, Z. D. Zhang, H. Huang, Z. G. Zhang and X. J. Ji, *Mol. Catal.*, 2021, **500**, 111341.
- 19. S. Chang, X. He, B. Li and X. Pan, Front. Chem., 2021, 9, 635191.
- 20. Z. H. Xia, M. H. Zong and N. Li, *Enzyme Microb. Technol.*, 2020, **134**, 109491.
- 21. Z. L. Liu, X. Huang, Q. Zhou and J. Xu, *Appl. Microbiol. Biotechnol.*, 2019, **103**, 5781-5796.
- 22. M. Ma and Z. L. Liu, *BMC Genomics*, 2010, **11**, 660.
- 23. P. Unrean, J. Gätgens, B. Klein, S. Noack and V. Champreda, FEMS Yeast Res., 2018, 18, foy106.
- 24. Z. L. Liu and M. Ma, *Appl. Microbiol. Biotechnol.*, 2020, **104**, 3473-3492.
- 25. X. Pan, H. Liu, J. Liu, C. Wang and J. Wen, *Bioresour. Technol.*, 2016, **222**, 24-32.
- 26. M. X. He, B. Wu, Z. X. Shui, Q. C. Hu, W. G. Wang, F. R. Tan, X. Y. Tang, Q. L. Zhu, K. Pan, Q. Li and X. H. Su, *Appl. Microbiol. Biotechnol.*, 2012, **95**, 189-199.