Sustainable Approach to Synthesis Phosphonated Chitosan Using Ball Milling and Its Application for Oilfield Scale Management

Mohamed F. Mady^{a,b*}, Eirik Haukereid^a, Safwat Abdel-Azeim^c, Ibnelwaleed A. Hussein^{d,e}, and Malcolm A. Kelland^a

^aDepartment of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway.

^bDepartment of Green Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.

^cCenter of Integrative Petroleum Research (CIPR), College of Petroleum and Geosciences (CPG), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.

^dGas Processing Center, College of Engineering, P.O. Box 2713, Qatar University, Doha, Qatar. ^eDepartment of Chemical Engineering, College of Engineering, P.O. Box 2713, Qatar University, Doha, Qatar.

Contents:

Figure S1. Schematic diagram of NMR spectra of the PCH under ball-milling	S2
conditions: (a) ¹ H NMR spectrum of PCH and zoom in on a spectral region	
coreesponded to $-C\underline{H}_2$ -PO ₃ H ₂ and (b) ³¹ P NMR spectrum of PCH .	
Figure S2. Schematic diagram of FTIR spectra of the PCH.	S3
Figure S3. The optimized structures of ATMP in conformation I, in which the two	S3
phosphonates are bi-chelating Ca ²⁺ . Key bond lengths are shown in Å, and the	
atomic color code is presented.	
Table S1. Elemental analysis of CH and PCH and the substitution degree of PCH.	S4
Table S2. Calcium tolerance tests at 30000 ppm (3 wt%) NaCl for PCH	S4
The ratio of the molecular weight of the PCH to CH.	S4-S5

Figure S1. Schematic diagram of NMR spectra of the **PCH** under ball-milling conditions: (a) ¹H NMR spectrum of **PCH** and zoom in on a spectral region corresponded to $-C\underline{H}_2$ -PO₃H₂ and (b) ³¹P NMR spectrum of **PCH**.

Figure S2. Schematic diagram of FTIR spectra of the PCH.

Figure S3. The optimized structures of **ATMP** in conformation I, in which the two phosphonates are bi-chelating Ca^{2+} . Key bond lengths are shown in Å, and the atomic color code is presented.

Table S1. Elemental analysis and substitution degree of CH and PCH.

	С	Ν	Н	C/N	DS
СН	40.46	7.28	7.4	6.48	
PCH	23.16	3.63	4.96	7.438	0.956

Table S2. Calcium tolerance tests at 30000 ppm (3 wt%) NaCl for PCH.

	Ca ²⁺	SI	Appearance				
SI	dose	dose	after	30	1 hour	1 hours	24 hours
	(ppm)	(ppm)	mixing	minutes	1 Hour	4 110015	24 nours
РСН	100	100	clear	clear	clear	clear	clear
		1000	clear	clear	clear	clear	clear
		10000	clear	clear	clear	clear	clear
		50000	clear	clear	clear	clear	clear
	1000	100	clear	clear	clear	clear	clear
		1000	clear	clear	clear	clear	clear
		10000	clear	clear	clear	clear	clear
		50000	clear	clear	clear	clear	clear
	10000	100	clear	clear	clear	clear	clear
		1000	clear	clear	clear	clear	clear
		10000	clear	clear	clear	clear	clear
		50000	clear	clear	clear	clear	clear

The ratio of the molecular weight of the PCH to CH:

The molecular weight of the chitosan and phosphonated chitosan was determined using the Mark– Houwink–Sakurada equation.^{1,2}

$$[\eta] = kMv^a \tag{1}$$

Where

 $[\eta] = intrinsic viscosity, cm^3/g$

 M_v = the viscosity-average molecular weight, g/mol

k and a = The Mark-Houwink* constants for a given solute-solvent system

the values of the constants a (0.74) and k (0.00181 cm³/g) and were found in the literature for 0.1 m acetic acid /0.2 m nacl 0.2 mol/l (medium 2) at 25 °c ³.

Intrinsic viscosity is defined as:

$$[\eta] = \lim_{c \to 0} \frac{\eta_{sp}}{c} \tag{2}$$

 η_{sp} = the specific viscosity

c = the concentration

$$\eta_{\rm sp} = \frac{\eta - \eta_o}{\eta_o} = \eta_r - 1 \tag{3}$$

$$\eta_{\rm r} = \frac{\eta}{\eta_{\rm o}} \tag{4}$$

where

$$\eta_{sp}$$
 = the specific viscosity

 η_r = the relative viscosity

 η = the solution viscosity

 η_o = the viscosity of the pure solvent

The ratio of the intrinsic viscosity of the phosphonated chitosan to the intrinsic viscosity of the chitosan is found to be 0.74. Moreover, the ratio of the molecular weight of the phosphonated chitosan to the chitosan is 0.67.

Refernces

2R. Houwink, Journal für praktische Chemie, 1940, 157, 15-18.

3C. N. Costa, V. G. Teixeira, M. C. Delpech, J. V. S. Souza and M. A. S. Costa, *Carbohydrate Polymers*, 2015, **133**, 245–250.

¹H. Mark, Hirzel, Leipzig, 1938, 103, 391–456.