Supporting Information

Targeted-regulating the selectivity of cascade synthesis towards imines/secondary amines by carbon-coated Co-based catalysts

Songtao Huang, ‡ª Zijiang Zhao, ‡ª Zhongzhe Wei, *a, b Mingxuan Wang, a Yi Chen, a

Xiaosa Wang,^a Fangjun Shao,^a Xing Zhong,^a Xiaonian Li ^a and Jianguo Wang ^{*a}

^aInstitute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University

of Technology, Hangzhou 310032, P. R. China.

^bSINOPEC Ningbo New Materials Research Institute Company Limited, Ningbo 315207, Zhejiang, China.

*Corresponding Authors.

E-mail: weizhzhe@zjut.edu.cn, jgw@zjut.edu.cn

[‡]These authors have contributed equally.

Figure S1. Representative SEM images of PtCo/SiO₂@CN

Figure S2. TEM images of the effect of ethanol, water and ammonia water on the morphology of SiO₂ balls and the degree of metal dispersion when the ratio of ethanol, water and ammonia water was 12.5 : 1.65 : 0.5. a, b) Co/SiO₂@CN; c, d)) PtCo/SiO₂@CN.

Figure S3. TEM images of the effect of ethanol, water and ammonia water on the morphology of SiO_2 balls and the degree of metal dispersion when the ratio of ethanol, water and ammonia water was 24 : 80 : 1. a, b, c, d) PtCo/SiO₂@CN.

Figure S4. a,b,c) Representative TEM images of Pt/SiO₂@CN.

Figure S5. a,b,c) Representative TEM and HRTEM images of PtCo/SiO₂@CN-HCl-21day and the corresponding EDS elemental mapping of Co and Pt.

Figure S6. a,b,c) Representative TEM and HRTEM images of PtCo/SiO₂-NaBH₄ and the corresponding EDS elemental mapping of Co and Pt.

Figure S7. a,b,c) Representative HRTEM images of Co/SiO₂@CN-Pt and the corresponding EDS elemental mapping of Co and Pt.

Figure S8. XRD images of Co/SiO₂@CN-Pt, PtCo/SiO₂@CN-HCl-21day and PtCo/SiO₂-NaBH₄.

Figure S9. Co 2p XPS spectrum images of Co/SiO₂@CN-Pt, PtCo/SiO₂@CN-HCl-1day, PtCo/SiO₂@CN-HCl-21day and PtCo/SiO₂-NaBH₄.

Figure S10. Pt 4f XPS spectrum images of PtCo/SiO₂@CN-HCl-1day, PtCo/SiO₂@CN-HCl-21day.

Figure S11. N 1s XPS spectrum images of Co/SiO₂@CN-HCl-1h and Co/SiO₂@CN-HCl-1day.

Figure S12. N 1s XPS spectrum images of Pt/SiO₂@CN, Co/SiO₂@CN-Pt, PtCo/SiO₂@CN-HCl-1day and PtCo/SiO₂@CN-HCl-21day.

Figure S13. Activity test of PtCo/SiO₂@CN at different temperatures a) room temperature, b) 50 °C.

PtCo/SiO₂@CN

Figure S14. Physical mixed solution of $PtCo/SiO_2@CN$ and WO_3 before and after the reaction. Reaction conditions:1.02 g mixture catalyst ($PtCo/SiO_2@CN : WO_3=1:50$), 600 r/min, 5 mL solvent, 1 h,1 Mpa H₂.

Figure S15. Physical mixed solution of $Pt/SiO_2@CN$ and WO_3 before and after the reaction. Reaction conditions:1.02 g mixture catalyst ($PtCo/SiO_2@CN : WO_3=1:50$), 600 r/min, 5 mL solvent, 1 h,1 Mpa H₂.

Figure S16. Solution of WO₃ before and after the reaction. Reaction conditions:1 g WO3, 600 r/min, 5 mL solvent, 4 h,1 Mpa H_2 .

Co/SiO₂@CN

Figure S17. Physical mixed solution of $Co/SiO_2@CN$ and WO_3 before and after the reaction. Reaction conditions:1.02 g mixture catalyst ($Co/SiO_2@CN : WO_3=1:50$), 600 r/min, 5 mL solvent, 4.5 h,1 MPa H₂.

Figure S18. a, b, c) Representative TEM and HRTEM images of the used $Co/SiO_2@CN$.

Figure S19. a, b, c) Representative TEM and HRTEM images of the used $PtCo/SiO_2@CN$.

Figure S20. a, b, c) Representative TEM images of the Co/SiO₂@CN-HCl-1day.

Figure S22. Effect of Pt in and out of carbon layer on reaction rate. a) hydrogenation of nitrobenzene, b) hydrogenation of benzaldehyde.

Figure S23. Pt 4f XPS spectra of PtCo/SiO₂@CN before and after NB adsorption.

Figure S21. Hot filtration experiments of Co/SiO2@CN.

Figure S24. Pt 4f XPS spectra of Co/SiO₂@CN-Pt before and after NB adsorption.

Figure S25. FT-IR spectra of PtCo/SiO₂@CN after treatment with BA and NB.

Figure S26. FT-IR spectra of Co/SiO₂@CN-Pt after treatment with BA and NB.

Figure S27. FT-IR spectra of $PtCo/SiO_2@CN$ and $Co/SiO_2@CN-Pt$ after treatment with the mixture of BA and NB.

Sample	Metal loading				
	Pt (wt.%)	Co (wt.%)			
PtCo/SiO2@CN	0.8	8.4			
Co/SiO2@CN-Pt	1.4	10.2			
PtCo/SiO ₂ -NaBH ₄	1.1	10.8			
Co/SiO ₂ @CN	/	9.0			
Pt/SiO2@CN	0.8	/			

 Table S1. ICP testing of each catalyst

Entry	Catalyst	T [ºC]	Pre. [MPa]	TOF[h ⁻	Selectivity[%]		
					Imine	Amine	Ref.
1	Co/SiO ₂ @CN	60	1	64	98.0		This work
2	PtCo/SiO2@CN	60	1	296		100	This work
3	CAT-450	120	2	-	0.7	85.2	[1]
4	Pd_3/γ - Al_2O_3	80	2	9.2	94.5		[2]
5	CoOx@NC-800	110	5	-	100		[3]
6	CoS ₂ @MoS ₂ 180-0.75	60	1.5	-	93	3.8	[4]
7	Ni ₃ Sn ₂ /TiO ₂	150	1	2.2	100		[5]
8	NiCo ₅	90	1	10.0	83		[6]
9	Co/mCN-900	120	1	12.3	0.2	99.8	[7]
10	Pd ₁ Ag ₁ @MIL- 101	r.t.	0.2	20.2	3	90	[8]
11	AuPd-Fe ₃ O ₄	r.t.	0.1	93.3		93	[9]
12	GA-Pd	r.t.	0.1	-		88	[10]
13	Fe ₂ O ₃ /NGr@C	120	5	1.48		89	[11]
					100 ,		
14	CoOx@NCNTs	110	3	8.3	Hydrogenation of nitrobenzene		[12]
15	Co-SiCN	110	5	1.4	82	_	[13]
					86.	6,	
16	Ni/C	140	1	6.3	hydrogen	ation of o-	[14]
	N: W. Change				chloronitrobenzenes 100 ,		
17	INI-W ₂ C/mpg- CNx	220	2.5	28.1	Hydrogenation of nitrobenzene		[15]
18	Co/NC-600	170	4	-	99.4		[16]

 Table S2. Comparison of the catalytic performance of PtCo/SiO2@CN and Co/SiO2@CN with other catalytic system in references

References

[1] Y. Zhang, Y. Gao, S. Yao, S. Li, H. Asakura, K. Teramura, H. Wang, D. Ma, Sublimation-Induced Sulfur Vacancies in MoS2 Catalyst for One-Pot Synthesis of Secondary Amines, ACS Catal., 9 (2019) 7967-7975.

[2] L. Bao, C. Zhao, S. Li, Y. Zhu, Benzalaniline from nitrobenzene and benzaldehyde catalyzed efficiently by an atomically precise palladium nanocluster, Chinese J. Catal., 40 (2019) 1499-1504.

[3] T. Song, P. Ren, Y. Duan, Z. Wang, X. Chen, Y. Yang, Cobalt nanocomposites on N-doped hierarchical porous carbon for highly selective formation of anilines and imines from nitroarenes, Green Chem., 20 (2018) 4629-4637.

[4] W. Han, J. Wang, X. Li, L. Zhou, Y. Yang, M. Tang, H. Ge, One-pot solvothermal synthesized CoS2@MoS2 nanocomposites for selective reduction coupling reaction to synthesize imines, Catal. Commun., 124 (2019) 86-91.

[5] M. Sankar, Q. He, S. Dawson, E. Nowicka, L. Lu, P.C.A. Bruijnincx, A.M. Beale, C.J. Kiely, B.M. Weckhuysen, Supported bimetallic nano-alloys as highly active catalysts for the one-pot tandem synthesis of imines and secondary amines from nitrobenzene and alcohols, Catal. Sci. Technol., 6 (2016) 5473-5482.

[6] C. Chen, R. Fan, M. Han, X. Zhu, Y. Zhang, H. Zhang, H. Zhao, G. Wang, Tunable synthesis of imines and secondary-amines from tandem hydrogenation-coupling of aromatic nitro and aldehyde over NiCo5 bi-metallic catalyst, Appl. Catal. B, 280 (2021) 119448.

[7] X. Cui, K. Liang, M. Tian, Y. Zhu, J. Ma, Z. Dong, Cobalt nanoparticles supported on N-doped mesoporous carbon as a highly efficient catalyst for the synthesis of aromatic amines, J. Colloid Interface Sci., 501 (2017) 231-240.

[8] Y.-Z. Chen, Y.-X. Zhou, H. Wang, J. Lu, T. Uchida, Q. Xu, S.-H. Yu, H.-L. Jiang, Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis, ACS Catal., 5 (2015) 2062-2069.

[9] A. Cho, S. Byun, B.M. Kim, AuPd-Fe3O4 Nanoparticle Catalysts for Highly Selective, One-Pot

Cascade Nitro-Reduction and Reductive Amination, Adv. Synth. Catal., 360 (2018) 1253-1261.

[10] B. Sreedhar, P.S. Reddy, D.K. Devi, Direct One-Pot Reductive Amination of Aldehydes with Nitroarenes in a Domino Fashion: Catalysis by Gum-Acacia-Stabilized Palladium Nanoparticles, JOC., 74 (2009) 8806-8809.

[11] R.V. Jagadeesh, T. Stemmler, A.-E. Surkus, H. Junge, K. Junge, M. Beller, Hydrogenation using iron oxide–based nanocatalysts for the synthesis of amines, Nat. Protoc., 10 (2015) 548-557.

[12] Z. Wei, J. Wang, S. Mao, D. Su, H. Jin, Y. Wang, F. Xu, H. Li, Y. Wang, In Situ-Generated Co0-Co3O4/N-Doped Carbon Nanotubes Hybrids as Efficient and Chemoselective Catalysts for Hydrogenation of Nitroarenes, ACS Catal., 5 (2015) 4783-4789.

[13] T. Schwob, R. Kempe, A Reusable Co Catalyst for the Selective Hydrogenation of Functionalized Nitroarenes and the Direct Synthesis of Imines and Benzimidazoles from Nitroarenes and Aldehydes, Angew. Chem. Int. Ed., 55 (2016) 15175-15179.

[14] P. Zhang, Z. Zhao, B. Dyatkin, C. Liu, J. Qiu, In situ synthesis of cotton-derived Ni/C catalysts with controllable structures and enhanced catalytic performance, Green Chem., 18 (2016) 3594-3599.

[15] Z. Zhao, H. Yang, Ni–W2C/mpg–C3N4 as a promising catalyst for selective hydrogenation of nitroarenes to corresponding aryl amines in the presence of Lewis acid, J. Mol. Catal. A: Chem., 398 (2015) 268-274.

[16] P. Zhou, C. Yu, L. Jiang, K. Lv, Z. Zhang, One-pot reductive amination of carbonyl compounds with nitro compounds with CO/H2O as the hydrogen donor over non-noble cobalt catalyst, J. Catal., 352 (2017) 264-273.