Supporting information

## MoS<sub>2</sub>-Catalyzed Selective Electrocatalytic Hydrogenation of Aromatic Aldehydes in an Aqueous Environment

Shuquan Huang<sup>1</sup>, Yangxin Jin<sup>1</sup>, Man Zhang<sup>3</sup>, Kai Yan<sup>3</sup>, Shien-Ping Feng<sup>4</sup>,

## Jason Chun-Ho Lam<sup>1,2\*</sup>

<sup>1</sup>School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.

<sup>2</sup>State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR.

<sup>3</sup>School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China

<sup>4</sup>Department of Advanced Design and Systems Engineering, City University of Hong Kong, Kowloon, Hong Kong, SAR.

\*Corresponding Author: jason.lam@cityu.edu.hk



Figure S1 XPS data of the molybdenum sulfide seed layer obtained at different temperature.



Figure S2 Surface characterization of the MoS<sub>3</sub>/CC; (a) low magnification SEM image; (b) high magnification SEM image; (c) TEM and d) HRTEM.



Figure S3 SEM images of the N-MoS $_2$  and S-MoS $_2$  electrode



Figure S4 Open-circuit control experiment performed by bubbling  $H_2$  into the electrolyte with FFL for 2h



**Figure S5** Fitting line shows the decrease in  $H_{UPD}$  current in the first five concentrations (0.1, 0.2, 0.3, 0.4 and 0.5  $\mu$ M) over the S-MoS<sub>2</sub> electrodes at (a) pH 4.5, (b) pH 6, (c) 9, and (d) 12 at room temperature.



**Figure S6** Cyclic voltammogram measurements on the S-MoS<sub>2</sub> electrode in the hydrogen underpotential deposition potential ( $H_{UPD}$ ) range without adding FFL at 50 mV/s, pH 9 buffer at room temperature.



**Figure S7** a)  $H_{UPD}$  experiment conducted on the Pt electrode at pH 9 electrolyte. The  $H_{UPD}$  potentials were marked with a red dotted line on the voltammograms; b) Fitting line shows the decrease in  $H_{UPD}$  current in the first five concentrations (0.1, 0.2, 0.3, 0.4 and 0.5  $\mu$ M) over the Pt electrodes



**Figure S8** ECH study of furfural using different common ECH metals electrodes. All electrodes were evaluated from a bulk electrolysis of reaction of 20 mM furfural in 4:1 (v. /v.) pH 9 buffer: ACN at j = 10 mA cm<sup>-2</sup> at room temperature. The plus or minus sign of  $\Delta G_{H^*}$  of the electrodes are referring to the hydrogen volcano plot reported by Paola et al.<sup>1</sup>



Figure S9 Control experiments on the electrolysis of reactant and products.



Figure S10 Electrochemical reaction setup

## Appendix: GC-MS and HPLC results for organic substrates electrolysis



Figure S11 Represents GC-MS spectra for ECH of furfural at pH 9.



Figure S12 Representative HPLC spectra of ECH of furfural at pH 9. Detect wavelength:  $\lambda = 216$  nm.



Figure S13 Representative HPLC spectra of ECH of furfural at pH 12. Detect wavelength:  $\lambda = 216$  nm







Figure S14 Representative GC-MS results for selected substrates. Before electrolysis (black line); and after electrolysis (magenta line)





Figure S15 Representative HPLC spectra for selected substrates

| Sample ID               | Mo (at%) | S (at%) | O (at%) | C (at%) | Mo:S  |
|-------------------------|----------|---------|---------|---------|-------|
| MoS <sub>x</sub> /CC    | 3.58     | 15.17   | 16.63   | 47.8    | 1:4.2 |
| MoS <sub>3</sub> /CC    | 5.82     | 15.82   | 13.59   | 47.53   | 1:2.7 |
| 2H-MoS <sub>2</sub> /CC | 9.79     | 19.81   | 9.73    | 47.7    | 1:2.0 |

Table S1 Surface elemental composition analysis of the molybdenum sulfide seed layer by XPS

**Table S2** Relative atomic percentage (at.%) of different Mo 3d species calculated from the high-resolution XPS spectra of Mo 3d of the N-MoS<sub>2</sub> and S-MoS<sub>2</sub> electrode.

|                    | Mo <sup>4+</sup> 3d <sub>5/2</sub> |        |              | Mo <sup>4+</sup> 3d <sub>3/2</sub> |              |        | M - 6+ 2 -1                         |        | M - 6+2 J              |        |                |        |              |
|--------------------|------------------------------------|--------|--------------|------------------------------------|--------------|--------|-------------------------------------|--------|------------------------|--------|----------------|--------|--------------|
| Sample ID          | 1                                  | 1T 2H  |              | 1T 2H                              |              | Н      | W10 <sup>61</sup> 30 <sub>5/2</sub> |        | W10* 30 <sub>5/2</sub> |        | 1T : 2H : MoOx |        |              |
|                    | B.E.<br>(eV)                       | at%    | B.E.<br>(eV) | at%                                | B.E.<br>(eV) | at%    | B.E.<br>(eV)                        | at%    | B.E.<br>(eV)           | at%    | B.E.<br>(eV)   | at%    |              |
| N-MoS <sub>2</sub> | 229.1                              | 0.2584 | 229.9        | 0.2796                             | 232.2        | 0.1722 | 233.5                               | 0.1864 | 233.0                  | 0.0619 | 236.2          | 0.0412 | 43 : 46 : 11 |
| S-MoS <sub>2</sub> | 228.9                              | 0.2691 | 229.7        | 0.2845                             | 232.1        | 0.1794 | 233.3                               | 0.1896 | 232.9                  | 0.046  | 236.1          | 0.0308 | 44:47:7      |

**Table S3** Relative atomic percentage (at.%) of different S 2p species calculated from the high-resolution XPS spectra of S 2p of the N-MoS<sub>2</sub> and S-MoS<sub>2</sub> electrode.

| Sample ID          | S 2p <sub>3/2</sub> |        |              |        | S 2p <sub>1/2</sub> |        |              |        |             |  |
|--------------------|---------------------|--------|--------------|--------|---------------------|--------|--------------|--------|-------------|--|
|                    |                     | 1T     |              | 2Н     |                     | 1T     |              | Н      | 1丁・2日       |  |
|                    | B.E.<br>(eV)        | at%    | B.E.<br>(eV) | at%    | B.E.<br>(eV)        | at%    | B.E.<br>(eV) | at%    | 11 . 211    |  |
| N-MoS <sub>2</sub> | 162.0               | 0.2753 | 162.6        | 0.3074 | 163.4               | 0.2302 | 164.5        | 0.1869 | 50.5 : 49.4 |  |
| S-MoS <sub>2</sub> | 161.9               | 0.4003 | 162.9        | 0.2663 | 163.3               | 0.2001 | 164.5        | 0.1331 | 60.0 : 39.9 |  |

Table S4 Working voltage records during the electrolysis at various current densities.

| Electrode | Current density | Working potential (V <sub>Ag/AgCl</sub> ) |      |  |  |
|-----------|-----------------|-------------------------------------------|------|--|--|
| Electrode | $(mA cm^{-2})$  | Start                                     | End  |  |  |
|           | 5               | 1.12                                      | 1.30 |  |  |
| S MaS     | 10              | 1.31                                      | 1.37 |  |  |
| 5-1/1052  | 15              | 1.40                                      | 1.48 |  |  |
|           | 20              | 1.47                                      | 1.53 |  |  |

| $S_2$ | $S_2$ electrode in different pH conditions. |                   |          |       |           |      |      |  |  |
|-------|---------------------------------------------|-------------------|----------|-------|-----------|------|------|--|--|
|       |                                             | FFL               |          | Yield | Yield (%) |      | (%)  |  |  |
|       | рН                                          | Conv. F.E.<br>(%) | F.E. (%) | FFA   | HDF       | FFA  | HDF  |  |  |
|       | 4.5                                         | 37.7              | 10.2     | 29.9  | 0.7       | 97.5 | 2.4  |  |  |
|       | 6                                           | 45.2              | 12.5     | 37.3  | 1.0       | 97.3 | 2.6  |  |  |
|       | 9                                           | 82.3              | 23.5     | 64.5  | 6.1       | 91.3 | 8.6  |  |  |
|       | 12                                          | 92.3              | 18.6     | 29.9  | 25.9      | 53.5 | 46.4 |  |  |

*Table S5 FFL* convert, Selectivity, Product yield, and Faradaic efficiency for the as-prepared S-MoS<sub>2</sub> electrode in different pH conditions.

| Table   | <b>S6</b> FFL | convert,   | Selectivity,  | Product yield,  | and Faradaic | efficiency j | for the d | as-prepare | ed S- |
|---------|---------------|------------|---------------|-----------------|--------------|--------------|-----------|------------|-------|
| $MoS_2$ | electrod      | 'e under c | lifferent cur | rent densities. |              |              |           |            |       |

| Current density<br>(mA cm <sup>-2</sup> ) | FFL          | F.E. (%) | Yield | d (%) | Sel. (%) |      |
|-------------------------------------------|--------------|----------|-------|-------|----------|------|
|                                           | Conv.<br>(%) |          | FFA   | HDF   | FFA      | HDF  |
| 5                                         | 47.7         | 29.6     | 37.2  | 2.1   | 94.7     | 5.2  |
| 10                                        | 82.3         | 26.4     | 64.5  | 6.1   | 91.3     | 8.7  |
| 15                                        | 73.6         | 13.2     | 41.0  | 12.8  | 76.2     | 23.8 |
| 20                                        | 65.6         | 8.9      | 29.7  | 14.1  | 67.8     | 32.2 |

| Table S7 H | FFL convert and | Product yield for | r these base metal | electrodes |
|------------|-----------------|-------------------|--------------------|------------|
|            |                 | FEL Conv          | Vield (%)          |            |

| Flootrada          | FFL Conv. | Yield (%) |      |  |
|--------------------|-----------|-----------|------|--|
| Electrode          | (%)       | FFA       | HDF  |  |
| S-MoS <sub>2</sub> | 81.1      | 67.1      | 5.9  |  |
| N-MoS <sub>2</sub> | 72.5      | 54.7      | 7.8  |  |
| Pb                 | 91.1      | 51.2      | 15.9 |  |
| Ag                 | 82.4      | 45.7      | 19.7 |  |
| Cu                 | 75.4      | 36.3      | 21.2 |  |
| Zn                 | 81.8      | 36.1      | 20.2 |  |
| Au                 | 72.4      | 24.9      | 24.5 |  |
| Pt                 | 18.2      | 19.1      |      |  |
| Pd                 | 67.7      | 13.5      | 19.6 |  |
| CC                 | 88.7      | 7.2       | 41.7 |  |
| Ni                 | 61.9      | 5.7       | 12.8 |  |
| Nb                 | 83.1      | 3.8       | 24.3 |  |
| Ti                 | 82.7      | 2.1       | 26.1 |  |
| Мо                 | 63.4      | 2.0       | 21.4 |  |

## Reference

1. Quaino, P.; Juarez, F.; Santos, E.; Schmickler, W., Volcano plots in hydrogen electrocatalysis - uses and abuses. *Beilstein J Nanotechnol* **2014**, *5*, 846-854.