Supporting Information

Taming Photocatalysis in Flow: Easy and Speedy Preparation of α-Aminoamide Derivatives

Ricardo I. Rodríguez, ${ }^{[a]}$ Marina Sicignano, ${ }^{[a]}$ Montaña J. García, ${ }^{[a]}$ Rodrigo G. Enríquez, ${ }^{[a]}$ Silvia Cabrera, ${ }^{[b, c]}$ and José Alemán* ${ }^{* a, c, d]}$
${ }^{[a]}$ Organic Chemistry Department, Módulo 1, Universidad Autónoma de Madrid, Madrid28049, Spain.
${ }^{[b]}$ Inorganic Chemistry Department, Science Faculty, Universidad Autónoma de Madrid, Madrid-28049, Spain.
${ }^{[c]}$ Institute for Advanced Research in Chemical Sciences (IAdChem) Universidad Autónoma de Madrid, 28049 Madrid, Spain.
${ }^{[d]}$ Center for Innovation in Advanced Chemistry (ORFEO-CINQA), Universidad Autónoma de Madrid

Table of Contents

1. General Methods and Materials S3
1.1 Reactor configuration S4
2. Optimization studies S6
3. Synthesis of photocatalyst 5CzBN S9
4. Synthesis of oxime esters 2 S9
4.1 Synthesis of oxime ester 2a S9
4.2 General procedure for the synthesis of oxime esters $\mathbf{2 b}, \mathbf{2 d}-\mathbf{2 h}, \mathbf{2 q - 2 s}$ S10
4.3 General procedure for the synthesis of oxime esters $\mathbf{2 0}$ and $\mathbf{2 p}$ S15
4.4 Synthesis of oxime ester 2c S16
5. Synthesis of acrylamide derivatives 1 S17
5.1 Synthesis of $\mathbf{1 c}$ S17
5.2 General procedure for the synthesis of $\mathbf{1 d - 1 g}$ S18
5.3 Synthesis of 11 S19
5.4 Synthesis of Estrone analogue 1q S20
6. General procedure for the photo-flow synthesis of products 3 S21
7. General procedure for the photo-flow synthesis of products 4 S21
8. Analytical data of products 3 and 4 S22
9. Mechanistic investigations S37
9.1 Procedure for the crossed experiment S38
9.2 Stern-Volmer luminescence quenching studies S38
10. References S39
11. NMR Spectral Data S40
12. X-Ray Crystallographic Data of 3ag S101

1. General Methods and Materials

NMR spectra were acquired on a BRUKER AVANCE 300 or 500 MHz spectrometer running at 300 or 500 MHz for ${ }^{1} \mathrm{H}$ and 76 or 126 MHz for ${ }^{13} \mathrm{C}$ and were internally referenced to residual solvent signals (CDCl_{3} referenced at $\delta 7.26 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\delta 77.2 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}-\mathrm{NMR} ; \mathrm{D}_{2} \mathrm{O}$ referenced at $\delta 4.79 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$; $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ referenced at $\delta 2.50 \mathrm{ppm}$ for $\left.{ }^{1} \mathrm{H}-\mathrm{NMR}\right)$. Data for ${ }^{1} \mathrm{H}$ NMR are reported as follows: chemical shift ($\delta \mathrm{ppm}$), multiplicity ($s=$ singlet, $d=$ doublet, $t=$ triplet, $q=$ quartet, $m=$ multiplet, $b r=$ broad), coupling constant (Hz) and integration. Data for ${ }^{1} \mathrm{H}$-decoupled and ${ }^{13} \mathrm{C}$ and are reported in terms of chemical shift. The diastereomeric ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture through integration of diagnostic signals.

High-Resolution Mass Spectra (HRMS) were obtained on an Agilent Technologies 6120 Quadrupole LC/MS coupled with an SFC Agilent Technologies 1260 Infinity Series instrument for the MS (ESI) (Electrospray Ionization). MassWorks software version 4.0.0.0 (Cerno Bioscience) was used for the formula identification. MassWorks is an MS calibration software which calibrates isotope profiles to achieve high mass accuracy and enables elemental composition determination on conventional mass spectrometers of unit mass resolution allowing highly accurate comparisons between calibrated and theoretical spectra.

Optical rotations were recorded on a Perkin Elmer 241 MC Polarimeter in a 10 cm path length cell in HPLC grade CHCl_{3} (concentration in $\mathrm{g} / 100 \mathrm{~mL}$).

Commercial grade reagents and solvents were purchased from Acros Organics, Alfa Aesar, Fluorochem, Sigma-Aldrich, BLD Pharm, and TCI Chemicals, and used as received without further purification, unless reagents containing radical inhibitors which were distilled before use. DCM, MeCN, PhMe and THF were purified by passing through a Pure SolvTM column drying system from Innovative Technology, Inc.

Analytical TLC was performed using pre-coated aluminum-backed plates (Merck TLC Silicagel 60 F254) and visualized by ultraviolet irradiation. Stain solutions are indicated in each case if employed, using heat as developing agent. Chromatographic purification of products was accomplished by flash chromatography using silica gel (Merck Geduran® Si 60). Organic solutions were concentrated under reduced pressure on a Büchi rotary evaporator. Yields refer to chromatographically and spectroscopically (${ }^{1} \mathrm{H}$ NMR) homogeneous material, unless otherwise stated.

1.1 Reactor configuration

-Flow setup

All continuous-flow experiments were carried out using a commercially available Vapourtec Eseries device equipped with a UV-150 photoreactor (Figure S1A) including a 5 mL perfluoroalcoxy (PFA) reactor coil (inner diameter: 1.6 mm , external diameter 3.0 mm) and a lamp LED ($60 \mathrm{~W}, 420 \mathrm{~nm}$).

When using both Vapourtec pumps A and B, a polyether ether ketone (PEEK) T-mixer (Figure S1B) and a second 8 mL reactor coil (inner diameter: 1.6 mm , external diameter 3.0 mm) were included into the flow setup.

Continuous extraction operations were performed with a Zaiput Flow Technologies LiquidLiquid Separator (SEP-10) using an OB-900 Hydrophobic PTFE membrane (Figure S1C).

Figure S1. A) Vapourtec 420 nm LED setup; B) T-mixer; C) Liquid-Liquid Separator (SEP-10)

-Batch setup

A custom-made photoreactor setup was used for the photocatalytic batch reactions. The vial is placed inside the fitted well in which irradiation takes place at the desired wavelengths (420 nm was employed during this project) using 380 mW single LEDs. Reaction temperature is easily controlled (operative range: $-10-60^{\circ} \mathrm{C}$) using a recirculating system.

Figure S2. Photochemical batch setup

2. Optimization studies

Table S1. Optimization of the reagents proportion

$\boldsymbol{N , N}$-dimehtylacrylamide 1a	Oxime ester 2a (equiv.)	Yield (\%)
(equiv.)		
2	1	51
1	$\mathbf{1 . 5}$	70
$\mathbf{1}$	2	75
1		75

Yield was calculated of the ${ }^{1} \mathrm{H}$ NMR of the crude mixture, using 1,3,5-trimethoxy benzene as I. S.

Table S2. Solvent and concentration screening

Solvent	Concentration (M)	Yield (\%)
AcOEt	0.08	75
AcOiPr	0.08	77
Acetone	$\mathbf{0 . 0 8}$	$\mathbf{7 9}$
Acetone: $\mathrm{H}_{2} \mathrm{O} 2: 1$	0.08	<5
ACN	0.08	63
$i \mathrm{PrOH}$	0.08	60
Acetone	0.17	68
Acetone	0.04	79

Yield was calculated of the ${ }^{1} \mathrm{H}$ NMR of the crude mixture, using 1,3,5-trimethoxy benzene as I. S.

Table S3. Optimization of the photosensitizer

Photosensitizer	f.r. (mL/min)	$\mathrm{t}_{\mathrm{R}}(\mathrm{min})$	Yield (\%)
5CzBN (1 mol\%)	0.25	20	88
	1.0	5	90
4CzIPN (1 mol\%)	0.25	20	75
	1.0	5	74
TXO (5 mol\%)	0.25	20	79
	1.0	5	80
Rh6G-H ${ }^{+}$(1 mol\%)	0.25	20	<
	1.0	5	<5
Ir-1 (1 mol\%)	0.25	20	88
	1.0	5	88
Ir-2 (1 mol\%)	0.25	20	84
	1.0	5	85

Yield was calculated of the ${ }^{1} \mathrm{H}$ NMR of the crude mixture, using 1,3,5-trimethoxy benzene as I. S.
Table S4. Flow vs Batch reaction conditions

Flow

f.r.	$\mathbf{t}_{\boldsymbol{R}}$	Yield
$0.12 \mathrm{~mL} / \mathrm{min}$	40 min	85%
$0.25 \mathrm{~mL} / \mathrm{min}$	20 min	89%
$0.5 \mathrm{~mL} / \mathrm{min}$	10 min	90%
$1.0 \mathrm{~mL} / \mathrm{min}$	5 min	90%
$2.5 \mathrm{~mL} / \mathrm{min}$	2 min	42%

Batch

\mathbf{t}	Yield
20 h	49%
4 h	52%
5 min	$<10 \%$

Yield was calculated of the ${ }^{1} \mathrm{H}$ NMR of the crude mixture, using 1,3,5-trimethoxy benzene as I. S.
Table 5. Limitations

_unreacted starting material \qquad

Table 6. Hydrolysis optimization

Isolated yield.

Once selected the best reaction conditions for the hydrolysis of 3ac, the "one-operation" synthesis of $\mathbf{4 a c}$ was tested starting from 1a and $\mathbf{2 c}$. Since one of our principal goals was the design of a
fully automated assembly for the synthesis of 4ac, a Zaiput liquid-liquid separator was installed aiming to separate the final aqueous and organic phases. However, when following the standard conditions, we observed some miscibility issues (acetone/water) which forbad a proper extraction. To solve this, it was necessary to replace acetone for AcOiPr (see Table S2), allowing an efficient isolation of both phases. The desired product 4ac was isolated in pure form with 85% yield after water evaporation, without any further purification step.

3. Synthesis of photocatalyst 5 CzBN

The photocatalyst 5 CzBN was prepared following a known procedure. ${ }^{1}$

Scheme S1
In a 100 mL oven dried 3-neck round-bottom flask equipped with a magnetic bar, a mixture of carbazole (5.5 equiv., $10.0 \mathrm{mmol}, 1.7 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (19.0 equiv., $34.2 \mathrm{mmol}, 4.7 \mathrm{~g}$) and DMSO (15.0 mL) was bubbled with N_{2} for 10 minutes. Then, pentafluorobenzonitrile (1.0 equiv., 1.8 mmol , 348 mg) was added and the reaction was heated at reflux and stirred for 24 hours under N_{2} atmosphere. After cooled to room temperature, the reaction mixture was poured into 30.0 mL of water and the precipitate was collected by filtration and dried in vacuo. The solid was purified by refluxing in acetone/ethanol 1:1 for 24 hours, followed by filtration, obtaining the desired $\mathbf{5 C z B N}$ as a yellow solid ($987 \mathrm{mg}, 59 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 7.91-7.79(\mathrm{~m}, 8 \mathrm{H}), 7.77-7.68(\mathrm{~m}, 6 \mathrm{H}), 7.38(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $4 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.53(\mathrm{~m}$, $10 \mathrm{H})$.

4. Synthesis of oxime esters 2

The benzophenone oxime was prepared following a known procedure. ${ }^{2}$
The oxime esters $\mathbf{2 b} \mathbf{b}$ h were prepared modifying general procedures described in the literature. ${ }^{3}$

4.1 Synthesis of oxime ester 2a

Scheme S2

In a 50 mL round bottom flask equipped with a magnetic stirring bar, diphenylmethanone oxime (1.0 equiv., $10.0 \mathrm{mmol}, 2.0 \mathrm{~g}$), $\mathrm{DCM}(40.0 \mathrm{~mL}$) and pyridine (2.1 equiv., $21.0 \mathrm{mmol}, 1.7 \mathrm{~mL}$) were added and cooled at $0^{\circ} \mathrm{C}$. Pivaloyl chloride (2.0 equiv., $20.0 \mathrm{mmol}, 2.5 \mathrm{~mL}$) was added dropwise and the resulting solution was stirred at room temperature for 16 hours. Then, the mixture was diluted with water and the organic phase was washed twice with water and brine, dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt 95:5) to obtain the desired product 2a as a white solid ($705 \mathrm{mg}, 89 \%$ yield).

Spectroscopic data are in accordance with those reported in the literature. ${ }^{3}$

4.2 General procedure for the synthesis of oxime esters $2 \mathrm{~b}, \mathbf{2 d}-2 \mathrm{~h}, 2 \mathrm{q}-2 \mathrm{~s}$

Scheme S3
In a 50 mL round bottom flask equipped with a stirring bar, the corresponding carboxylic acid (1.0 equiv., 2.0 mmol) and benzophenone oxime (1.0 equiv., 2.0 mmol) were dissolved in DCM (20.0 mL). Then, 4 -dimethylaminopyridine (DMAP, 0.1 equiv., 0.2 mmol) and N -(3-Dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride (EDC, $5.0 \mathrm{mmol}, 2.5$ equiv.) were added, and the resulting solution was stirred at room temperature for 16 hours. The mixture was diluted with water, then, the organic layer was washed twice with water and brine, dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo.

Note: these crude mixtures can be purified by consecutive pentane washing/sonication operations ($3 \times 10 \mathrm{~mL}$ for 10 mmol scale). The obtained product can be used like that for the photocatalyzed transformation without great yield diminishing. However, in order to meet the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR quality standards for publication, chromatographic purifications were conducted during these investigations for the isolation of products $\mathbf{2}$.
 (trifluoromethyl)cyclopropane-1-carboxylic acid ($2.0 \mathrm{mmol}, 308 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 85:15) to obtain the product $\mathbf{2 b}$ as a white solid ($327 \mathrm{mg}, 49 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.30(\mathrm{~m}, 4 \mathrm{H})$, $1.43-1.37(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.28(\mathrm{~m}, 2 \mathrm{H})$. $123.9(\mathrm{q}, J=272.9 \mathrm{~Hz}), 26.0(\mathrm{q}, J=35.0 \mathrm{~Hz}), 13.4(\mathrm{q}, J=1.7 \mathrm{~Hz})$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+} 334.1049$, found 334.1043.

diphenylmethanone \boldsymbol{O}-((1r,3R,5S)-adamantane-1-carbonyl) oxime (2d)
Prepared according to the general procedure 4.2 using adamantane-1carboxylic acid ($2.0 \mathrm{mmol}, 360 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 88:12) to obtain the product $\mathbf{2 d}$ as a white solid ($452 \mathrm{mg}, 63 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.52-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 4 \mathrm{H})$, $1.98-1.89(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 6 \mathrm{H}), 1.64(\mathrm{q}, J=12.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.3,165.6,134.7,132.8,130.8,129.4,129.0,128.6,128.3,128.0$, 40.5, 38.5, 36.3, 27.8.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+} 360.1958$, found 360.1963 .

diphenylmethanone \boldsymbol{O}-cyclobutanecarbonyl oxime (2e)
Prepared according to the general procedure 4.2 using cyclobutanecarboxylic acid ($2.0 \mathrm{mmol}, 200 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the product $\mathbf{2 e}$ as a white solid ($542 \mathrm{mg}, 81 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.28(\mathrm{~m}, 4 \mathrm{H})$, 3.17 (p, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.05(\mathrm{~m}, 4 \mathrm{H}), 2.05-1.78(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C} \mathbf{N M R}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.9,165.0,134.8,132.6,130.8,129.5,129.0,128.7,128.3,128.1$, 36.9, 25.1, 18.5.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$280.1332, found 280.1339.

diphenylmethanone \boldsymbol{O}-cyclohexanecarbonyl oxime (2f)

Prepared according to the general procedure 4.2 using cyclohexanecarboxylic acid ($2.0 \mathrm{mmol}, 252 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the product $\mathbf{2 f}$ as a white solid ($502 \mathrm{mg}, 82 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 4 \mathrm{H})$, $2.37(\mathrm{tt}, J=11.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.79-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.38(\mathrm{~m}, 2 \mathrm{H})$, $1.28-1.23(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,164.8,134.4,132.3,130.4,129.1,128.5,128.2,127.9,127.7$, 41.5, 28.2, 25.2, 24.8.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+} 308.1645$, found 308.1653.
diphenylmethanone \boldsymbol{O}-(4,4-difluorocyclohexanecarbonyl) oxime (2 g)
Prepared according to the general procedure 4.2 using 4,4difluorocyclohexanecarboxylic acid ($2.0 \mathrm{mmol}, 328 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 95:5 to 92:8) to obtain the product $\mathbf{2 g}$ as a white solid (516 $\mathrm{mg}, 75 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 4 \mathrm{H})$, $2.48-2.37(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.59(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,165.6,134.1,132.3,130.8,129.4,128.7,128.2,128.1,128.0$, $122.2(\mathrm{t}, J=241.1 \mathrm{~Hz}), 39.0,31.9(\mathrm{t}, J=24.5 \mathrm{~Hz}), 24.4(\mathrm{t}, J=5.0 \mathrm{~Hz})$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{2} \mathrm{NO}_{2}{ }^{+} 344.1457$, found 344.1452.

diphenylmethanone O-tetrahydro-2H-pyran-4-carbonyl oxime (2h)
Prepared according to the general procedure 4.2 using tetrahydro- 2 H -pyran-4-carboxylic acid ($2.0 \mathrm{mmol}, 260 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the product 2 h as a white solid ($421 \mathrm{mg}, 68 \%$ yield).
${ }^{1}{ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.25(\mathrm{~m}, 4 \mathrm{H})$, $3.86(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.41(\mathrm{~m}, 1 \mathrm{H}), 1.76$ $-1.60(\mathrm{~m}, J=6.2,4 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.1,165.4,134.2,132.3,130.7,129.3,128.7,128.2,128.1,127.9$, 66.5, 38.7, 28.0.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+} 310.1438$, found 310.1447.

diphenylmethanone O-((1R,2R)-2-phenylcyclopropane-1-carbonyl) oxime (2i)

Prepared according to the general procedure 4.2 using ($1 S, 2 S$)-2-phenylcyclopropane-1-carboxylic acid ($2.0 \mathrm{mmol}, 324 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the product $2 \mathbf{i}$ as a white solid ($512 \mathrm{mg}, 75 \%$ yield).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.34(\mathrm{~m}, J=14.5,6.5,3.4 \mathrm{~Hz}$, $8 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 3 \mathrm{H}), 7.08(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{ddd}, J=9.3,6.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-$ $1.82(\mathrm{~m}, 1 \mathrm{H}), 1.66(\mathrm{dt}, J=9.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.38$ (ddd, $J=9.3,6.6,4.2 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.9,164.7,139.6,134.7,132.6,130.8,129.5,129.0,128.7,128.4$, 128.3, 128.2, 126.6, 126.2, 26.7, 22.7, 17.1.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+} 342.1489$, found 342.1492.

diphenylmethanone O-(2-methoxyacetyl) oxime (2j)
Prepared according to the general procedure 4.2 using methoxyacetic acid ($2.0 \mathrm{mmol}, 154 \mu \mathrm{~L}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 90:10 to 80:20) to obtain the product $\mathbf{2} \mathbf{j}$ as a white solid ($374 \mathrm{mg}, 70 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.26(\mathrm{~m}, 4 \mathrm{H})$, 4.12 ($\mathrm{s}, 2 \mathrm{H}$), 3.38 ($\mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.4,165.3,134.2,131.9,130.9,129.6,128.8,128.5,128.2,128.0$, 68.7, 59.2.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+} 270.1125$, found 270.1128 .

diphenylmethanone O-(2-(methylsulfonyl)acetyl) oxime (2k)
Prepared according to the general procedure 4.2 using methanesulfonylacetic acid ($2.0 \mathrm{mmol}, 276 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 95:5 to 80:20) to obtain the product $\mathbf{2 k}$ as a white solid ($258 \mathrm{mg}, 41 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.44-7.30$ $(\mathrm{m}, 4 \mathrm{H}), 4.01(\mathrm{~s}, 2 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.7,160.7,133.8,131.8,131.4,130.0,129.1,128.7,128.5,128.4$, 58.0, 41.5.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{4} \mathrm{~S}^{+} 318.0795$, found 318.0792.

diphenylmethanone O-(2-cyclopropylacetyl) oxime (21)
Prepared according to the general procedure 4.2 using 2-cyclopropylacetic acid ($2.0 \mathrm{mmol}, 186 \mu \mathrm{~L}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 90:10 to 80:20) to obtain the product $\mathbf{2 l}$ as a white solid ($446 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{dd}, J=7.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.39-7.30$ $(\mathrm{m}, 4 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~m}, 1 \mathrm{H}), 0.53-0.38(\mathrm{~m}, 2 \mathrm{H}), 0.11-0.04(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.5,165.0,134.7,132.7,130.9,129.5,129.0,128.7,128.3,128.1$, 38.3, 6.7, 4.5.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+} 280.1332$, found 280.2345.

diphenylmethanone O-(4,4,4-trifluorobutanoyl) oxime (2m) Prepared according to the general procedure 4.2 using 4,4,4trifluorobutanoic acid ($2.0 \mathrm{mmol}, 284 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the product $\mathbf{2 m}$ as a white solid ($508 \mathrm{mg}, 79 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.35(\mathrm{~m}, 4 \mathrm{H})$, $2.72-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.59-2.41(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.3,165.1,134.2,132.0,130.8,129.5,128.7,128.4,128.2$, $128.0,{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 126.1(\mathrm{q}, J=276.1 \mathrm{~Hz}), 28.7(\mathrm{q}, J=30.1 \mathrm{~Hz}), 25.6(\mathrm{q}, J=3.2$ Hz).

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+} 322.1049$, found 322.1055.

diphenylmethanone O-pentanoyl oxime (2n)

Prepared according to the general procedure 4.2 using pentanoic acid (2.0 mmol, $218 \mu \mathrm{~L}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 90:10) to obtain the product $\mathbf{2 n}$ as a white solid ($503 \mathrm{mg}, 90 \%$ yield).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.16(\mathrm{~m}, 4 \mathrm{H})$, $2.22(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.10(\mathrm{~m}, 2 \mathrm{H}), 0.77(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.4,164.2,134.3,132.1,130.3,129.0,128.4,128.2,127.9,127.7$, 32.1, 26.2, 21.6, 13.1.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+}$282.1489, found 282.1491.

diphenylmethanone O-cyclohex-1-ene-1-carbonyl oxime (2q)

Prepared according to the general procedure 4.2 using cyclohex-1-ene-1carboxylic acid ($2.0 \mathrm{mmol}, 252 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the product $\mathbf{2 q}$ as a white solid ($476 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 4 \mathrm{H})$, $6.77(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.07(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.46(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, CDCl_{3}) $\delta 164.7$, 164.6, 141.0, 134.8, 132.9, 130.7, 129.4, 129.0, 128.9, 128.7, 128.3, 25.8, 23.8, 21.9, 21.2.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}{ }^{+} 306.1489$, found 306.1496.

diphenylmethanone O-(5-(2,5-dimethylphenoxy)-2,2dimethylpentanoyl) oxime (2r)

Prepared according to the general procedure 4.2 using Gemfibrozil ($2.0 \mathrm{mmol}, 501 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the product $\mathbf{2 r}$ as a white solid ($507 \mathrm{mg}, 59 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.28(\mathrm{~m}, 2 \mathrm{H})$, $7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.47(\mathrm{~m}, 4 \mathrm{H}), 1.07(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.3,165.6,156.8,136.3,134.4,132.8,130.8,130.1,129.3,128.8$, $128.3,128.3,128.1,123.4,120.6,111.8,67.7,41.8,36.9,24.9,24.9,21.3,15.6$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NO}_{3}{ }^{+} 430.2377$, found 430.2389.

diphenylmethanone \boldsymbol{O}-(3-(4,5-diphenyloxazol-2-yl)propanoyl) oxime (2s)

Prepared according to the general procedure 4.2 using Oxaprozin ($2.0 \mathrm{mmol}, 587 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the product $2 \mathbf{s}$ as a white solid ($537 \mathrm{mg}, 57 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.67-7.54(\mathrm{~m}, 6 \mathrm{H}), 7.48-7.27(\mathrm{~m}, 14 \mathrm{H}), 3.18(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.5,165.0,161.3,145.3,135.0,134.5,132.3,130.8,129.5,128.9$, $128.8,128.6,128.5,128.5,128.4,128.3,128.3,128.1,128.0,127.8,126.3,29.9,23.1$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 473.1860$, found 473.1872.

4.3 General procedure for the synthesis of oxime esters 20 and $\mathbf{2 p}$

Scheme S4

In a 50 mL round bottom flask equipped with a magnetic stirring bar, the corresponding carboxylic acid (1.0 equiv., 4.0 mmol) was dissolved in $\mathrm{DCM}(20.0 \mathrm{~mL})$ and the reaction mixture was cooled at $0^{\circ} \mathrm{C}$. A drop of DMF and oxalyl chloride (1.3 equiv., 5.2 mmol) were added dropwise and the resulting mixture was stirred for 2 hours under N_{2}. After removal of oxalyl chloride under reduced pressure, $\mathrm{DCM},(20.0 \mathrm{~mL})$ and DMAP (0.1 equiv., 0.4 mmol) and EDC (2.5 equiv., 10.0 mmol) were added, and the resulting reaction mixture was stirred at room
temperature for 16 hours. The mixture was diluted with water, then, the organic layer was washed twice with water and brine, dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude mixture was purified by flash column chromatography to obtain the desired product 2.

1-(((diphenylmethylene)amino)oxy)-2-phenylethane-1,2-dione (20)

Prepared according to the general procedure 4.3 using phenylglyoxylic acid $(4.0 \mathrm{mmol}, 600 \mathrm{mg})$. The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 90:10) to obtain the product $\mathbf{2 o}$ as a white solid ($1.11 \mathrm{~g}, 85 \%$ yield).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{dd}, J=8.3,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.42(\mathrm{~m}, 9 \mathrm{H}), 7.41-7.36$ (m, 4H).
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 185.9,166.6,163.4,134.9,133.9,132.4,131.3,130.1,130.0,129.7$, 129.1, 128.9, 128.9, 128.4, 128.3.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{NO}_{3}{ }^{+} 330.1125$, found 330.1129 .

1-(((diphenylmethylene)amino)oxy)-2-mesitylethane-1,2-dione (2p)

Prepared according to the general procedure 4.3 using mesitylglyoxylic acid ($4.0 \mathrm{mmol}, 769 \mathrm{mg}$). The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to $92: 8$) to obtain the product $\mathbf{2 p}$ as a white solid ($1.07 \mathrm{~g}, 72 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 4 \mathrm{H})$, 6.86 (bs, 2H), 2.36 (s, 3H), 2.22 (s, 6H).
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 190.5,167.2,159.6,140.6,135.7,133.6,132.8,131.3,131.2,129.5$, $128.9,128.7,128.3,128.2,127.8,20.9,19.2$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+} 372.1594$, found 372.1590 .

4.4 Synthesis of oxime ester 2c

The oxime ester $\mathbf{2 c}$ was prepared modifying a general procedure described in the literature. ${ }^{4}$

Scheme $\mathbf{S 5}$

MeLi (2.0 equiv., $67.6 \mathrm{mmol}, 56 \mathrm{~mL}$ of a 1.2 M solution in diethyl ether) was added dropwise to a solution of 1,1-dibromo-2,2-bis(chloromethyl)cyclopropane (1.0 equiv., $38.0 \mathrm{mmol}, 10.0 \mathrm{~g}$) in diethyl ether (38.0 mL , freshly distilled over sodium) at $-30^{\circ} \mathrm{C}$ under stirring. This temperature
was kept for 15 additional minutes and further warmed to room temperature. The formation of a white precipitate indicated completion of the reaction (usually 1.5 h). The solvent and the volatile products were distilled from a $20^{\circ} \mathrm{C}$ bath into a three-neck RBF (Note 1: to have an effective distillation, the condenser liquid must be at $5^{\circ} \mathrm{C}$ or below) which was kept at $-78^{\circ} \mathrm{C}$ under inert atmosphere. To the obtained clear solution, tert-butylmagnesium chloride (12.0 mL of 2.0 M solution in diethyl ether) was added dropwise at $-40^{\circ} \mathrm{C}$ (dry ice/acetonitrile bath). The reaction was stirred for 5 days at room temperature under inert atmosphere. The resulting white suspension was bubbled with CO_{2} (from dry ice, dried with calcium chloride. Note 2: try to use new dry ice for better yielding. Note 3: be careful with overpressure in the system) for 2.5 h at $-40^{\circ} \mathrm{C}$ and 1 h at room temperature. Further, the resulting mixture was cooled to $0^{\circ} \mathrm{C}$. Aqueous $\mathrm{HCl}(25.0 \mathrm{~mL}$, 2.0 M) was added at this temperature. The organic phase was separated, and the aqueous layer was extracted with diethyl ether. Drying the combined organic layers with magnesium sulfate and evaporation of the solvent afforded carboxylic acid $\mathbf{2 c}$ ' as colorless needles. The product was used without further purification for next step.

The corresponding oxime ester $\mathbf{2 c}$ was achieved as a white solid following the general procedure 4.2 ($5.6 \mathrm{~g}, 42 \%$ overall yield).

diphenylmethanone \boldsymbol{O}-(3-(tert-butyl)bicyclo[1.1.1]pentane-1-carbonyl) oxime (2c)
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 7.69-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.43(\mathrm{~m}, 4 \mathrm{H})$, 7.42 - 7.32 (m, 4H), 1.81 (s, 6H), 0.85 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,165.2,134.5,132.2,130.6,129.4,128.8,128.7,128.1,127.7$, 48.5, 47.9, 34.2, 29.1, 25.5.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+} 348.1958$, found 348.1961.

5. Synthesis of acrylamide derivatives 1

The Michael acceptors $\mathbf{1}$ were prepared modifying general procedures described in the literature. ${ }^{5}$

5.1 Synthesis of 1c

Scheme S6

To a solution of N, O-dimethylhydroxyamine hydrochloride (1.2 equiv., $11.9 \mathrm{mmol}, 1.2 \mathrm{~g}$) and NaHCO_{3} (2.5 equiv., $24.8 \mathrm{mmol}, 2.1 \mathrm{~g}$) in $\mathrm{DCM}(8.0 \mathrm{~mL}$) was added acryloyl chloride (1.0 equiv., $9.9 \mathrm{mmol}, 0.8 \mathrm{~mL}$) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 h . The reaction
was quenched with 1 M aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layers were combined, dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The organic layer was combined, dried over $\mathrm{Na}_{2} \mathrm{SO} 4$, and concentrated under reduced pressure. The residue was purified by Kugelrohr distillation (15 Torr, $70^{\circ} \mathrm{C}$) to give 1 c as a colorless oil ($1.1 \mathrm{~g}, 95 \%$ yield).

Spectroscopic data are in accordance with those reported in the literature. ${ }^{6}$

5.2 General procedure for the synthesis of $1 \mathrm{~d}-1 \mathrm{~g}$

Scheme S7
In a 20 mL round bottom flask equipped with a magnetic stirring bar, the desired amine (1.0 equiv., 2.0 mmol) and $\mathrm{Et}_{3} \mathrm{~N}\left(1.2\right.$ equiv., 2.4 mmol) were dissolved in $\mathrm{DCM}(4.0 \mathrm{~mL})$. At $0^{\circ} \mathrm{C}$, acryloyl chloride (1.2 equiv., 2.4 mmol) was added dropwise and the reaction solution was stirred at room temperature for 16 hours. Then, the mixture was treated with aqueous $\mathrm{NaHCO}_{3}(5.0 \mathrm{~mL})$ and extracted with DCM (3 x 5 mL). The organic layer was washed with brine, dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo to obtain the product $\mathbf{1}$ without any further purification, unless otherwise specified.

1-(piperidin-1-yl)prop-2-en-1-one (1d)

Prepared according to the general procedure 5.2 using piperidine $(2.0 \mathrm{mmol}, 198$
$\mu \mathrm{L}$) as amine. The desired compound $\mathbf{1 d}(173 \mathrm{mg}, 63 \%$ yield) was obtained as a colourless oil after purification by flash column chromatography (Cyclohexane: AcOEt gradient from 80:20 to 60:40).

Spectroscopic data are in accordance with those reported in the literature. ${ }^{5 b}$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$-NEW) $\delta 6.53(\mathrm{dd}, J=16.8,10.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.18(\mathrm{dd}, J=16.8,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.59(\mathrm{dd}, J=10.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.33(\mathrm{~m}, 4 \mathrm{H}), 1.68-1.44(\mathrm{~m}, 6 \mathrm{H})$.

1-morpholinoprop-2-en-1-one (1e)

Prepared according to the general procedure 5.2 using morpholine ($2.0 \mathrm{mmol}, 173$ $\mu \mathrm{L})$ as amine. The desired compound $\mathbf{1 e}(244 \mathrm{mg}, 86 \%$ yield) was obtained as a
colourless oil after purification by flash column chromatography (Cyclohexane: AcOEt gradient from 80:20 to 60:40).

Spectroscopic data are in accordance with those reported in the literature. ${ }^{5 b}$
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$-NEW) $\delta 6.50(\mathrm{dd}, J=16.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=16.8,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.68(\mathrm{dd}, J=10.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.40(\mathrm{~m}, 8 \mathrm{H})$.

1-(3,4-dihydroisoquinolin-2(1H)-yl)prop-2-en-1-one (1f)
Prepared according to the general procedure 5.2 using 1,2,3,4tetrahydroisoquinoline ($2.0 \mathrm{mmol}, 251 \mu \mathrm{~L}$) as amine. The desired compound 1f $(236 \mathrm{mg}, 63 \%$ yield) was obtained as a colourless oil after purification by flash column chromatography (Cyclohexane: AcOEt gradient from 80:20 to 60:40).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25-7.07(\mathrm{~m}, 4 \mathrm{H}), 6.66(\mathrm{~m}, 1 \mathrm{H}), 6.34(\mathrm{dd}, J=16.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 5.73(\mathrm{dd}, J=10.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.76(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{t}$, $J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=12.4,5.9 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz, CDCl_{3}) $\delta 166.8,136.2,133.0,129.3,128.3,128.0,127.6,127.5,126.3,44.2$, 43.2, 29.2.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}^{+}$188.1070, found 188.1078.

1-(pyrrolidin-1-yl)prop-2-en-1-one (1g)

Prepared according to the general procedure 5.2 using pyrrolidine ($2.0 \mathrm{mmol}, 166$ $\mu \mathrm{L}$) as amine. The desired compound $\mathbf{1 g}$, a yellow oil, was obtained in pure form without any further purification ($250 \mathrm{mg}, 98 \%$ yield).

Spectroscopic data are in accordance with those reported in the literature. ${ }^{7}$
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.45(\mathrm{dd}, J=16.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, $5.65(\mathrm{dd}, J=9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{td}, J=6.9,2.9 \mathrm{~Hz}, 4 \mathrm{H}), 1.92(\mathrm{ddd}, J=19.1,13.2,6.9 \mathrm{~Hz}$, $4 \mathrm{H})$.

5.3 Synthesis of 11

Scheme S8

To a solution of acrylic acid (1.3 equiv., $13.0 \mathrm{mmol}, 870 \mu \mathrm{~L}$) and triethylamine (2.5 equiv., 25.0 mmol, 3.5 mL) in THF ($50.0 \mathrm{~mL}, 0.2 \mathrm{M}$) maintained at $0^{\circ} \mathrm{C}$, was added pivaloyl chloride (1.2 equiv., $12.0 \mathrm{mmol}, 1.5 \mathrm{~mL}$). The mixture was stirred for 1 h . Then lithium chloride (1.1 equiv.,
$11.0 \mathrm{mmol}, 466 \mathrm{mg}$) was added followed by (R)-4-isopropyl-2-oxazolidone (1.0 equiv., 10.0 $\mathrm{mmol}, 1.3 \mathrm{~g}$). The mixture was warmed to room temperature and stirred overnight. The reaction was quenched with aqueous ammonium chloride solution and extracted with AcOEt. The combined organic layers were dried with magnesium sulfate and evaporated under reduced pressure. The reaction crude was purified by flash column chromatography (cyclohexane: AcOEt $9: 1$) to give the desired product 11 in 58% yield.

Spectroscopic data are in accordance with those reported in the literature. ${ }^{8}$

(R)-3-acryloyl-4-isopropyloxazolidin-2-one (11)
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$-new) $\delta 7.51$ (dd, $J=17.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (dd, $J=$ $17.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=10.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dt}, J=7.5,3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.29 (dd, $J=16.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J=9.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dtd}, J=13.9$,
$6.9,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.93(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

5.4 Synthesis of Estrone analogue 1q

Scheme S9
In a 50 mL round bottom flask equipped with a magnetic bar, acrylic acid (1.0 equiv., 2.0 mmol , $137 \mu \mathrm{~L}$) and estrone (1.0 equiv., $2.0 \mathrm{mmol}, 513 \mathrm{mg}$) were dissolved in DCM (20.0 mL). Then, 4dimethylaminopyridine (DMAP, 0.1 equiv., $0.2 \mathrm{mmol}, 24.4 \mathrm{mg}$) and N, N^{\prime} dicyclohexylcarbodiimide (DCC, 1.25 equiv., $1.6 \mathrm{mmol}, 330 \mathrm{mg}$) were added, and the resulting solution was stirred at room temperature for 16 hours. The mixture was diluted with water, then, the organic layer was washed twice with water and brine, dried over anhydrous $\mathrm{Mg}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 95:5 to 80:20) to obtain the desired product $\mathbf{1 q}$ as a white solid ($255 \mathrm{mg}, 64 \%$ yield).

17-охо-7,8,9,11,12,13,14,15,16,17-decahydro-6H-

cyclopenta[a]phenanthren-2-yl acrylate (1q)

${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.85$ (m, 2H), $6.59(\mathrm{dd}, J=17.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=17.3,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{dd}, J=10.4,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=8.5,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-1.92(\mathrm{~m}, 7 \mathrm{H}), 1.71-1.39(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 223.1,164.8,148.5,138.0,137.4,132.4,128.0,126.4,121.5,118.7$, 50.4, 47.9, 44.2, 38.0, 35.8, 31.6, 29.4, 26.3, 25.8, 21.6.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{O}_{3}{ }^{+} 311.1642$, found 311.1646.

6. General procedure for the photo-flow synthesis of $\boldsymbol{\alpha}$-aminocarboxamides 3

Scheme S10
An oven-dried 5 mL glass vial was charged with catalyst $5 \mathrm{CzBN}(0.001 \mathrm{mmol})$, the corresponding Michael acceptor $\mathbf{1}$ (1.0 equiv., 0.1 mmol) and oxime ester $\mathbf{2}(1.5$ equiv., 0.15 mmol$)$. Then, 1.2 mL of acetone $(0.08 \mathrm{M})$ were added. The vial was sealed with a PTFE/rubber septum and the reaction mixture was deoxygenated by three freeze-pump-thaw cycles.

Simultaneously, the Vapourtec setup was purged with degassed acetone to ensure inert atmosphere conditions. Once the system was conditioned (approximately 5 minutes), the reaction mixture was pumped by pump A with a $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate (5 min residence time) and collected at the end of the reactor. The solvent was removed under reduced pressure and the crude mixture was purified by flash column chromatography to afford the corresponding product.

Note1: All the products were rapidly prepared in continuous flow line, by carrying out the described procedure above, with a washing purge of degassed acetone (1.0 mL) between the injection of each reaction mixture.

Note2: During the optimization part of the investigation, some tests were carried out under batch conditions (see Table S4). Thus, after deoxygenation by three freeze-pump-thaw cycles, the reaction vial was irradiated with 420 nm purple LED using a custom-made photoreactor setup (see Figure S2).

7. General procedure for the photo-flow synthesis of α-aminocarboxamides 4

Scheme S11
An oven-dried 5 mL glass vial was charged with catalyst $5 \mathrm{CzBN}(0.001 \mathrm{mmol})$, the corresponding Michael acceptor $\mathbf{1}$ (1.0 equiv., 0.1 mmol) and oxime ester 2 (1.5 equiv., 0.15 mmol). Then, 1.2 mL of $\mathrm{AcOiPr}(0.08 \mathrm{M})$ were added. The vial was sealed with a PTFE/rubber septum and the reaction mixture was deoxygenated by three freeze-pump-thaw cycles.

The Vapourtec setup was purged with degassed acetone to ensure inert atmosphere conditions. Once the system was conditioned (approximately 5 minutes), the reaction mixture was pumped by pump A with a $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate (5 min residence time). At the end of the photoreactor, the reaction mixture was fueled by a 2.0 M HCl aqueous solution $(1.2 \mathrm{~mL})$, simultaneously pumped (pump B) with a $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate, with a T mixer and passed through a second reactor coil (4 min residence time) with a total $2.00 \mathrm{~mL} / \mathrm{min}$ flow rate. A continuous extraction of the crude mixture was performed with the Zaiput liquid-liquid separator, allowing the independent collection of both, organic (containing benzophenone, catalyst, and potential side products) and aqueous phases. After concentration of this latter in vacuo at $60{ }^{\circ} \mathrm{C}$, the desired hydrochloride salt $\mathbf{4}$ was achieved in pure form, without any additional purification step.

8. Analytical data of products 3 and 4

2-((diphenylmethylene)amino)-N,N,4,4-tetramethylpentanamide (3aa)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $60: 40$) to obtain the product 3aa as a white solid ($30.3 \mathrm{mg}, 90 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{dd}, J=8.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.27$ $(\mathrm{m}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{dd}, J=7.0,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H})$, 1.95 (dd, $J=14.0,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.89(\mathrm{dd}, J=14.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 173.2,167.9,139.4,137.1,130.0,128.7,128.5,128.4,127.9,127.5$, 62.3, 47.2, 36.7, 36.0, 30.7, 29.8.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}^{+} 337.2274$, found 337.2271.

2-((diphenylmethylene)amino)-N,N-dimethyl-3-(1(trifluoromethyl)cyclopropyl)propenamide (3ab)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester 2b. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $30: 70$) to obtain the product $\mathbf{3 a b}$ as a white solid ($29.9 \mathrm{mg}, 77 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{dd}, J=7.6,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H})$, $2.36(\mathrm{dd}, J=14.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.08(\mathrm{dd}, J=14.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.02-0.93(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.81$ (m, 2H), $0.77-0.68(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,169.7,139.1,137.1,130.3,128.8,128.6,128.6,128.0,127.5$ $(\mathrm{q}, J=274.0 \mathrm{~Hz}), 127.4,60.5,36.4,36.4,35.9,20.0(\mathrm{q}, J=32.1 \mathrm{~Hz}), 9.1(\mathrm{dd}, J=5.1,2.5 \mathrm{~Hz})$, 8.6 (dd, $J=5.1,2.5 \mathrm{~Hz}$).

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} 389.1835$, found 389.1841.

2-(3-(tert-butyl)bicyclo[1.1.1]pentan-1-yl)-2-((diphenylmethylene)amino)- N, N dimethylacetamide (3ac)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester 2c. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $60: 40$) to obtain the product 3ac as a white solid $(31.1 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H} \mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 7.16(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.24$ (dd, $J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{dd}, J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}), 0.75(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.3,168.6,139.5,136.8,130.1,128.8,128.7,128.4,127.9,127.7$, $63.2,48.3,47.0,36.7,36.4,36.1,34.9,29.4,25.9$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}^{+} 389.2587$, found 389.2593.

3-((1r,3R,5S)-adamantan-1-yl)-2-((diphenylmethylene)amino)-N,N-dimethylpropanamide (3ad)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester 2d. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 95:5 to $80: 20$) to obtain the product 3ad as a white solid ($26.5 \mathrm{mg}, 64 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.30$ $(\mathrm{m}, 3 \mathrm{H}), 7.16(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{dd}, J=7.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H})$, $1.92-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.50(\mathrm{~m}, 9 \mathrm{H}), 1.48-1.32(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.4,167.7,139.5,137.3,130.0,128.8,128.6,128.5,127.9,127.6$, $60.5,48.3,42.7,37.0,36.7,36.1,32.9,28.6,26.9$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{28} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}^{+} 415.2744$, found 415.2773.

3-cyclobutyl-2-((diphenylmethylene)amino)- N, N-dimethylpropanamide (3ae)

Prepared according to the general procedure 6 starting from $N, N-$ dimethylacrylamide 1a and oxime ester 2e. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $60: 40$) to obtain the product 3ae as a white solid ($32.1 \mathrm{mg}, 96 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{dd}, J=6.9,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.14(\mathrm{dd}, J=7.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.25$ $(\mathrm{dq}, J=15.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-1.65(\mathrm{~m}, 6 \mathrm{H}), 1.51(\mathrm{dd}, J=17.8,8.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.5,168.7,139.5,136.8,130.1,128.7,128.5,128.5,127.9,127.7$, $63.6,41.3,36.8,36.1,33.2,28.4,28.1,18.5$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+} 335.2118$, found 335.2223.

3-cyclohexyl-2-((diphenylmethylene)amino)- N, N dimethylpropanamide (3af)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester $\mathbf{2 f}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3af as a white solid ($34.4 \mathrm{mg}, 95 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 3 \mathrm{H})$, $7.14(\mathrm{dd}, J=7.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.27(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.70(\mathrm{~m}$, $2 \mathrm{H}), 1.67-1.43(\mathrm{~m}, 5 \mathrm{H}), 1.32-1.05(\mathrm{~m}, 4 \mathrm{H}), 0.80(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.8,168.8,139.5,137.0,130.1,128.7,128.6,128.4,127.9,127.7$, 62.2, 41.7, 36.7, 36.1, 34.4, 33.7, 32.7, 26.5, 26.2, 26.0.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+} 363.2431$, found 363.2458.

3-(4,4-difluorocyclohexyl)-2-((diphenylmethylene)amino)- N, N-dimethylpropanamide (3ag)

95% yield).

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester $\mathbf{2 g}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $60: 40$) to obtain the product $\mathbf{3 a g}$ as a white solid $(37.9 \mathrm{mg}$,
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.14(\mathrm{dd}, J=7.0,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.53(\mathrm{~m}$, $9 \mathrm{H}), 1.39(\mathrm{~s}, 1 \mathrm{H}), 1.17(\mathrm{t}, J=11.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.2,169.2,139.2,136.7,130.3,128.8,128.7,128.6,128.0,127.5$, $123.6(\mathrm{dd}, J=242.0,239.4 \mathrm{~Hz}), 62.4,39.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 36.8,36.1,33.3(\mathrm{ddd}, J=25.4,22.6$, 8.0 Hz), 32.6, $28.8(\mathrm{dd}, J=37.6,9.5 \mathrm{~Hz})$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}^{+} 399.2242$, found 399.2273.

2-((diphenylmethylene)amino)- N, N-dimethyl-3-(tetrahydro-2H-pyran-4-yl)propenamide (3ah)

Prepared according to the general procedure 6 starting from $N, N-$ dimethylacrylamide 1a and oxime ester $\mathbf{2 h}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $10: 90$) to obtain the product $\mathbf{3 a h}$ as a white solid ($31.0 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.18-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{dd}, J=20.2,9.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.33(\mathrm{~m}, 3 \mathrm{H}), 1.26-1.10(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.4,169.2,139.2,136.7,130.3,128.7,128.7,128.5,128.0,127.5$, $67.9,61.7,41.1,36.8,36.1,33.2,32.6,31.8$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 365.2224$, found 365.2228.

2-((diphenylmethylene)amino)- N, N-dimethyl-3-(2-phenylcyclopropyl)propanamide

 (3ai/3ai`)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide $\mathbf{1 a}$ and oxime ester $\mathbf{2 i}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3ai as a white solid ($23.8 \mathrm{mg}, 60 \%$ yield, dr 1:1).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.28(\mathrm{~m}, 12 \mathrm{H}), 7.23-6.99(\mathrm{~m}, 10 \mathrm{H})$, 6.93 (dd, $J=7.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{dd}, J=7.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{~s}$, $3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 1.67-1.53(\mathrm{~m}, 4 \mathrm{H}), 0.95-0.71(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.2,172.2,169.0,169.0,143.3,143.3,139.4,139.3,136.8,136.8$, $130.2,130.0,128.7,128.5,128.1,127.9,127.6,127.5,125.5,125.4,65.0,64.5,39.3,39.2,36.8$, 36.1, 29.7, 29.7, 23.2, 23.1, 21.4, 20.8, 16.2, 15.7.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}^{+} 397.2274$, found 397.2279.

2-((diphenylmethylene)amino)-4-methoxy- N, N-dimethylbutanamide (3aj)

Abstract

Me, Prepared according to the general procedure 6 starting from N, N dimethylacrylamide $\mathbf{1 a}$ and oxime ester $\mathbf{2 j}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $20: 80$) to obtain the product 3aj as a white solid ($26.2 \mathrm{mg}, 77 \%$ yield).

${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.28$ (m, 3H), $7.15(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{dd}, J=7.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H})$, $3.23(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.27-2.08(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.4,169.6,139.4,137.0,130.2,128.7,128.5,128.5,127.9,127.6$, 69.4, 60.3, 58.4, 36.6, 35.9, 34.2.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 341.2224$, found 341.2265 .

2-((diphenylmethylene)amino)-N,N-dimethyl-4-(methylsulfonyl)butanamide (3ak)

Prepared according to the general procedure 6 starting from $N, N-$ dimethylacrylamide $\mathbf{1 a}$ and oxime ester $\mathbf{2 k}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $10: 90$) to obtain the product 3ak as a white solid ($29.8 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 3 \mathrm{H})$, 7.17 (dd, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.43(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.89$ (s, 3H), $2.71(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.23(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.1,171.0,138.8,136.3,130.7,129.0,128.8,128.7,128.1,127.3$, 60.8, 51.4, 40.7, 36.8, 36.0, 27.0.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 373.1580$, found 373.1596

4-cyclopropyl-2-((diphenylmethylene)amino)-N,N-dimethylbutanamide (3al)

Prepared according to the general procedure 6 starting from $N, N-$ dimethylacrylamide 1a and oxime ester $\mathbf{2 l}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $60: 40$) to obtain the product $\mathbf{3 a l}$ as a white solid ($31.2 \mathrm{mg}, 89 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.29(\mathrm{~m}, 3 \mathrm{H})$, $7.12(\mathrm{dd}, J=7.1,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-4.20(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H}), 2.71-2.47(\mathrm{~m}$, $2 \mathrm{H}), 2.22-2.04(\mathrm{~m}, 5 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 172.1,169.9,139.2,136.8,130.3,128.7,128.6,128.6,128.0,127.5$, 62.6, 39.7, 36.7, 35.9, 30.0, 27.8, 15.6.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+} 351.2431$, found 351.2444 .

2-((diphenylmethylene)amino)-6,6,6-trifluoro- N, N-dimethylhexanamide (3am)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester $\mathbf{2 m}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3am as a white solid (37.3 mg ,
95\% yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=7.4,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.14-$ $1.85(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.46(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,169.6,139.2,136.6,130.4,129.0(\mathrm{dd}, J=339.0,204.4 \mathrm{~Hz})$. $128.7,128.6,128.0,127.5,64.3,36.8,36.1,33.4(\mathrm{q}, ~ J=28.7 \mathrm{~Hz}), 33.1,18.9(\mathrm{~m})$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} 393.2148$, found 393.2149.

2-((diphenylmethylene)amino)- N, N-dimethylheptanamide (3an)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester 2n. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3an as a white solid (27.1 mg , 77% yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.41-7.28(\mathrm{~m}, 3 \mathrm{H})$, $7.14(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=7.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~s}, 3 \mathrm{H}), 2.01-$ $1.76(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.09(\mathrm{~m}, 6 \mathrm{H}), 0.84(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. $65.1,36.8,36.1,34.2,31.5,26.0,22.5,14.0$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}^{+} 353.2587$, found 353.2590.

2-((diphenylmethylene)amino)- $N, N, 2,4,4$-pentamethylpentanamide (3ba)

Prepared according to the general procedure 6 starting from 1b and oxime ester $\mathbf{2 a}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3ba as a white solid ($28.7 \mathrm{mg}, 82 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 7.61-7.56(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.29(\mathrm{~m}, 8 \mathrm{H}), 7.01(\mathrm{dd}, J=6.6,3.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}$, $3 \mathrm{H}), 1.07$ ($\mathrm{s}, 9 \mathrm{H}$).

```
'13C NMR (75 MHz, CDCl ) \delta 174.7, 141.2, 137.6, 130.1, 129.8, 128.3, 128.3, 128.0, 127.7, 67.8, 54.1, 38.7, 36.7, 31.9, 31.6, 27.2.
```

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+} 351.2431$, found 351.2439.

2-((diphenylmethylene)amino)- N-methoxy- $N, 4,4$-trimethylpentanamide (3ca)

Prepared according to the general procedure $\mathbf{6}$ starting from 1c and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $50: 50$) to obtain the product 3ca as a white solid ($30.0 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.18(\mathrm{dd}, J=8.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.42(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{bs}, 3 \mathrm{H}), 3.13(\mathrm{~s}, 3 \mathrm{H}), 2.08$ $(\mathrm{dd}, J=13.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=13.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 168.7,139.5,137.4,130.0,128.7,128.4,128.4,128.3,127.9,127.6$, 60.5, 46.5, 30.7, 29.8, 29.8, 28.8.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 353.2224$, found 353.2261.

3-cyclobutyl-2-((diphenylmethylene)amino)- N -methoxy- N -methylpropanamide (3ce)

Prepared according to the general procedure 6 starting from 1c and oxime ester 2e. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 50:50) to obtain the product 3ce as a white solid ($26.6 \mathrm{mg}, 76 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.39-7.28(\mathrm{~m}$, $3 \mathrm{H}), 7.19(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dt}, J=$ $14.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.13$ (dt, $J=14.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97-1.80(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.69$ (m, 2H), 1.49 (dt, $J=19.0,9.1 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.3,139.5,137.1,130.2,128.8,128.4,128.4,128.4,128.0,127.9$, 60.8, 40.7, 33.1, 28.2, 28.1, 28.0, 18.5.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 351.2067$, found 351.2068 .

3-(4,4-difluorocyclohexyl)-2-((diphenylmethylene)amino)- N -methoxy- N methylpropanamide (3cg)

Prepared according to the general procedure 6 starting from 1c and oxime ester $\mathbf{2 g}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 50:50) to obtain the product 3 cg as a white solid ($33.2 \mathrm{mg}, 80 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.66(\mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.31$ $(\mathrm{m}, 3 \mathrm{H}), 7.18(\mathrm{dd}, J=7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{~s}, 4 \mathrm{H}), 2.04-$ $1.93(\mathrm{~m}, 3 \mathrm{H}), 1.73-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.22-1.11(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.7,139.3,136.9,130.3,128.7,128.6,128.5,128.0,127.7,123.6$ $(\mathrm{t}, J=241.6, \mathrm{~Hz}), 60.9,39.3,33.3(\mathrm{ddd}, J=25.4,22.7,6.6 \mathrm{~Hz}), 32.5,32.5,28.8(\mathrm{dd}, J=29.5,9.2$ Hz), 28.70.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 415.2192$, found 415.2199 .

2-((diphenylmethylene)amino)-4,4-dimethyl-1-(piperidin-1-yl)pentan-1-one (3da)

Prepared according to the general procedure $\mathbf{6}$ starting from 1d and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3da as a white solid ($32.8 \mathrm{mg}, 87 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.27$ $(\mathrm{m}, 3 \mathrm{H}), 7.16(\mathrm{dd}, J=7.8,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.30(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.87$ $(\mathrm{m}, 2 \mathrm{H}), 1.63-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$.

[^0] 63.5, 47.5, 46.3, 43.4, 30.9, 29.9, 26.3, 25.6, 24.6.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}^{+} 377.2587$, found 377.2588.

2-((diphenylmethylene)amino)-4,4-dimethyl-1-morpholinopentan-1-one (3ea)

Prepared according to the general procedure 6 starting from 1e and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 20:80) to obtain the product 3ea as a white solid ($31.8 \mathrm{mg}, 84 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.28$ (m, 3H), $7.15(\mathrm{dd}, J=7.9,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{dd}, J=7.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.88-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.72$ $-3.40(\mathrm{~m}, 7 \mathrm{H}), 1.92(\mathrm{dd}, J=12.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.86(\mathrm{dd}, J=12.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.0,168.1,139.4,136.6,130.2,128.8,128.6,128.5,128.0,127.7$, 66.9, 66.7, 63.9, 47.5, 46.1, 42.7, 30.9, 29.9.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 379.2380$, found 379.2383 .

1-(3,4-dihydroisoquinolin-2(1H)-yl)-2-((diphenylmethylene)amino)-4,4-dimethylpentan-1one (3fa)

Prepared according to the general procedure $\mathbf{6}$ starting from $\mathbf{1 f}$ and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3fa as a white solid ($35.2 \mathrm{mg}, 83 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.05(\mathrm{~m}, 6 \mathrm{H})$, $4.80-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.44(\mathrm{dd}, J=12.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.04-2.55(\mathrm{~m}, 2 \mathrm{H})$, $2.10-1.86(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 172.5,168.2,137.6,136.8,130.0,128.7,128.6,128.5,128.3,128.0$, 127.9, 127.7, 127.5, 126.7, 126.3, 64.1, 47.5, 44.9, 42.8, 40.5, 29.9, 29.1.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}^{+} 425.2587$, found 425.2592.

2-((diphenylmethylene)amino)-4,4-dimethyl-1-(pyrrolidin-1-yl)pentan-1-one (3ga)

Prepared according to the general procedure $\mathbf{6}$ starting from $\mathbf{1 g}$ and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3ga as a white solid ($32.6 \mathrm{mg}, 90 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{dd}, J=7.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.39-7.28$ (m, 3H), 7.15 (dd, $J=7.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{dd}, J=8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.20$ (dt, $J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.77$ (dt, $J=9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.02(\mathrm{dd}, J=14.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{dd}$, $J=14.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.79-1.67(\mathrm{~m}, 4 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,168.1,139.4,137.6,130.0,128.7,128.5,128.4,127.9,127.4$, 63.1, 47.1, 46.0, 45.8, 30.8, 30.0, 26.1, 23.9.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+} 363.2431$, found 363.2436.

2-((diphenylmethylene)amino)- N -(2-hydroxyethyl)-4,4-dimethylpentanamide (3ia)

Prepared according to the general procedure $\mathbf{6}$ starting from $\mathbf{1 i}$ and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 10:90) to obtain the product 3ia as a white solid ($30.0 \mathrm{mg}, 85 \%$ yield).
${ }^{1}$ H NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.64$ (dd, $\left.J=7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.50-7.33$ (m, 6H), 7.12 (dd, $J=$ $7.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$), $6.86(\mathrm{bs}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=8.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.37$
(m, 2H), $3.06(\mathrm{bs}, 1 \mathrm{H}), 1.93(\mathrm{dd}, J=13.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{dd}, J=13.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.79(\mathrm{~s}$, 9 H).
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.3,169.3,139.5,135.7,130.5,129.1,128.9,128.7,128.2,127.8$, 65.3, 63.1, 49.2, 42.7, 30.9, 30.0.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 353.2224$, found 353.2272.

(R)-3-((R)-2-((diphenylmethylene)amino)-4,4-dimethylpentanoyl)-4-isopropyloxazolidin-2-one (3la)

Prepared according to the general procedure $\mathbf{6}$ starting from 11 and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain 3la/3la' as a white solid ($28.2 \mathrm{mg}, 67 \%$ yield, d.r. $=1: 1$).

Enantioselective reprotonation: the diastereomeric mixture of 3la/3la' ($28.2 \mathrm{mg}, 1$ equiv) was dissolved in dry THF and cooled to $-78^{\circ} \mathrm{C}$. A freshly prepared solution of LDA (1.2 equiv) in THF was added dropwise. After 30 minutes of stirring at the same temperature, the reaction was quenched with a saturated aqueous solution of ammonium chloride. Percolate of the resulting mixture with cold AcOEt through a short plug of silica gel conducted to the enantioenriched product 31a (27.1 mg , ee $>99: 1$). $[\alpha]_{\mathrm{D}}{ }^{26}=+20.4\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.28$ (m, 3H), $7.21(\mathrm{dd}, J=7.5,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dt}, J=8.0,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.27-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.06(\mathrm{dd}, J=13.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{dd}, J=13.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=$ $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 174.0,170.0,153.0,139.5,136.9,130.2,128.7,128.6,128.5,127.9$, $127.6,63.0,61.3,58.7,46.3,30.7,29.8,28.1,18.0,14.5$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 421.2486$, found 421.2491 .

2-((diphenylmethylene)amino)- N-methoxy- N-methyl-4-oxo-4-phenylbutanamide (3co)

Prepared according to the general procedure $\mathbf{6}$ starting from $\mathbf{1 c}$ and oxime ester 2o. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 50:50) to obtain the product 3co as a white solid ($31.2 \mathrm{mg}, 78 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{dd}, J=8.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=8.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.57$ $-7.22(\mathrm{~m}, 11 \mathrm{H}), 5.02(\mathrm{dd}, J=8.6,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=17.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.18$ (s, 3H), 3.08 (dd, $J=17.5,4.5 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.7,170.5,139.4,136.7,136.5,133.1,130.4,128.8,128.7,128.5$, 128.5, 128.4, 128.2, 128.0, 127.7, 60.8, 59.2, 41.9, 32.4.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+} 401.1860$, found 401.1862 .

2-((diphenylmethylene)amino)- N, N-dimethyl-4-oxo-4phenylbutanamide (3ao)

Prepared according to the general procedure 6 starting from $\mathrm{N}, \mathrm{N}-$ dimethylacrylamide 1a and oxime ester 20. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product $\mathbf{3 a o}$ as a white solid $(31.1 \mathrm{mg}, 81 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.98(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.28(\mathrm{~m}$, 9H), $7.23-7.18$ (m, 2H), 5.00 (dd, $J=8.4,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09$ (dd, $J=17.3,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16$ (dd, $J=17.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.76(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.9,171.5,170.0,139.2,136.7,136.5,133.1,130.4,128.9,128.8$, $128.8,128.5,128.2,128.0,127.4,59.3,43.0,36.8,36.1$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 385.1911$, found 385.1926

2-((diphenylmethylene)amino)-4-mesityl- N, N-dimethyl-4-oxobutanamide (3ap)

Prepared according to the general procedure 6 starting from $N, N-$ dimethylacrylamide 1a and oxime ester $\mathbf{2 p}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $60: 40$) to obtain the product 3ap as a white solid ($36.2 \mathrm{mg}, 85 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{dd}, J=8.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.21(\mathrm{dd}, J=$ $8.0,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92-6.73(\mathrm{~m}, 2 \mathrm{H}), 4.90(\mathrm{dd}, J=8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=18.7,8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.00-2.91(\mathrm{~m}, 4 \mathrm{H}), 2.83(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.9,171.3,170.0,139.0,138.3,136.5,132.9,130.4,130.0,128.9$, $128.8,128.7,128.4,128.0,127.3,58.4,48.8,36.8,36.2,21.0,19.0$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 427.2380$, found 427.2388 .

3-(cyclohex-1-en-1-yl)-2-((diphenylmethylene)amino)- N, N-dimethylpropanamide (3aq)

Prepared according to the general procedure 6 starting from N, N dimethylacrylamide 1a and oxime ester 2q. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to $60: 40$) to obtain the product $\mathbf{3 a q}$ as a white solid ($13.3 \mathrm{mg}, 37 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.65(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.52-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.28$ $(\mathrm{m}, 3 \mathrm{H}), 7.12(\mathrm{dd}, J=7.9,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{dd}, J=7.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.86(\mathrm{~s}, 3 \mathrm{H}), 2.79(\mathrm{~s}, 3 \mathrm{H}), 2.65-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.00(\mathrm{~m}, 8 \mathrm{H})$.
${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.1,169.9,139.2,136.8,132.4,130.3,130.0,128.7,128.6,128.5$, 128.0, 127.5, 62.6, 39.7, 36.7, 35.9, 30.0, 27.8.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}^{+} 361.2274$, found 361.2279.

methyl 2-((diphenylmethylene)amino)-4-oxo-4-phenylbutanoate (300)

Prepared according to the general procedure 6 starting from 10 and oxime ester 2o. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 95:5 to 80:20) to obtain the product 300 as a white solid ($19.3 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(\mathrm{dd}, J=8.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.61-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.42$ $(\mathrm{m}, 6 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 4.79(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.69$ (m, 4H).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.1,172.0,159.9,136.8,133.2,129.0,128.9,128.8,128.6,128.5$, 128.5, 128.3, 128.2, 128.0, 127.9, 61.7, 52.4, 42.2.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}_{3}{ }^{+} 372.1594$, found 372.1590.

(2S,3S)-3-(tert-butyl)-2-((diphenylmethylene)amino)cyclopentan-1-one (3na)

Prepared according to the general procedure $\mathbf{6}$ starting from 1n and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 95:5 to 80:20) to obtain the product 3na as a white solid ($23.3 \mathrm{mg}, 73 \%$ yield, anti:syn >99:1).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.55(\mathrm{~m}, 3 \mathrm{H}), 7.49-7.29(\mathrm{~m}, 11 \mathrm{H}), 3.75(\mathrm{~d}, J=11.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.52(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.8,170.3,140.0,136.6,130.0,128.9,128.8,128.3,128.1,128.1$, 72.7, 54.9, 37.0, 32.2, 27.8, 27.0.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NO}^{+} 320.2009$, found 320.2013 .

7-(2,5-dimethylphenoxy)-2-((diphenylmethylene)amino)- $N, N, 4,4$-tetramethylheptanamide (3ap)

Prepared according to the general procedure 6 starting from N, N-dimethylacrylamide $\mathbf{1 a}$ and oxime ester $\mathbf{2 p}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3ap as a white solid ($42.2 \mathrm{mg}, 87 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.37-7.27$ $(\mathrm{m}, 3 \mathrm{H}), 7.15(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ $(\mathrm{s}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=7.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}$, $3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{dd}, J=14.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{dd}, J=14.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}$, $2 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H})$.

[^1]HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 485.3163$, found 485.3174.

2-((diphenylmethylene)amino)-5-(4,5-diphenyloxazol-2-yl)-N,N-dimethylpentanamide

 (3aq)

Prepared according to the general procedure $\mathbf{6}$ starting from N, N dimethylacrylamide 1a and oxime ester $\mathbf{2 q}$. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 90:10 to 60:40) to obtain the product 3aq as a white solid ($49.1 \mathrm{mg}, 93 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{dd}, J=8.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-$ $7.19(\mathrm{~m}, 14 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.24$ - 1.63 (m, 6H).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.3,166.8,142.0,138.4,131.8,130.3,130.2,130.2,129.6,129.5$, 129.4, 129.4, 128.6, 128.4, 128.2, 128.1, 128.0, 127.9, 127.3, 127.1, 127.1, 49.5, 38.5, 37.9, 35.8, 28.0, 20.9 .

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} 528.2646$, found 528.2650.

1-(3-(4-amino-3-(4-phenoxyphenyl)-1 H -pyrazolo[3,4-d]pyrimidin-1-
yl)piperidin-1-yl)-2-((diphenylmethylene)amino)-4,4-dimethylpentan-1-one (3pa/3pa')

Prepared according to the general procedure $\mathbf{6}$ starting from $\mathbf{1 p}$ and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane: AcOEt gradient from 90:10 to 60:40) to obtain the product 3pa as a white solid ($54.9 \mathrm{mg}, 81 \%$ yield, dr 1:1).
${ }^{1}{ }^{1} \mathbf{H N R R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.34(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.72-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.58-7.45(\mathrm{~m}, 2 \mathrm{H})$, $7.44-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.23-7.03(\mathrm{~m}, 8 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 4.92-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.43(\mathrm{dd}, J=12.3$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.17-2.54(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.73(\mathrm{~m}, 4 \mathrm{H})$, 0.79 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.9,168.1,158.4,157.7,156.4,155.7,154.1,143.7,139.5,136.5$, $130.0,129.9,128.7,128.7,128.5,128.0,127.9,127.8,119.5,119.1,98.5,64.8,63.2,53.4,52.9$, 47.5, 30.9, 30.0, 29.8, 29.8.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{42} \mathrm{H}_{44} \mathrm{~N}_{7} \mathrm{O}_{2}{ }^{+} 678.3551$, found 678.3556 .

17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthren-2-yl ((diphenylmethylene)amino)-4,4-dimethylpentanoate (3qa)

Prepared according to the general procedure $\mathbf{6}$ starting from $\mathbf{1 q}$ and oxime ester 2a. The crude mixture was purified by flash column chromatography (Cyclohexane:AcOEt gradient from 95:5 to 80:20) to obtain the product 3qa as a white solid ($50.4 \mathrm{mg}, 92 \%$ yield, dr > 99:1).
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.31$ $(\mathrm{m}, 3 \mathrm{H}), 7.26(\mathrm{dd}, J=10.2,2.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.89-6.75(\mathrm{~m}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.87$ $(\mathrm{m}, 2 \mathrm{H}), 2.63-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.34-1.84(\mathrm{~m}, 7 \mathrm{H}), 1.69-1.41(\mathrm{~m}, 7 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 223.2,171.8,169.9,148.7,139.5,137.9,137.3,136.6,130.3,128.8$, $128.8,128.5,128.0,127.7,126.3,121.4,118.5,63.8,50.4,47.9,47.2,44.1,38.0,35.8,31.5,30.6$, 29.8, 29.4, 26.3, 25.7, 21.6.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}^{+} 548.3159$, found 548.3166.

1-(dimethylamino)-1-oxo-3-(1-(trifluoromethyl)cyclopropyl)propan-2-aminium chloride (4ab)

Prepared according to the general procedure 7 starting from N, N dimethylacrylamide 1a and oxime ester 2b. After continuous extraction of the crude mixture and concentration in vacuo of the aqueous phase, the desired product 4ab was obtained in pure form as a white solid $(20.6 \mathrm{mg}$, 79% yield), without any further purification step.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.56(\mathrm{dd}, J=9.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 2.84(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{dd}, J$ $=16.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{dd}, J=16.0,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.10-0.94(\mathrm{~m}, 2 \mathrm{H}), 0.73(\mathrm{~m}, 1 \mathrm{H}), 0.53(\mathrm{~m}$, $1 \mathrm{H})$.

[^2]HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}^{+}$225.1209, found 225.1215.

1-(3-(tert-butyl)bicyclo[1.1.1]pentan-1-yl)-2-(dimethylamino)-2-oxoethan-1-aminium chloride (4ac)

5 mmol scale: Prepared according to the general procedure 7 starting from N, N-dimethylacrylamide $\mathbf{1 a}(5.0 \mathrm{mmol})$ and oxime ester $\mathbf{2 c}(7.5 \mathrm{mmol})$. The Vapourtec device worked in continuous flow conditions for 9 hours (9 min total residence time). After continuous extraction of the crude mixture and concentration in vacuo of the aqueous phase, the desired product 4ac was obtained in pure form as a white solid ($1.2 \mathrm{~g}, 85 \%$ yield), without any further purification step.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.46(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.11(\mathrm{~d}, J=5.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}), 0.82(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 169.1,49.5,48.2,46.6,37.0,35.8,32.6,32.2,28.7,25.1$.
HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}$225.1961, found 225.1969.
 4,4-dimethyl-1-oxo-1-(phenylamino)pentan-2-aminium chloride (4ha)

Prepared according to the general procedure 7 starting from $\mathbf{1 h}$ and oxime ester 2a. After continuous extraction of the crude mixture and concentration in vacuo of the aqueous phase, the desired product 4ha was obtained in pure form as a white solid ($24.6 \mathrm{mg}, 96 \%$ yield), without any further purification step.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 7.49-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=8.9,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.09(\mathrm{dd}, J=14.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{dd}, J=14.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}$ C NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 169.1,135.7,129.3,126.4,122.0,52.0,44.4,29.3,28.5$.
HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}^{+}$221.1648, found 221.1640.

1-(3,5-dimethyl-1H-pyrazol-1-yl)-4,4-dimethyl-1-oxopentan-2aminium chloride (4ja)

Prepared according to the general procedure $\mathbf{7}$ starting from $\mathbf{1 j}$ and oxime ester 2a. After continuous extraction of the crude mixture and concentration in vacuo of the aqueous phase, the desired product $\mathbf{4 j a}$ was obtained in pure form as a white solid ($22.9 \mathrm{mg}, 88 \%$ yield), without any further purification step.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 6.33(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 2.05(\mathrm{dd}, J=15.0$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71(\mathrm{dd}, J=15.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 173.3,145.9,145.9,106.7,50.6,43.9,29.6,28.3,26.6,10.0$.
HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}$224.1757, found 224.1768.

1-(3,5-dimethyl-1H-pyrazol-1-yl)-3,4,4-trimethyl-1-oxopentan-2aminium chloride (4ka)

Prepared according to the general procedure $\mathbf{7}$ starting from $\mathbf{1 k}$ and oxime ester 2a. After continuous extraction of the crude mixture and concentration in vacuo of the aqueous phase, the desired product $\mathbf{4 k a}$ was obtained in pure form as a white solid ($17.2 \mathrm{mg}, 63 \%$ yield, $\mathrm{dr} 4: 1$), without any further purification step.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.24(\mathrm{bs}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{bs}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H})$, 0.96 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 173.4,145.9,145.8,106.7,54.8,43.0,32.4,26.8,26.6,10.0$.
HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}^{+}$238.1914, found 238.1918.

1-methoxy-1-oxo-3-(1-(trifluoromethyl)cyclopropyl)propan-2-aminium chloride (4ob)

Prepared according to the general procedure 7 starting from 10 and oxime ester $\mathbf{2 b}$. After continuous extraction of the crude mixture and concentration
in vacuo of the aqueous phase, the desired product 4ob was obtained in pure form as a white solid $(17.3 \mathrm{mg}, 70 \%$ yield), without any further purification step.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.42(\mathrm{dd}, J=8.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.44(\mathrm{dd}, J=15.9,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.17(\mathrm{dd}, J=15.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.27-1.13(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.69(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 170.1,126.9(\mathrm{q}, J=270.7 \mathrm{~Hz}), 53.7,51.5,32.2,18.7(\mathrm{q}, J=33.1$ $\mathrm{Hz}), 9.2(\mathrm{dd}, J=4.7,2.3 \mathrm{~Hz}), 8.3(\mathrm{dd}, J=4.8,2.5 \mathrm{~Hz})$.

HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{2}{ }^{+}$212.0893, found 212.0897.

4,5,5-trimethyl-2-oxohexan-3-aminium chloride (4ma)

Prepared according to the general procedure 7 starting from $\mathbf{1 m}$ and oxime ester 2a. After continuous extraction of the crude mixture and concentration in vacuo of the aqueous phase, the desired product $\mathbf{4 m a}$ was obtained in pure form as a white solid ($15.7 \mathrm{mg}, 81 \%$ yield), without any further purification step.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 4.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.99(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52$ $(\mathrm{dd}, J=15.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 206.8,56.9,30.0,28.3,25.6$.
HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{NO}^{+} 158.1539$, found 158.1546 .

(1S,2S)-2-(tert-butyl)-5-oxocyclopentan-1-aminium chloride (4na)

Prepared according to the general procedure 7 starting from 1n and oxime ester 2a. After continuous extraction of the crude mixture and concentration in vacuo of the aqueous phase, the desired product 4na was obtained in pure form as a white solid (15.9 $\mathrm{mg}, 83 \%$ yield, anti:syn $>99: 1$), without any further purification step.
${ }^{1} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 3.73(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.21(\mathrm{dd}, J=19.9$, $9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.08-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{dd}, J=19.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{D} 2 \mathrm{O}\right) \delta 215.2,58.2,50.5,34.2,31.1,26.5,20.0$.
HRMS (ESI) $\left[\mathrm{M}+\mathrm{H}^{+}\right]$calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}$224.1757, found 224.1768.

9. Mechanistic investigations

In the light of the experimental data obtained and drawing knowledge from previous reports, a plausible mechanism for the transformation in matter was proposed (Scheme S10a).

b) Crossed experiment

Scheme S12

Visible light excited $\mathbf{5 C z B N}\left(\mathrm{T}_{1}\right)\left(E_{\mathrm{T}}=2.68 \mathrm{eV}\right)$ sensitizes oxime ester $\mathbf{2}$ via EnT, leading to the homolytic cleavage of the $\mathrm{N}-\mathrm{O}$ bond. The latter is translated into the concomitant formation of both carboxyl- (I) and iminyl radical (II) intermediates. Unsurprisingly, the first one decomposes to the corresponding alkyl or acyl open-shell species upon carbon dioxide release. At this point, controlling the order in which both species might add to the expectant unsaturated carboxamide could result a major setback for the overall yield. In this case however, the high nucleophilic character of the alkyl/acyl radicals, joined to a delayed radical recombination (presumably due to a well-known persistent radical effect) between $\mathbf{1}$ and II, products $\mathbf{3}$ are generated with flawless regioselectivity.

A crossed functionalization experiment using $\mathbf{1 a}$ and a mixture of two different oxime esters ($\mathbf{2 h}$, $\mathbf{2 t}$) under the standard conditions, conducted to the four possible adducts, concluding that a concerted functionalization is unlikely. Interestingly, the decarboxylative homocoupling or even the iminyl radical homocoupling byproducts are practically suppressed using the described flow setup in comparison to batch conditions, where the yield of compounds $\mathbf{3}$ is strongly diminished by the formation of these.

9.1 Procedure for the crossed experiment

An oven-dried 5 mL glass vial was charged with catalyst 5 CzBN (0.001 mmol), $\mathrm{N}, \mathrm{N}-$ dimethylacrylamide $\mathbf{1 a}$ (1.0 equiv., $0.1 \mathrm{mmol}, 9.9 \mathrm{mg}$) and oxime esters $\mathbf{2 h}$ (1.0 equiv., 0.1 mmol , 30.9 mg) and $\mathbf{2 t}(1.0$ equiv., $0.1 \mathrm{mmol}, 31.1 \mathrm{mg})$. Then, 1.2 mL of acetone $(0.08 \mathrm{M})$ were added.

The vial was sealed with a PTFE/rubber septum and the reaction mixture was deoxygenated by three freeze-pump-thaw cycles.

Simultaneously, the Vapourtec setup was purged with degassed acetone to ensure inert atmosphere conditions. Once the system was conditioned (approximately 5 minutes), the reaction mixture was pumped by pump A with a $1.00 \mathrm{~mL} / \mathrm{min}$ flow rate (5 min residence time) and collected at the end of the reactor. The solvent was removed under reduced pressure.

The crude mixture was subjected to High-Resolution Mass Spectroscopy (HRMS), determining the presence of the four expected adducts.

Any attempt to isolate each adduct in pure form by flash column chromatography failed due to the high complexity of the crude mixture.

9.2 Stern-Volmer luminescence quenching studies

The Stern-Volmer plots displayed in Figure $\mathbf{S 3}$ show a linear correlation between the concentration of quencher $[\mathrm{Q}]$ and the ratio $\mathrm{I}_{0} / \mathrm{I}$ according to the equation:

$$
I_{0} I_{I}=K_{S V} \times[Q]+1
$$

Figure S3

The data plotted in the chart confirms the lack of interaction between the unsaturated carboxamide 1 (blue line) and the $\mathbf{5 C z B N}$. Additionally, it presents the telescoped possibility of oxime $\mathbf{2 a}$ (green line) quenching the triplet excited state of $\boldsymbol{* 5 C z B N}$. Therefore, it is concluded that the initial step should involve the photosensitization of 2a by populating its dark triple state through a TTET process by $\mathbf{* 5 C z B N}^{\mathbf{5}}$.

10. References

1. J. Lu, B. Pattengale, Q. Liu, S. Yang, W. Shi, S. Li, J. Huang, J. Zhang, J. Am. Chem. Soc. 2018, 140, 42, 13719-13725.
2. Z.-Q. Guo, H. Xu, X. Wang, Z.-Y. Wang, H.-Y. Li, B. Ma, H.-X. Dai, Chem. Commun. 2021, 57, 9716-9719.
3. V. K. Soni, S. Lee, J. Kang, Y. K. Moon, H. S. Hwang, Y. You, E. J. Cho, ACS Catal. 2019, 9, 10454-10463.
4. S. Pritz, M. Pätzel, G. Szeimies, M. Dathe, M. Bienert, Org. Biomol. Chem. 2007, 5, 1789-1794.
5. a) M. Saia, H. Kurouchi, Adv. Synth. Catal. 2021, 363, 3585-3591; b) Q. Liu, F.-P. Zhu, X.L. Jin, X.-J. Wang, H. Chen, L.-Z. Wu, Chem. Eur. J. 2015, 21, 10326-10329; c) D. Rozsar, M. Formica, K. Yamazaki, T. A. Hamlin, D. J. Dixon, J. Am. Chem. Soc. 2022, 144, 1006-1015.
6. O. Corminboeuf, P. Renaud, Org. Lett. 2002, 4, 1735-1738.
7. R. N. Shakhmaev, A. U. Ishbaeva, A. S. Sunagatullina, V. V. Zorin, Russ. J. Gen. Chem. 2011, 81, 1915-1917.
8. J. E. Beddow, S. G. Davies, K. B. Ling, P. M. Roberts, A. J. Russell, A. D. Smith, J. E. Thomson, Org. Biomol. Chem., 2007, 5, 2812-2825.

11．NMR Spectral Data

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 b}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 b}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 d}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

210	200	190	180	170	160	150	140	130	120	$\begin{gathered} 11(\mathrm{ppm}) \\ \mathrm{f}_{1} \end{gathered}$	100	90	80	70	60	50	40	30	20	10

[^3]
${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 c}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

ñon

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 c}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 e}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 e}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ NinninNiN

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 f}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 f}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 g}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 g}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 h}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 h}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 i}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

No

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 i}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\sim}{\sim}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 j}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

ஸ. N

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 j}$ ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 k}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\hat{8}}{\stackrel{\rightharpoonup}{1}}$
$\hat{0}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 k}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 l}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{m}{\infty} \underset{1}{\infty}$

${ }^{13} \mathrm{C}$ NMR of compound $2 \mathrm{l}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

R
NinNiNNNNNNNinininN

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 m}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 m}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

NN Ni=iniogo

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 n}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

```
#m, mNGO\sigmaNGN
```


${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 n}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 o}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 0}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 p}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^4]

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 q}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 q}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 r}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

	$\stackrel{\square}{6}$										
寺	-										

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 r}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{2 s}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
9010

$\stackrel{\text { ® }}{\stackrel{\sim}{\sim}}$

${ }^{13} \mathrm{C}$ NMR of compound $2 \mathrm{~s}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{1 q}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

∞	ก	Oオオ○オルへ
\＄	$\stackrel{(0)}{ }$	
\cdots	$\stackrel{\square}{1}$	ごアフ

210	200	190	180	170	160	150	140	130	120110	100	90	80	70	60	50	40	30	20

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{1 q}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a a}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a b}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

		1							1							1		1		
210	200	190	180	170	160	150	140	130	120	fl_{110}^{110}	100	90	80	70	60	50	40	30	20	10

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3} \mathbf{a b}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a d}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound 3ad $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\underset{i}{\text { K }}$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a c}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

N

${ }^{13} \mathrm{C}$ NMR of compound 3ac (75 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR of compound 3ae ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound 3ae $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a f}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound 3ag ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR of compound 3ah (300 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3} \mathbf{a h}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound 3ai/3ai' ${ }^{(300} \mathbf{M H z}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound 3ai/3ai' $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a j}$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a j}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound 3ak ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a k}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a l}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

กor	$\cdots \infty \times \sim \ldots$
NOi	mপপপg
\1	$\xrightarrow{2}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a l}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a m}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3} \mathbf{a m}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $3 \mathrm{an}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a n}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 b a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 c a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 c a}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound 3ce ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound $3 \mathrm{ce}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 c g}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 c g}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound 3da (300 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 d a}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 e} \mathbf{e}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 f a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 f a}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 g a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound 3ga $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound 3ia (300 MHz, CDCl_{3})

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 i a}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{1} \mathrm{H}$ NMR of compound 3la ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR of compound 3la (75 MHz, CDCl_{3})

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 c o}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3} \mathbf{c o}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a o}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a o}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a q}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a q}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 o o}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 o o}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $3 \mathrm{na}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 n a}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a p}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

```
| (l)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{3}{*}{\[
\begin{gathered}
\mathrm{m} \\
\mathrm{O}
\end{gathered}
\]}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
```


${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a p}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 a q}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{3 a q}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

\qquad

${ }^{1} \mathrm{H}^{2} \mathrm{NMR}$ of compound 3pa/3pa' $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR of compound 3pa/3pa' $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{3 q a}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

∞ ¢			
सio	¢ পiल	\cdots	
なっ	ナ－丁	ω	V－mmmmn

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 a b}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 a b}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 a c}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$
$\stackrel{\rightharpoonup}{\mathbf{0}}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 a c}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{1} \mathrm{H}$ NMR of compound 4ha ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$)

${ }^{13} \mathrm{C}$ NMR of compound $4 \mathrm{ha}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 j a}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$
$\varepsilon^{\prime} \varepsilon \angle I-$
$\stackrel{\substack{9 \\ \stackrel{y y}{4} \\ \stackrel{1}{1} \\ \hline}}{ }$
$\stackrel{\hat{8}}{\stackrel{\rightharpoonup}{1}}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 j a}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 k a}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

$\stackrel{\rightharpoonup}{8}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 k a}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 o b}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$
$\stackrel{-}{2}$

Nin
$\stackrel{m}{m} \underset{\sim}{\sigma} \underset{\sim}{\sigma} \underbrace{\infty}$

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 o b}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $\mathbf{4 m a}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$
∞
$\stackrel{\infty}{8}$
1

${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{4 m a}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{1} \mathrm{H}$ NMR of compound $4 \mathrm{na}\left(300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

ベ

${ }^{13} \mathrm{C}$ NMR of compound $4 \mathrm{na}\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

12. X-Ray Crystallographic Data of 3ag

A clear colourless, needle-like specimen of $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$, approximate dimensions 0.056 mm $\mathrm{x} 0.067 \mathrm{~mm} \times 0.217 \mathrm{~mm}$, was used for the X-ray crystallographic analysis. The X-ray intensity data were measured $(\lambda=0.71073 \AA)$.

Figure S4. X-Ray structure of 3ag
The total exposure time was 11.53 hours. The frames were integrated with the Bruker SAINT software package using a narrow-frame algorithm. The integration of the data using an orthorhombic unit cell yielded a total of 31693 reflections to a maximum θ angle of 25.34° ($0.83 \AA$ resolution), of which 3954 were independent (average redundancy 8.015 , completeness $\left.=99.2 \%, \mathrm{R}_{\text {int }}=8.15 \%, \mathrm{R}_{\text {sig }}=4.94 \%\right)$ and $2388(60.39 \%)$ were greater than $2 \sigma\left(\mathrm{~F}^{2}\right)$. The final cell constants of $\underline{a}=10.1227(17) \AA, \underline{b}=19.823(2) \AA, \underline{c}=21.730(5) \AA$, volume $=4360.4(14) \AA^{3}$, are based upon the refinement of the XYZ-centroids of 3428 reflections above $20 \sigma(\mathrm{I})$ with $6.053^{\circ}<$ $2 \theta<40.41^{\circ}$. Data were corrected for absorption effects using the Multi-Scan method (SADABS). The ratio of minimum to maximum apparent transmission was 0.924 . The calculated minimum and maximum transmission coefficients (based on crystal size) are 0.9820 and 0.9950 .

The structure was solved and refined using the Bruker SHELXTL Software Package, using the space group Pb c a, with $\mathrm{Z}=8$ for the formula unit, $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$. The final anisotropic fullmatrix least-squares refinement on F^{2} with 264 variables converged at $\mathrm{R} 1=5.04 \%$, for the observed data and $\mathrm{wR} 2=14.45 \%$ for all data. The goodness-of-fit was 1.042. The largest peak in the final difference electron density synthesis was $0.162 \mathrm{e}^{-} / \AA^{3}$ and the largest hole was $-0.172 \mathrm{e}^{-}$ $/ \AA^{3}$ with an RMS deviation of $0.042 \mathrm{e}^{-} / \AA^{3}$. On the basis of the final model, the calculated density was $1.214 \mathrm{~g} / \mathrm{cm}^{3}$ and $\mathrm{F}(000), 1696 \mathrm{e}^{-}$.

Table S7. Sample and crystal data

Identification code	03526
Chemical formula	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	$398.48 \mathrm{~g} / \mathrm{mol}$
Temperature	$250(2) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal size	$0.056 \times 0.067 \times 0.217 \mathrm{~mm}$
Crystal habit	clear colourless needle
Crystal system	orthorhombic

Space group	P b c a	
Unit cell dimensions	$\mathrm{a}=10.1227(17) \AA$	$\alpha=90^{\circ}$
	$\mathrm{b}=19.823(2) \AA$	$\beta=90^{\circ}$
Volume	$\mathrm{c}=21.730(5) \AA$	$\gamma=90^{\circ}$
Z	$4360.4(14) \AA^{3}$	
Density (calculated)	8	
Absorption coefficient	$1.214 \mathrm{~g}^{\circ} / \mathrm{cm}^{3}$	
$\mathrm{~F}(000)$	$0.086 \mathrm{~mm}^{-1}$	
	1696	

Table S8. Data collection and structure refinement

Theta range for data collection	3.48 to 25.34°
Index ranges	$-12<=\mathrm{h}<=12,-23<=\mathrm{k}<=18,-26<=1<=26$
Reflections collected	31693
Independent reflections	$3954[\mathrm{R}(\mathrm{int})=0.0815]$
Coverage of independent reflections	99.2\%
Absorption correction	Multi-Scan
Max. and min. transmission	0.9950 and 0.9820
Structure solution technique	direct methods
Structure solution program	XT, VERSION 2018/2
Refinement method	Full-matrix least-squares on F^{2}
Refinement program	SHELXL-2019/1 (Sheldrick, 2019)
Function minimized	$\Sigma \mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}$
Data / restraints / parameters	3954 / 0 / 264
Goodness-of-fit on F^{2}	1.042
Final R indices	$\begin{array}{ll} 2388 \text { data; } & \mathrm{R} 1=0.0504, \mathrm{wR} 2= \\ \mathrm{I}>2 \sigma(\mathrm{I}) & 0.1215 \end{array}$
	all data $\quad$$\mathrm{R} 1=0.1001, \mathrm{wR} 2=$ 0.1445
Weighting scheme	$\begin{aligned} & \mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0760 \mathrm{P})^{2}+0.0063 \mathrm{P}\right] \\ & \text { where } \mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3 \end{aligned}$
Largest diff. peak and hole	0.162 and -0.172 e^{-3}
R.M.S. deviation from mean	$0.042 \mathrm{e}^{-3}$

Table S9. Atomic coordinates and equivalent isotropic atomic displacement parameters (Å2)

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U (e q)}$
C1	$0.8779(2)$	$0.72949(12)$	$0.52228(11)$	$0.0513(6)$
C2	$0.8794(2)$	$0.77613(11)$	$0.57535(11)$	$0.0508(6)$

	\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$
C3	$0.8311(2)$	$0.74125(10)$	$0.63376(10)$	$0.0415(5)$
C4	$0.6971(2)$	$0.70725(9)$	$0.62486(9)$	$0.0330(5)$
C5	$0.6996(2)$	$0.66078(10)$	$0.56929(9)$	$0.0406(6)$
C6	$0.7485(2)$	$0.69583(12)$	$0.51108(10)$	$0.0513(6)$
C7	$0.6571(2)$	$0.66992(10)$	$0.68343(9)$	$0.0371(5)$
C8	$0.5098(2)$	$0.65635(10)$	$0.68980(9)$	$0.0365(5)$
C9	$0.4379(2)$	$0.72396(11)$	$0.69953(10)$	$0.0381(5)$
C10	$0.2526(3)$	$0.79810(13)$	$0.68108(13)$	$0.0676(8)$
C11	$0.2380(3)$	$0.67928(13)$	$0.64680(13)$	$0.0660(7)$
C12	$0.4684(2)$	$0.55160(10)$	$0.74083(10)$	$0.0367(5)$
C13	$0.4581(2)$	$0.51441(10)$	$0.68104(10)$	$0.0403(6)$
C14	$0.5689(2)$	$0.49556(11)$	$0.64851(12)$	$0.0522(7)$
C15	$0.5576(3)$	$0.46469(12)$	$0.59188(13)$	$0.0675(8)$
C16	$0.4357(4)$	$0.45147(13)$	$0.56789(14)$	$0.0744(9)$
C17	$0.3245(3)$	$0.46844(13)$	$0.59999(15)$	$0.0748(9)$
C18	$0.3355(3)$	$0.49970(12)$	$0.65649(13)$	$0.0600(7)$
C19	$0.4555(2)$	$0.51159(10)$	$0.79881(11)$	$0.0394(5)$
C20	$0.4419(3)$	$0.44207(11)$	$0.79779(12)$	$0.0564(7)$
C21	$0.4316(3)$	$0.40583(12)$	$0.85212(15)$	$0.0693(8)$
C22	$0.4342(3)$	$0.43804(13)$	$0.90781(13)$	$0.0629(7)$
C23	$0.4478(2)$	$0.50713(12)$	$0.90946(12)$	$0.0545(7)$
C24	$0.4594(2)$	$0.54344(10)$	$0.85577(11)$	$0.0431(6)$
F1	$0.91825(16)$	$0.76227(9)$	$0.46976(7)$	$0.0842(5)$
F3	$0.97435(14)$	$0.68064(7)$	$0.53083(7)$	$0.0691(5)$
N1	$0.31638(19)$	$0.73196(9)$	$0.67583(8)$	$0.0480(5)$
N2	$0.48882(18)$	$0.61531(8)$	$0.74564(8)$	$0.0384(4)$
O1	$0.49311(16)$	$0.76949(7)$	$0.72754(8)$	$0.0519(4)$
		0.0		

Table S10. Bond lengths (Å)

C1-F1	$1.375(2)$	C1-F3	$1.388(3)$
C1-C2	$1.478(3)$	C1-C6	$1.490(3)$
C2-C3	$1.526(3)$	C3-C4	$1.527(3)$
C4-C5	$1.519(3)$	C4-C7	$1.527(3)$
C5-C6	$1.526(3)$	C7-C8	$1.522(3)$
C8-N2	$1.476(2)$	C8-C9	$1.539(3)$
C9-O1	$1.224(2)$	C9-N1	$1.343(3)$
C10-N1	$1.466(3)$	C11-N1	$1.456(3)$
C12-N2	$1.284(2)$	C12-C19	$1.495(3)$
C12-C13	$1.498(3)$	C13-C14	$1.378(3)$
C13-C18	$1.381(3)$	C14-C15	$1.379(4)$
C15-C16	$1.364(4)$	C16-C17	$1.366(4)$
C17-C18	$1.380(4)$	C19-C20	$1.385(3)$

$\mathrm{C} 19-\mathrm{C} 24$	$1.390(3)$	$\mathrm{C} 20-\mathrm{C} 21$	$1.386(4)$
$\mathrm{C} 21-\mathrm{C} 22$	$1.369(4)$	$\mathrm{C} 22-\mathrm{C} 23$	$1.377(3)$
$\mathrm{C} 23-\mathrm{C} 24$	$1.376(3)$		

Table S11. Bond angles $\left(^{\circ}\right)$

F1-C1-F3	$103.40(18)$	F1-C1-C2	$110.41(19)$
F3-C1-C2	$108.95(19)$	F1-C1-C6	$109.71(19)$
F3-C1-C6	$109.2(2)$	C2-C1-C6	$114.6(2)$
C1-C2-C3	$111.23(17)$	C2-C3-C4	$112.30(17)$
C5-C4-C3	$110.71(17)$	C5-C4-C7	$111.91(16)$
C3-C4-C7	$110.12(17)$	C4-C5-C6	$112.85(17)$
C1-C6-C5	$110.71(19)$	C8-C7-C4	$114.91(17)$
N2-C8-C7	$108.23(16)$	N2-C8-C9	$107.40(16)$
C7-C8-C9	$108.77(16)$	O1-C9-N1	$121.5(2)$
O1-C9-C8	$119.6(2)$	N1-C9-C8	$118.9(2)$
N2-C12-C19	$117.86(19)$	N2-C12-C13	$124.48(19)$
C19-C12-C13	$117.65(17)$	C14-C13-C18	$118.4(2)$
C14-C13-C12	$121.4(2)$	C18-C13-C12	$120.1(2)$
C13-C14-C15	$120.7(2)$	C16-C15-C14	$120.1(3)$
C15-C16-C17	$120.2(3)$	C16-C17-C18	$119.9(3)$
C17-C18-C13	$120.7(2)$	C20-C19-C24	$118.0(2)$
C20-C19-C12	$121.5(2)$	C24-C19-C12	$120.48(18)$
C19-C20-C21	$120.6(2)$	C22-C21-C20	$120.7(2)$
C21-C22-C23	$119.3(2)$	C24-C23-C22	$120.4(2)$
C23-C24-C19	$121.0(2)$	C9-N1-C11	$125.51(19)$
C9-N1-C10	$118.6(2)$	C11-N1-C10	$115.8(2)$
C12-N2-C8	$119.88(18)$		

Table S12. Torsion angles (${ }^{\circ}$)

F1-C1-C2-C3	$178.36(18)$	F3-C1-C2-C3	$-68.7(2)$
C6-C1-C2-C3	$53.9(3)$	C1-C2-C3-C4	$-52.8(3)$
C2-C3-C4-C5	$52.6(2)$	C2-C3-C4-C7	$176.86(17)$
C3-C4-C5-C6	$-52.8(2)$	C7-C4-C5-C6	-
			$176.03(18)$
F1-C1-C6-C5	-	F3-C1-C6-C5	$69.0(2)$
C2-C1-C6-C5	$-53.5(3)$	C4-C5-C6-C1	$52.6(3)$
C5-C4-C7-C8	$-77.9(2)$	C3-C4-C7-C8	$158.47(17)$
C4-C7-C8-N2	$175.33(15)$	C4-C7-C8-C9	$-68.3(2)$
N2-C8-C9-O1	$84.1(2)$	C7-C8-C9-O1	$-32.8(3)$
N2-C8-C9-N1	$-97.2(2)$	C7-C8-C9-N1	$145.92(18)$
N2-C12-C13-	$80.4(3)$	C19-C12-C13-	$-99.0(2)$
C14	C14		
N2-C12-C13-	$-98.0(3)$	C19-C12-C13-	$82.6(3)$
C18	C18		

$\begin{aligned} & \mathrm{C} 18-\mathrm{C} 13-\mathrm{C} 14- \\ & \mathrm{C} 15 \end{aligned}$	2.1(3)	$\begin{aligned} & \text { C12-C13-C14- } \\ & \text { C15 } \end{aligned}$	-176.3(2)
$\begin{aligned} & \text { C13-C14-C15- } \\ & \text { C16 } \end{aligned}$	-1.1(4)	$\begin{aligned} & \text { C14-C15-C16- } \\ & \text { C17 } \end{aligned}$	-0.3(4)
$\begin{aligned} & \text { C15-C16-C17- } \\ & \text { C18 } \end{aligned}$	0.7(4)	$\begin{aligned} & \text { C16-C17-C18- } \\ & \text { C13 } \end{aligned}$	0.3(4)
$\begin{aligned} & \text { C14-C13-C18- } \\ & \text { C17 } \end{aligned}$	-1.7(4)	$\begin{aligned} & \text { C12-C13-C18- } \\ & \text { C17 } \end{aligned}$	176.8(2)
$\begin{aligned} & \text { N2-C12-C19- } \\ & \text { C20 } \end{aligned}$	-175.8(2)	$\begin{aligned} & \text { C13-C12-C19- } \\ & \text { C20 } \end{aligned}$	3.6(3)
$\begin{aligned} & \text { N2-C12-C19- } \\ & \text { C24 } \end{aligned}$	3.0(3)	$\begin{aligned} & \text { C13-C12-C19- } \\ & \text { C24 } \end{aligned}$	$177.64(19)$
$\begin{aligned} & \text { C24-C19-C20- } \\ & \text { C21 } \end{aligned}$	0.5(4)	$\begin{aligned} & \text { C12-C19-C20- } \\ & \text { C21 } \end{aligned}$	179.2(2)
$\begin{aligned} & \mathrm{C} 19-\mathrm{C} 20-\mathrm{C} 21- \\ & \mathrm{C} 22 \end{aligned}$	0.2(4)	$\begin{aligned} & \text { C20-C21-C22- } \\ & \text { C23 } \end{aligned}$	-0.3(4)
$\begin{aligned} & \mathrm{C} 21-\mathrm{C} 22-\mathrm{C} 23- \\ & \mathrm{C} 24 \end{aligned}$	-0.3(4)	$\begin{aligned} & \text { C22-C23-C24- } \\ & \text { C19 } \end{aligned}$	1.0(4)
$\begin{aligned} & \mathrm{C} 20-\mathrm{C} 19-\mathrm{C} 24- \\ & \mathrm{C} 23 \end{aligned}$	-1.1(3)	$\begin{aligned} & \text { C12-C19-C24- } \\ & \text { C23 } \end{aligned}$	-179.9(2)
O1-C9-N1-C11	-174.1(2)	C8-C9-N1-C11	7.2(3)
O1-C9-N1-C10	3.4(3)	C8-C9-N1-C10	-175.31(18)
$\begin{aligned} & \text { C19-C12-N2- } \\ & \text { C8 } \end{aligned}$	176.56(17)	$\begin{aligned} & \mathrm{C} 13-\mathrm{C} 12-\mathrm{N} 2- \\ & \mathrm{C} 8 \end{aligned}$	-2.8(3)
C7-C8-N2-C12	-101.8(2)	C9-C8-N2-C12	141.0(2)

Table S13. Anisotropic atomic displacement parameters (Å2)
The anisotropic atomic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+\ldots+2 h k\right.$ $a^{*} b^{*} U_{12}$]

U_{11}	\mathbf{U}_{22}	$\mathbf{U 3 3}^{3}$	\mathbf{U}_{23}	U_{13}	\mathbf{U}_{12}	
C1	0.0399(14)	.0736(15)	.0404(1	. 01	0.0049(11)	$\overline{0.0013(13)}$
C2	0.04	.0503(13)	0.0618(17)	0.0100(12))	
C3	0.0	(12)	(13)			$\overline{0.0073(10)}$
C4	0.0331	,	0318(12)	0.0023(9)	-0.0002(9)	0.0020 (9)
C5	0.0373(13)	0499(12)	.0345(13)			$0.0046(10)$
C6	0.0441(15)	0764(15)	.0335(13)			$0.0051(12)$
C7	0.0385(13)	$0.0403(11)$	$0.0326(12)$	0.0035(9)	$0.0005(10)$	$)^{0.0015(9)}$
C8	0.0411(14)	0.0384(11)	0.0299 (12)	0.0012(9)	0.0003(9)	-0.0044(9)
C9	0.0382(13)	0.0442(13)	0.0319(12)	0.0082(10)	0.0095(10)	$0.0016(11)$
C10	$0.0555(18)$	0.0712(16)	0.076(2)	0.0289(14)	0.0111(15)	0.0210(14)

\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}	
	0.0469(16)	0.0898(18)	.0613(1	0.0143(1		$0.0124(14)$
	0313	0.0354(12)	0433(1)	$0.0015(10)$	0.0	9)
	0.0395(14)	.0340(75	$0.0037(10)$		$0.0037(10)$
	0466	0.0498(13)	0602	$0.0154(12)$		$0.0025(11)$
	0.072(2)	0.0613(16)	0.069(2)	$0.0235(14)$	$0.0209(16$	$\overline{0.0088(14)}$
	.102(3)	0.0604(16)	0608(19)			$0.0100(17)$
	0.068(2)	0.0702(18)	.086(2)	$0.0215(16$	$0.0243(1$	$\overline{-} 0.0069(15)$
	0426(15)	0.0608(15)	0767(19)		$0.0017(1$	$0.0057(12)$
	. 0355	0.0334 (. 0494	0.0028(10)	0.0097	0.0009(9)
C20	.0685(18)	0.0381(13)	.0625(17)	${ }_{0.0020(12)}^{-}$	$0.0174(14)$	$\overline{-}$
	0.090(2)	$0.0327(13)$	0.085(2)	$0.0128(15)$	0.0214	$0.0008(13)$
	0.0702(19)) $0.0542(16$	0.0643(19)	$0.0223(14)$	$0.0144(14)$	$0.0098(13)$
C2	0.0661(18)) $0.0506(15)$	0.0469(1)	0.0107(12)	0.0019(12)	$0.0069(12)$
	0.0452(14)	0.0363(12)	$0.0479(15)$	$0.0056(11)$	$0.0039(1$	0.0040 (10)
F1	0.0617(11) $0.1383(14)$	0.0525(9)	0.0328(9)	0.0123(8)	-0.0233(9)
F3	0.0453(9)	$0.0932(10$	0.0687(11)	-0.0057(8)	0.0093(7)	0.0143(8)
N1	0.0393(12)) $0.0566(11$	$0.0483(12)$) $0.0149(9)$	$0.0010(10)$	0.0008(9)
N2	0.0423(11)	$0.0386(10)$	$0.0342(1$	0.0030(8)	0.0062(8)	-0.0032(8)
O1	0.0551(11)) $0.0417(9)$	0.0588(11)	-0.0070(8)	0.0005(9)	0.0010(8)

Table S14. Hydrogen atomic coordinates and isotropic atomic displacement parameters (Å2)

x/a	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$	
H2A	0.8226	0.8150	0.5665	0.061000
H2B	0.9695	0.7928	0.5818	0.061000
H3A	0.8242	0.7746	0.6669	0.050000
H3B	0.8960	0.7073	0.6463	0.050000
H4	0.6308	0.7429	0.6171	0.040000
H5A	0.6103	0.6434	0.5620	0.049000
H5B	0.7571	0.6222	0.5782	0.049000
H6A	0.7581	0.6626	0.4780	0.062000
H6B	0.6834	0.7295	0.4979	0.062000
H7A	0.7040	0.6267	0.6847	0.045000

\mathbf{x} / \mathbf{a}	\mathbf{y} / \mathbf{b}	\mathbf{z} / \mathbf{c}	$\mathbf{U}(\mathbf{e q})$	
H7B	0.6863	0.6964	0.7190	0.045000
H8	0.4753	0.6328	0.6529	0.044000
H10A	0.1731	0.7940	0.7057	0.101000
H10B	0.2298	0.8145	0.6404	0.101000
H10C	0.3128	0.8296	0.7006	0.101000
H11A	0.1531	0.6759	0.6673	0.099000
H11B	0.2841	0.6365	0.6500	0.099000
H11C	0.2244	0.6903	0.6038	0.099000
H14	0.6531	0.5038	0.6651	0.063000
H15	0.6339	0.4528	0.5698	0.081000
H16	0.4283	0.4306	0.5292	0.089000
H17	0.2407	0.4588	0.5836	0.090000
H18	0.2588	0.5111	0.6785	0.072000
H20	0.4397	0.4193	0.7599	0.068000
H21	0.4227	0.3587	0.8507	0.083000
H22	0.4267	0.4133	0.9445	0.075000
H23	0.4493	0.5296	0.9475	0.065000
H24	0.4700	0.5905	0.8576	0.052000

Table 15. Hydrogen bond distances (\AA) and angles (${ }^{\circ}$)

Donor-H	Acceptor- \mathbf{H}	Donor- Acceptor	Angle	
C10-	0.97	2.38	$3.342(3) 171.5$	
H10A O1\#1				

Symmetry transformations used to generate equivalent atoms:
\#1 $\mathrm{x}-1 / 2, \mathrm{y},-\mathrm{z}+3 / 2$

[^0]: ${ }^{13} \mathbf{C}$ NMR (75 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 171.5,167.6,139.6,136.9,130.0,128.7,128.6,128.4,127.9,127.7$,

[^1]: ${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.2,168.0,157.1,139.4,137.0136 .4,130.2,130.1,128.7,128.6$, $128.5,127.9,127.6,123.5,120.5,112.0,68.6,62.3,45.3,39.0,36.8,36.1,33.1,27.4,27.4,24.2$, 21.4, 15.8.

[^2]: ${ }^{13}$ C NMR $\left(75 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 168.7,118.9(\mathrm{q}, J=271.4 \mathrm{~Hz}), 49.0,36.9,35.8,32.5,18.51(\mathrm{dd}, J=$ $60.3,27.3 \mathrm{~Hz}), 9.2(\mathrm{dd}, J=4.9,2.9 \mathrm{~Hz}), 7.8(\mathrm{dd}, J=4.9,2.9 \mathrm{~Hz})$.

[^3]: ${ }^{13} \mathrm{C}$ NMR of compound $\mathbf{2 d}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^4]: ${ }^{13}$ C NMR of compound $\mathbf{2 p}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^5]: ${ }^{13} \mathrm{C}$ NMR of compound 3ba ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

