Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

# Stereoselective Synthesis of Isoxazolidine Ring via Manganese (III)-Catalysed Aminoperoxidation of Unactivated Alkene Using Molecular Oxygen in the Air under Ambient Conditions

Daisuke Yamamoto\*, Issei Hirano, Yuki Narushima, Masayuki Soga, Hiromasa Ansai and Kazuishi Makino\*

Laboratory of Organic Chemistry for Drug Development and Medical Research Laboratories

Department of Pharmaceutical Sciences, Kitasato University, Tokyo 108-8641, Japan E-mail: <a href="mailto:yamamotod@pharm.kitasato-u.ac.jp">yamamotod@pharm.kitasato-u.ac.jp</a>, <a href="mailto:makinok@pharm.kitasato-u.ac.jp">makinok@pharm.kitasato-u.ac.jp</a>, <a href="mailto:makinok@pharm.kitasato-u.ac.jp">makinok@pharm.kitasato-u.ac.jp</a>

# **Supplementary Information**

| Table of contents                                                                                     | Page |
|-------------------------------------------------------------------------------------------------------|------|
| I. General information                                                                                | S-2  |
| II. Detailed experimental results                                                                     | S-3  |
| III. Experimental procedures and characterization data                                                | S-23 |
| 1. Preparation of the alcohols 25f, 25p and 25q                                                       | S-23 |
| 2. Preparation of the substrates <b>1a–e</b> and <b>4a–u</b>                                          | S-24 |
| 3. Representative procedure for the Mn(III)-catalysed oxygenative                                     | S-35 |
| aminoperoxidation                                                                                     |      |
| 4. Synthesis of 4-nitrobenzoate 12 and 13                                                             | S-46 |
| 5. Synthesis of peroxide 6                                                                            | S-47 |
| 6. Synthesis of <b>8</b>                                                                              | S-48 |
| 7. Synthesis of HPA-12                                                                                | S-53 |
| 8. Preparation of the (ferrocenyl)butane-1,3-dione derivatives ( <b>26b–e</b> , <b>g</b> , <b>h</b> ) | S-57 |
| 9. Preparation of the Mn(III)-complexes (3a-i)                                                        | S-60 |
| 10. X-ray structure of <b>12</b> , <b>13</b> and <b>3d</b>                                            | S-63 |
| 11. Reference                                                                                         | S-78 |
| <sup>1</sup> H NMR and <sup>13</sup> C NMR spectra                                                    |      |

### I. General information

IR spectra were obtained using a JASCO FT/IR 460-plus spectrophotometer. <sup>1</sup>H- and <sup>13</sup>C-NMR spectra were obtained on Agilent Technologies 400-MR DD2, 400-MR spectrometers. The chemical shifts are expressed in ppm downfield from internal solvent peaks CDCl<sub>3</sub> (7.26 ppm for <sup>1</sup>H NMR, 77.16 ppm for <sup>13</sup>C NMR) and coupling constants (*J* values) are given in Hertz. The coupling patterns are expressed by s (singlet), d (doublet), dd (doublet of doublets), ddd (doublet of doublet of doublets), t (triplet), dt (double of triplets), ddt (doublet of doublet of triplets), td (triplet of doublets), quint (quintet), m (multiplet) and br (broad signal). MS spectra were measured with JEOL JMS-AX505HA, JEOL JMS-700V MStation and JEOL JMS-T100LP spectrometers. Melting points (M.p.) were obtained on Stanford Research Systems MPA100 melting point apparatus. X-ray analysis was performed on a Rigaku R-AXIS RAPID diffractometer. Commercial reagents and solvents were used without further purification unless otherwise indicated. Flash column chromatography was carried out with Kanto Chemical silica gel (Kanto Chemical Co., Inc., silica gel 60N, spherical neutral, particle size 63–210 mm). TLC was performed on 0.25 mm Merck silica gel 60 F254 plates.

# **II. Detailed experimental results**

Evaluation of metal complex effect for aminoperoxidation (Table S1-4).

Table S1. Detailed experimental results for Table 1.<sup>*a*</sup>

| Ts<br>NH<br>Ph<br>1a<br>(0.200 mmol) | metal complex (<br>open flask to<br>solvent (0.<br>rt, 24 f<br><i>then</i> sat. Na <sub>2</sub> s | 5.0 mol%)<br>air [ $O_2$ ]<br>10 M)<br>1<br>$O_2O_3$ aq.     | С-N<br>2а<br>(dr = 17 : 1) <sup>c</sup> |
|--------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------|
|                                      |                                                                                                   |                                                              |                                         |
| entry                                | metal complex                                                                                     | solvent                                                      | yield <sup>b</sup>                      |
| 1                                    | Mn(acac) <sub>2</sub>                                                                             | MeCN                                                         | 24                                      |
| 2                                    | Mn(acac) <sub>2</sub>                                                                             | $CH_2Cl_2$                                                   | 21                                      |
| 3                                    | Mn(dbm)₃                                                                                          | MeCN                                                         | 12                                      |
| 4                                    | Mn(dbm)₃                                                                                          | $CH_2Cl_2$                                                   | 15                                      |
| 5                                    | Mn(dpm)₃                                                                                          | MeCN                                                         | 24                                      |
| 6                                    | Mn(dpm)₃                                                                                          | $CH_2CI_2$                                                   | 19                                      |
| 7                                    | Mn(OAc)₃                                                                                          | MeCN                                                         | 9                                       |
| 8                                    | Mn(OAc)₃                                                                                          | $CH_2Cl_2$                                                   | 0                                       |
|                                      | Mn<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O<br>O                               | Ph <sup>Mn</sup><br>Ph <sup>Mn</sup><br>Mn(dbm) <sub>3</sub> | h] <sub>3</sub>                         |

<sup>*a*</sup> Reaction conditions: **1a** (0.200 mmol), O<sub>2</sub> (open flask to air). <sup>*b*</sup> The yield was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture of products by using **1**,2-dichloroethane as an internal standard. <sup>*c*</sup> The ratio was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture of products.

| Table S2. Detailed experimental results for Table 1 |  | а |
|-----------------------------------------------------|--|---|
|-----------------------------------------------------|--|---|

| Ts<br>NH<br>Ph<br>1a<br>(0.200 mmol) | metal complex (5<br>open flask to a<br>solvent (0.1<br>rt, 24 h<br><i>then</i> sat. Na <sub>2</sub> S | Ph $2a$<br>(dr = 17 : 1) <sup>c</sup> |                    |
|--------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------|
| entry                                | metal complex                                                                                         | solvent                               | yield <sup>b</sup> |
| 1                                    | Fe(acac)₃                                                                                             | MeOH                                  | 0                  |
| 2                                    | Fe(acac)₃                                                                                             | MeCN                                  | 0                  |
| 3                                    | Fe(acac)₃                                                                                             | $CH_2Cl_2$                            | 0                  |
| 4                                    | Co(acac)₃                                                                                             | MeOH                                  | 0                  |
| 5                                    | Co(acac)₃                                                                                             | MeCN                                  | 0                  |
| 6                                    | Co(acac)₃                                                                                             | $CH_2Cl_2$                            | 0                  |
| 7                                    | Co(acac) <sub>2</sub>                                                                                 | MeOH                                  | 0                  |
| 8                                    | Co(acac) <sub>2</sub>                                                                                 | MeCN                                  | 0                  |
| 9                                    | Co(acac) <sub>2</sub>                                                                                 | $CH_2Cl_2$                            | 0                  |
| 10                                   | Cu(acac) <sub>2</sub>                                                                                 | MeOH                                  | 0                  |
| 11                                   | Cu(acac) <sub>2</sub>                                                                                 | MeCN                                  | 10                 |
| 12                                   | Cu(acac) <sub>2</sub>                                                                                 | $CH_2Cl_2$                            | 8                  |

<sup>*a*</sup> Reaction conditions: **1a** (0.200 mmol), O<sub>2</sub> (open flask to air). <sup>*b*</sup> The yield was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture using 1,2-dichloroethane as an internal standard. <sup>*c*</sup> The ratio was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture.

### Table S3. Detailed experimental results for Table 1. a, e



<sup>*a*</sup> Reaction conditions: **1a** (0.200 mmol), O<sub>2</sub> (open flask to air). <sup>*b*</sup> The yield was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture using **1**,2-dichloroethane as an internal standard. <sup>*c*</sup> Isolated yield. <sup>*d*</sup> The ratio was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture. <sup>*e*</sup> Metal complexes **28–30** were prepared by a known procedure. <sup>1</sup>

# Table S4. Detailed experimental results for Table 2.<sup>*a*</sup>



| entry | MnL₃ | x (mol%) | solvent                 | yield (%) <sup>b</sup> |
|-------|------|----------|-------------------------|------------------------|
| 1     | 3b   | 5.0      | MeOH                    | 77                     |
| 2     | 3b   | 1.0      | MeOH                    | 23                     |
| 3     | 3b   | 1.0 EtOH |                         | 71                     |
| 4     | 3b   | 1.0      | <i>i</i> -PrOH          | 30                     |
| 5     | 3b   | 1.0      | t-BuOH                  | 0 <sup>c</sup>         |
| 6     | 3b   | 1.0      | $CF_3CH_2OH$            | 9 <sup>c</sup>         |
| 7     | 3b   | 1.0      | (CF <sub>3</sub> )₂CHOH | 0 <sup>c</sup>         |
| 8     | 3c   | 1.0      | MeOH                    | 33                     |
| 9     | 3c   | 1.0      | EtOH                    | 52                     |
| 10    | 3c   | 1.0      | <i>i</i> -PrOH          | 26                     |
| 11    | 3c   | 1.0      | t-BuOH                  | < 1 <sup>c</sup>       |
| 12    | 3d   | 1.0      | MeOH                    | 34 <sup>c</sup>        |
| 13    | 3d   | 1.0      | EtOH                    | 75                     |
| 14    | 3d   | 1.0      | <i>i</i> -PrOH          | 0 <sup><i>c</i></sup>  |
| 15    | 3d   | 1.0      | t-BuOH                  | 0 <sup>c</sup>         |

<sup>*a*</sup> Reaction conditions: **1a** (0.200 mmol), O<sub>2</sub> (open flask to air). <sup>*b*</sup> Isolated yield <sup>*c*</sup> The yield was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture using **1**,2-dichloroethane as an internal standard. <sup>*d*</sup> The ratio was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture.







<sup>*a*</sup> The ratio was determined by <sup>1</sup>H-NMR analysis of the crude reaction mixture of products. **Scheme S2.** Mn(III)-catalysed aminoperoxidation of **1a** in the presence of  $\alpha$ -methylstyrene

In order to confirm the reactivity of nitrogen on 1a, we carried out the present Mn(III)-catalysed reaction in the presence of  $\alpha$ -methylstyrene under atmospheric conditions. As a result, 2a and *N*-directed coupling product 27 were obtained in 29% and 12% yield, respectively (Scheme S2).

### Preliminary studies on the reaction mechanism

## 1-A) The kinetic profile under atmospheric conditions. (Partial O<sub>2</sub> pressure: 0.2 atm)



Scheme S3. Mn(III)-catalysed aminoperoxidation of 1a using O<sub>2</sub> in air.

To a stirred solution of sulphonamide **1a** (95.2 mg, 0.300 mmol) in EtOH (3.00 mL) at room temperature was added Mn(III)-complex **3d** (3.1 mg, 3.0 µmol) under air (open flask, partial O<sub>2</sub> pressure: 0.2 atm). At 1, 2, 3, 4, 5, 6, 7, 8, 10, 18, 20, and 22 h, respectively, 30.0 µL of sample was collected from the reaction mixture by syringe. The sample (30.0 µL) was diluted with 2-propanol to total volume of 1.0 mL. 10.0 µL of the diluted solution was injected into the HPLC column (COSMOSIL Packed Column 5SL-II,  $\phi$  0.46 cm × 25 cm, hexane/*i*-PrOH = 99 : 1, detection at 254 nm, flow rate 1.0 mL/min, t<sub>R</sub> = 14.6 min for **6**, 54.0 min for **2a**). Based on the calibration curve (Figures S5 and 6), the yield was estimated from the peak area (Figure S1).



**Figure S1**<sup>*a*)</sup>. The kinetic profile of Mn(III)-catalysed oxygenative aminoperoxidation under air. <sup>*a*)</sup> Peroxide **6** was partially converted to **2a** in HPLC column (normal phase). The yield was estimated by HPLC analysis.

#### 1-B) The kinetic profile under pure O<sub>2</sub> atmosphere. (O<sub>2</sub> pressure: 1 atm)



Scheme S4. Mn(III)-catalysed aminoperoxidation of 1a using pure O<sub>2</sub> (balloon, 1 atm)

To a stirred solution of sulphonamide **1a** (95.2 mg, 0.300 mmol) in EtOH (3.00 mL) at room temperature was added Mn(III)-complex **3d** (3.1 mg, 3.0 µmol) under pure O<sub>2</sub> (balloon, O<sub>2</sub> pressure: 1 atm). At 1, 2, 3, 4, 5, 6, 7, 8, 10, 18, 20, and 22 h, respectively, 30.0 µL of sample was collected from the reaction mixture by syringe. The sample (30.0 µL) was diluted with 2-propanol to total volume of 1.0 mL. 10.0 µL of the diluted solution was injected into the HPLC column (COSMOSIL Packed Column 5SL-II,  $\phi$  0.46 cm × 25 cm, hexane/*i*-PrOH = 99 : 1, detection at 254 nm, flow rate 1.0 mL/min, t<sub>R</sub> = 14.6 min for **6**, 54.0 min for **2a**). Based on the calibration curve (Figures S5 and 6), the yield was estimated from the peak area (Figure S2).



**Figure S2**<sup>*a*)</sup>. The kinetic profile of Mn(III)-catalysed oxygenative aminoperoxidation under pure oxygen atmosphere (1 atm).

<sup>a)</sup> Peroxide **6** was partially converted to **2a** in HPLC column (normal phase). The yield was estimated by HPLC analysis.

Based on the results of the both kinetic experiments **1-A** and **1-B**, the following two conclusions can be drawn.

- 1. An incubation time of about 4 h is required to start the reaction under both atmospheric pressure (partial O<sub>2</sub> pressure: 0.2 atm) and oxygen atmosphere (O<sub>2</sub> pressure: 1 atm) conditions.
- 2. The kinetic profiles of 1-A and 1-B are similar under both atmospheric pressure (partial  $O_2$  pressure: 0.2 atm) and oxygen atmosphere ( $O_2$  pressure: 1 atm) conditions, and there is little difference in the reaction rate between different oxygen pressures in this range.

#### 2) Studies on the incubation time

### 2-A) The delayed addition experiment of 1a

The following control experiments were performed to consider the active Mn(III)-complex generated during the incubation time in this reaction (Scheme S5 and S6).



Scheme S5. The delayed addition experiment of 1a

A solution of Mn(III)-complex **3d** (3.1 mg, 3.0 µmol) in EtOH (2.70 mL) was stirred under air (open flask). After 4 h, a solution of sulphonamide **1a** (95.2 mg, 0.300 mmol) in EtOH (0.300 mL) was added and stirred under air (open flask). After 1, 2, 3, 4, 6, 14, 16 and 18 h, respectively, 30.0 µL of sample was collected from the reaction mixture by syringe. The sample (30.0 µL) was diluted with 2-propanol to total volume of 1.0 mL. 10.0 µL of the diluted solution was injected into the HPLC column (COSMOSIL Packed Column 5SL-II,  $\phi$  0.46 cm × 25 cm, hexane/*i*-PrOH = 99 : 1, detection at 254 nm, flow rate 1.0 mL/min, t<sub>R</sub> = 14.6 min for **6** , 54.0 min for **2a**). As a result, the expected product **6** and **2a** started to be detected in 8 h (Figure S3).



|                  | 1 h | 2 h | 3 h | 4 h | 5 h | 6 h | 7 h | 8 h | 10 h | 18 h | 20 h | 22 h |
|------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| Standard         | 0%  | 0%  | 0%  | 2%  | 10% | 20% | 26% | 30% | 37%  | 43%  | 49%  | 55%  |
| Delayed addition | _   | _   | _   | 0%  | 0%  | 0%  | 0%  | 4%  | 21%  | 37%  | 43%  | 50%  |

Figure S3<sup>*a*</sup>). Comparison of the kinetic profiles of the standard experiment (1-A) and the delayed addition experiment of 1a (2-A).

<sup>a)</sup> Peroxide **6** was partially converted to **2a** in HPLC column (normal phase). The yield was estimated by HPLC analysis.

Comparison of the standard experiment (1-A) and the delayed addition experiment of 1a (2-A) showed the following result.

✓ When a stirred solution of Mn(III)-complex 3d in EtOH was exposed to oxygen in air for 4 h, and then sulphonamide 1a was added, another 4 h of incubation time was required before the aminoperoxydation reaction started.

This result suggests that the formation of the true active species of catalyst requires the presence Mn(III)-complex 3d, oxygen, and substrate 1a, as well as an incubation time of 4 h.

### 2-B) Delayed air-expose experiment



Scheme S6. Mn(III)-catalysed aminoperoxidation of 1a

A solution of sulphonamide **1a** (95.2 mg, 0.300 mmol) and Mn(III)-complex **3d** (3.1 mg, 3.0  $\mu$ mol) in EtOH (3.0 mL) was stirred under Ar atomosphere. After 4 h, the reaction mixture was opened to air. After 1, 2, 3, 4, 6, 14, 16 and 18 h, respectively, 30.0  $\mu$ L of sample was collected from the reaction mixture by syringe. The sample (30.0  $\mu$ L) was diluted with 2-propanol to total volume of 1.0 mL. 10.0  $\mu$ l of the diluted solution was injected into the HPLC column (COSMOSIL Packed Column 5SL-II ( $\phi$  0.46 cm × 25 cm), hexane/*i*-PrOH = 99 : 1, detection at 254 nm, flow rate 1.0 mL/min, t<sub>R</sub> = 6.8 min (**1a**), 14.6 min (**6**) , 54.0 min (**2a**)). As a result, the expected product **6** and **2a** started to be detected in 5 h (Figure S4).



|                    | 1 h | 2 h | 3 h | 4 h | 5 h | 6 h | 7 h | 8 h | 10 h | 18 h | 20 h | 22 h |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| Standard           | 0%  | 0%  | 0%  | 2%  | 10% | 20% | 26% | 30% | 37%  | 43%  | 49%  | 55%  |
| Delayed air-expose | _   | _   | _   | 0%  | 0%  | 8%  | 21% | 28% | 34%  | 44%  | 48%  | 53%  |

**Figure S4**<sup>*a*</sup>. Comparison of the kinetic profiles of the standard experiment (**1-A**) and the delayed airexpose experiment (**2-B**).

<sup>*a*)</sup> Peroxide **6** was partially converted to **2a** in HPLC column (normal phase). The yield was estimated by HPLC analysis.

Comparison of the standard experiment (1-A) and the delayed air-expose experiment (2-B) showed the following result.

✓ When a solution of sulphonamide 1a and Mn(III)-complex 3d in EtOH was stirred in the absence of oxygen (under Ar atmosphere), and then exposed to oxygen (under air atmosphere), the progress of the aminoperoxydation reaction was detected within 2 h instead of the usual 4 h.

It is noteworthy that the delayed air-expose experiment (**2-B**) does not require an additional 4 hours of incubation time. We assume that the reaction in this experimental condition proceeds through the following reaction mechanism.

- Stirring a solution of sulphonamide 1a and Mn(III)-complex 3d in EtOH under Ar atmosphere caused a ligand exchange reaction between the ligand of 3d and 1a to give a new intermediate [1a-H<sup>+</sup>]•MnL<sub>2</sub> with high coordination ability to oxygen molecules.
- 2. The intermediate  $[1a H^+] \cdot MnL_2$  coordinated molecular oxygen in air to give  $[1a H^+] \cdot O_2 \cdot MnL_2$  complex, which allowed the aminoperoxydation reaction to proceed.



Figure S5 Calibration curve of 6



Figure S6 Calibration curve of 2a

# 3) Preliminary studies on intermediates by ESI-MS

The search for intermediates derived from Mn(III)-complex **3d** in the reaction mixtures was performed by ESI-MS.

# 3-A) Detection of intermediates under atmospheric conditions. (Partial O2 pressure: 0.2 atm)



Scheme S7. Mn(III)-catalysed aminoperoxidation of 1a using O<sub>2</sub> in air.

To a stirred solution of sulphonamide **1a** (69.7 mg, 0.200 mmol) in EtOH (2.00 mL) at room temperature was added Mn(III)-complex **3d** (2.1 mg, 2.0  $\mu$ mol) under air (open flask). At 3, 4 and 6 h, respectively, 10.0  $\mu$ L of sample was collected from the reaction mixture by syringe. The sample (10.0  $\mu$ L) was diluted with methanol to total volume of 1.0 mL. 10.0  $\mu$ L of the diluted solution was injected into an ESI-Mass spectrometer (JEOL JMS-T100LP).

The following results were obtained by ESI-MS analysis.

[Results at 3 and 4 h]

✓ The molecular ion peak 340.09 derived from stating material 1a was observed (Figures S7 and S8).

[Results at 6 h]

- ✓ The molecular ion peaks 340.0868 and 372.0756 derived from stating material 1a and expected product 6 were observed, respectively (Figure S9).
- ✓ The molecular ion peaks 1022.2555 and 1054.2622, which were good agreement with being derived from [1a− H<sup>+</sup>]•MnL<sub>2</sub> and [1a− H<sup>+</sup>]•O<sub>2</sub>•MnL<sub>2</sub>, respectively, were observed along with other molecular ion peaks (Figure S9, enlarged view).



Figure S7 ESI-MS analysis of the reaction mixture at 3 h.



Figure S8 ESI-MS analysis of the reaction mixture at 4 h under air.



Figure S9 ESI-MS analysis of the reaction mixture at 6 h under air.

# **3-B)** Delayed air-expose experiment



Scheme S8 Mn(III)-catalysed aminoperoxidation of 1a

A solution of sulphonamide 1a (95.2 mg, 0.300 mmol) and Mn(III)-complex 3d (30.9 mg, 30.0 µmol) in EtOH (3.0 mL) was stirred under Ar atomosphere. After 4 h, the reaction mixture was opened to air. At 4, 8 h, respectively,  $10.0 \,\mu$ L of sample was collected from the reaction mixture by syringe. The sample (10.0 µL) was diluted with methanol to total volume of 1.0 mL. 10.0 µL of the diluted solution was injected into an ESI-Mass spectrometer (JEOL JMS-T100LP).

The following results were obtained by ESI-MS analysis.

# [Results at 4 h]

- The molecular ion peak 340.0924 derived from stating material 1a was observed (Figure S10).  $\checkmark$
- The molecular ion peak 705.0992 and 1022.2107, which were good agreement with being derived  $\checkmark$ from  $[MnL_2]^+$  and  $[1a-H^+] \cdot MnL_2$ , respectively, were observed (Figure S10, enlarged view).

[Results at 8 h]

- The molecular ion peaks 340.0941 and 372.0843 derived from stating material 1a and expected  $\checkmark$ product 6 were observed, respectively (Figure S11).
- $\checkmark$ The molecular ion peaks 1022.1988 and 1054.1997, which were good agreement with being derived from [1a-H<sup>+</sup>]•MnL<sub>2</sub> and [1a-H<sup>+</sup>]•O<sub>2</sub>•MnL<sub>2</sub>, respectively, were observed (Figure S11, enlarged view).



Figure S10 ESI-MS analysis of the reaction mixture at 4 h under Ar.



**Figure S11** ESI-MS analysis of the reaction mixture at 8 h in delayed air-expose experiment (4 h under Ar and then additional 4 h under air).

### 4) A possible mechanistic pathway

Based on the results of the standard experiment (1-A), the delayed addition experiment of 1a (2-A), the delayed air-expose experiment (2-B), and detection of intermediates by ESI-MS (3-A, B), we hypothesized the following possible mechanism for this aminoperoxide reaction. (Figure S12). The reaction could be initiated via a ligand exchange of Mn(III)-complex 3d with sulphonamide 1a to generate intermediate [I]. Thereafter, the coordination of molecular oxygen present in air occurs, forming intermediate [II]. Furthermore, an isoxazolidine ring was formed via radical process, giving intermediate [III]. Finally, a ligand exchange of intermediate [III] with sulphonamide 1a produced the desired hydroperoxide 6 and regenerated intermediate [I] for the next catalytic cycle. Further investigations to clarify the key active Mn(III)-complex are currently ongoing in our laboratory.<sup>2</sup>



Figure S12 A possible mechanistic pathway.

# III. Experimental procedures and characterization data

## 1. Preparation of the alcohols 25f, 25o and 25q

1-(3,5-dimethylphenyl)but-3-en-1-ol (25f)



### (Representative procedure<sup>3</sup>)

To a stirred solution of 3,5-dimethylbenzaldehyde (**24f**) (3.00 g, 22.4 mmol) and allyl bromide (3.25 g, 26.9 mmol) in THF (28.0 mL) at room temperature were added zinc powder (2.93 g, 44.8 mmol) and saturated aqueous NH<sub>4</sub>Cl solution (56.0 mL). After stirred for 18 h, the resulting mixture was diluted with water, extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 50 mL). The combined organic layer was washed with brine (50 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 10 : 1) to give alcohol **25f** (3.33 g, 18.9 mmol, 84% yield) as colorless oil.

TLC Rf = 0.37 (hexane / ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 6.98 (s, 2H), 6.92 (s, 1H), 5.88-5.77 (m, 1H), 5.21-5.15 (m, 1H), 5.16-5.13 (m, 1H), 4.67 (dd, *J* = 8.0, 5.2 Hz, 1H), 2.56-2.44 (m, 2H), 2.32 (br s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 144.0, 138.1, 134.9, 129.3, 123.7, 118.4, 73.5, 43.9, 21.5; IR (neat) 3374, 2978, 2732, 1736, 1461, 1346, 1209, 1055, 958, 804, 636, 504 cm<sup>-1</sup>; HRMS (FAB, NBA) *m/z* calcd for C<sub>12</sub>H<sub>16</sub>ONa [M+Na]<sup>+</sup> 199.1099 found 199.1105.

8-((tert-butyldiphenylsilyl)oxy)oct-1-en-4-ol (250)

TBDPSO

According to the representative procedure, the reaction gave **250** (3.26 g, 8.51 mmol, 74% yield) as colorless oil from the corresponding aldehyde<sup>4</sup> (3.90 g, 11.5 mmol).

TLC Rf = 0.42 (hexane / ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.68-7.66 (m, 4H), 7.44-7.35 (m, 6H), 5.88-5.77 (m, 1H), 5.16-5.10 (m, 2H), 3.67 (t, *J* = 6.4 Hz, 2H), 3.64-3.59 (m, 1H), 2.32-2.25 (m, 1H), 2.16-2.08 (m, 1H), 1.63-1.38 (m, 6H), 1.05 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 135.7, 135.0, 134.2, 129.6, 127.7, 118.2, 70.7, 63.9, 42.0, 36.6, 32.6, 27.0, 22.0, 19.3; IR (neat) 3372, 3071, 2931, 2857, 1640, 1472, 1428, 1111, 997, 915, 823, 740, 701, 614, 503 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>24</sub>H<sub>34</sub>NaO<sub>2</sub>Si [M+Na]<sup>+</sup> 405.2226 found 405.2215.

tert-butyl (6-hydroxynon-8-en-1-yl)carbamate (25q)

Boc<sup>-N</sup>

According to the representative procedure, the reaction gave 25q (1.14 g, 4.42 mmol, 95% yield) as a yellow solid from the corresponding aldehyde<sup>5</sup> (860 mg, 4.65 mmol).

M.p. 41.5-43.2 °C; TLC Rf = 0.45 (hexane / ethyl acetate = 1 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 5.88-5.77 (m, 1H), 5.16-5.14 (m, 1H), 5.13-5.10 (m, 1H), 4.50 (br s, 1H), 3.67-3.61 (m, 1H), 3.14-3.08 (m, 2H), 2.33-2.26 (m, 1H), 2.18-2.10 (m, 1H), 1.50-1.44 (m, 15H), 1.40-1.31 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  :156.2, 135.0, 118.2, 79.2, 70.6, 42.1, 40.6, 36.8, 30.2, 28.6, 26.8, 25.4; IR (KBr) 3377, 2980, 2931, 2853, 1682, 1640, 1519, 1462, 1369, 1317, 1278, 1178, 1131, 1028, 1000, 966, 910, 873, 784, 717, 605 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>14</sub>H<sub>27</sub>NNaO<sub>3</sub> [M+Na]<sup>+</sup> 280.1889 found 280.1884.

#### 2. Preparation of the substrates 1a-e and 4a-u

4-nitro-N-((1-phenylbut-3-en-1-yl)oxy)benzenesulphonamide (1d)



### (Representative procedure<sup>6</sup>)

A solution of diethyl azodicarboxylate (2.72 mL, 6.00 mmol, 40% in toluene, *ca*. 2.2 M) was added dropwise to a stirred solution of the alcohol **21** (740 mg, 5.00 mmol), triphenylphosphine (1.58 g, 6.00 mmol) and *N*-hydroxyphthalimide (0.978 g, 6.00 mmol) in THF (50.0 mL) under N<sub>2</sub> atmosphere at 0 °C. The reaction mixture was warmed to room temperature and stirred for 3 h, and then hydrazine monohydrate (0.559 mL, 11.5 mmol) was added dropwise. After 2 h, the mixture was filtered through a pad of celite and the filtrate was concentrated under reduced pressure to afford the corresponding amine **23**, which was directly used without further purification. A solution of the 4-nitrobenzensulphonyl chloride (1.33 g, 6.00 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (10.0 mL) was added dropwise over 15 min to a stirred suspension of crude amine **23** and Na<sub>2</sub>CO<sub>3</sub> (0.954 g, 9.00 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15.0 mL). The resulting mixture was stirred at room temperature for 18 h, monitoring the conversion by TLC analysis. The reaction was quenched by addition of water. The resulting mixture was extracted

with  $CH_2Cl_2$  (3 x 20 mL) and the combined organic layer was washed with water (20 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 15 : 1 to 5 : 1) to give sulphonamide **1d** (1.22 g 3.51 mmol, 70% yield (3 steps)) as a white solid.

TLC Rf = 0.26 (hexane / ethyl acetate = 5 : 1); M.p. 124.9-128.7 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.37 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.11 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.38-7.31 (m, 3H), 7.29-7.24 (m, 2H), 6.82 (s, 1H, -NH), 5.84-5.74 (m, 1H), 5.14-5.05 (m, 3H), 2.68-2.61 (m, 1H), 2.53-2.46 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.4, 139.2, 133.7, 130.1, 128.70, 128.68, 127.2, 124.2, 118.1, 88.8, 39.8; IR (KBr) 3321, 3235, 3103, 1527, 1349, 1300, 1170, 1088, 849, 752, 702 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 347.0702 found 374.0685.

**1a** was prepared by a known procedure<sup>7</sup>.

4-methoxy-*N*-((1-phenylbut-3-en-1-yl)oxy)benzenesulphonamide (1b)



According to the representative procedure, the reaction gave **1b** (766 mg, 2.30 mmol, 46% yield) as a white solid from the corresponding alcohol (740 mg, 5.00 mmol) and 4-methoxybenzenesulphonyl chloride (1.24 g, 6.00 mmol).

TLC Rf = 0.50 (hexane / ethyl acetate = 5 : 1); M.p. 126.4-136.2 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.86 (d, J = 8.8 Hz, 2H), 7.36-7.25 (m, 5H), 6.99 (d, J = 9.2 Hz, 2H), 6.63 (s, 1H, -N<u>H</u>), 5.81-5.71 (m, 1H), 5.10-5.06 (m, 2H), 5.01 (dd, J = 7.6, 6.4 Hz, 1H), 3.89 (s, 3H), 2.68-2.60 (m, 1H), 2.50-2.43 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 163.9, 139.8, 133.9, 131.0, 128.5, 128.4, 128.3, 127.3, 117.7, 114.3, 88.1, 55.8, 39.8; IR (KBr) 3213, 1596, 1497, 1327, 1269, 1153, 1091, 1020, 910, 825, 807, 740, 701, 557 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>17</sub>H<sub>19</sub>NNaO<sub>4</sub>S [M+Na]<sup>+</sup> 356.0932 found 356.0926.

*N*-((1-phenylbut-3-en-1-yl)oxy)-4-(trifluoromethyl)benzenesulphonamide (1c)



According to the representative procedure, the reaction gave **1c** (928 mg, 2.50 mmol, 50% yield) as a white solid from the corresponding alcohol (740 mg, 5.00 mmol) and 4-(trifluoromethyl)benzenesulphonyl chloride (1.47 g, 6.00 mmol).

TLC Rf = 0.23 (hexane / ethyl acetate = 5 : 1); M.p. 116.3-119.9 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.05 (d, *J* = 8.4 Hz, 2H), 7.80 (d, *J* = 8.4 Hz, 2H), 7.37-7.25 (m, 5H), 6.79 (s, 1H, -N<u>H</u>), 5.83-5.73 (m, 1H), 5.13-5.08 (m, 2H), 5.06 (dd, *J* = 8.0, 6.0 Hz), 2.69-2.61 (m, 1H), 2.52-2.45 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 140.3 (q, <sup>4</sup>*J*<sub>F-C</sub> = 1 Hz), 139.4, 135.5 (q, <sup>2</sup>*J*<sub>F-C</sub> = 33 Hz), 133.8, 129.4, 128.7, 128.6, 127.3, 126.2 (q, <sup>3</sup>*J*<sub>F-C</sub> = 4 Hz), 123.3 (q, <sup>1</sup>*J*<sub>F-C</sub> = 271 Hz), 118.0, 88.6, 39.8; IR (KBr) 3224, 1408, 1328, 1169, 1123, 1092, 1064, 1017, 919, 840, 790, 740, 700, 595 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>15</sub>F<sub>3</sub>NO<sub>3</sub>S [M-H]<sup>-</sup> 370.0725 found 370.0714.

2-nitro-*N*-((1-phenylbut-3-en-1-yl)oxy)benzenesulphonamide (1e)



According to the representative procedure, the reaction gave **1e** (958 mg, 2.75 mmol, 55% yield) as a yellow solid from the corresponding alcohol (740 mg, 5.00 mmol) and 2-nitrobenzensulphonyl chloride (1.33 g, 6.00 mmol).

TLC Rf = 0.35 (hexane / ethyl acetate = 3 : 1); M.p. 93.8-100.6; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.24-8.22 (m, 1H), 7.90-7.88 (m, 1H), 7.83-7.76 (m, 2H), 7.40-7.29 (m, 5H), 5.82-5.72 (m, 1H), 5.14 (dd, J = 8.0, 6.0 Hz, 1H), 5.09-5.04 (m, 2H), 2.68-2.60 (m, 1H), 2.52-2.45 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 148.6, 139.4, 134.9,134.1, 133.8, 132.8, 130.6, 128.7, 128.6, 127.3, 125.6, 117.9, 88.5, 39.7; IR (KBr) 3261, 3042, 2936, 1644, 1537, 1494, 1441, 1407, 1357, 1174, 1121, 1003, 924, 854, 791, 747, 699, 655, 611, 579, 518; HRMS (ESI) *m*/*z* calcd for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 347.0702 found 374.0706.

4-nitro-*N*-((1-(*p*-tolyl)but-3-en-1-yl)oxy)benzenesulphonamide (4a)



According to the representative procedure, the reaction gave **4a** (724 mg, 2.00 mmol, 40% yield) as a white solid from the corresponding alcohol (811 mg, 5.00 mmol).

TLC Rf = 0.16 (hexane / ethyl acetate = 2 : 1); M.p. 142.9-148.2 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.36 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.10 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.15 (br s, 4H), 6.79 (s, 1H, -N<u>H</u>), 5.83-5.73 (m, 1H), 5.13-5.09 (m, 2H), 5.03 (dd, *J* = 8.0, 6.0 Hz, 1H), 2.68-2.60 (m, 1H), 2.51-2.44 (m, 1H), 2.35 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.5, 138.6, 136.1, 133.9, 130.2, 129.4, 127.3, 124.2, 118.0, 88.6, 39.6, 21.3; IR (KBr) 3248, 3094, 1529, 1351, 1172, 1088, 928, 858, 816, 753, 702, 602 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 361.0858 found 361.0843.

*N*-((1-(4-(*tert*-butyl)phenyl)but-3-en-1-yl)oxy)-4-nitrobenzenesulphonamide (4b)



According to the representative procedure, the reaction gave **4b** (606 mg, 1.50 mmol, 30% yield) as a white solid from the corresponding alcohol (1.02 g, 5.00 mmol).

TLC Rf = 0.75 (hexane / ethyl acetate = 2 : 1); M.p. 128.0-134.5 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.37 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.12 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.36 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.19 (dt, *J* = 8.8, 2.0 Hz, 2H), 6.78 (s, 1H, -NH), 5.87-5.76 (m, 1H), 5.16-5.11 (m, 2H), 5.06-5.03 (m, 1H), 2.67-2.60 (m, 1H), 2.53-2.45 (m, 1H), 1.32 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl3)  $\delta$  : 151.8, 150.9, 142.6, 136.0, 134.1, 130.2, 127.0, 125.7, 124.3, 117.9, 88.7, 39.6, 34.8, 31.4; IR (KBr) 3234, 2961, 1533, 1406, 1348, 1312, 1174, 853, 761, 697, 589 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>20</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>5</sub>S [M+Na]<sup>+</sup> 427.1304 found 427.1301.

N-((1-(4-methoxyphenyl)but-3-en-1-yl)oxy)-4-nitrobenzenesulphonamide (4c)



According to the representative procedure, the reaction gave 4c (907 mg, 2.40 mmol, 48% yield) as a yellow solid from the corresponding alcohol (891 mg, 5.00 mmol).

TLC Rf = 0.68 (hexane / ethyl acetate = 2 : 1); M.p. 130.4-136.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.35 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.09 (dt, *J* = 9.2, 2.0 Hz, 2H), 7.21-7.18 (m, 2H), 6.87-6.85 (m, 2H), 6.80 (s, 1H, -NH), 5.82-5.72 (m, 1H), 5.14-5.08 (m, 2H), 5.01 (dd, *J* = 8.0, 6.0 Hz, 1H), 3.80 (s, 3H), 2.70-2.62 (m, 1H), 2.51-2.44 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 160.0, 150.9, 142.6, 133.9, 131.0, 130.2, 128.8, 124.3, 118.0, 114.1, 88.4, 55.4, 39.4; IR (KBr) 3243, 3102, 1614, 1530, 1353, 1170, 755, 705, 631, 591 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>17</sub>H<sub>17</sub>N<sub>2</sub>O<sub>6</sub>S [M-H]<sup>-</sup> 377.0807 found 377.0790.

*N*-((1-(4-bromophenyl)but-3-en-1-yl)oxy)-4-nitrobenzenesulphonamide (4d)

p-Ns Or<sup>NH</sup>

According to the representative procedure, the reaction gave 4d (1.06 g, 2.50 mmol, 50% yield) as a white solid from the corresponding alcohol (1.13 g, 5.00 mmol).

TLC Rf = 0.63 (hexane / ethyl acetate = 2 : 1); M.p. 144.3-147.7 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.10 (dt, *J* = 9.2, 2.0 Hz, 2H), 7.48 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.14 (dt, *J* = 8.8, 2.0 Hz, 2H), 6.80 (s, 1H, -N<u>H</u>), 5.80-5.70 (m, 1H), 5.15-5.08 (m, 2H), 5.05 (dd, *J* = 8.0, 6.0 Hz, 1H), 2.67-2.59 (m, 1H), 2.50-2.42 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.3, 138.2, 133.2, 131.9, 130.2, 129.0, 124.3, 122.8, 118.5, 88.1, 39.6; IR (KBr) 3247, 3099, 1528, 1415, 1351, 1317, 1173, 1084, 858, 818, 754, 706 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>16</sub>H<sub>14</sub>BrN<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 424.9807 found 424.9794.

4-nitro-*N*-((1-(4-(trifluoromethyl)phenyl)but-3-en-1-yl)oxy)benzenesulphonamide (4e)



According to the representative procedure, the reaction gave 4e (1.06 g, 2.55 mmol, 51% yield) as a white solid from the corresponding alcohol (1.08 g, 5.00 mmol).

TLC Rf = 0.63 (hexane / ethyl acetate = 2 : 1); M.p. 131.7-134.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.39 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.12 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 6.87 (s, 1H, -N<u>H</u>), 5.82-5.72 (m, 1H), 5.19-5.09 (m, 3H), 2.68-2.60 (m, 1H), 2.53-2.45 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.1, 143.20-143.19 (m), 142.3, 133.0, 131.3 (q, <sup>2</sup>*J*<sub>F-C</sub> = 33 Hz, 1H), 130.2, 127.6, 125.8 (q, <sup>3</sup>*J*<sub>F-C</sub> = 4 Hz, 1H), 124.4, 124.0 (q, <sup>1</sup>*J*<sub>F-C</sub> = 271 Hz, 1H), 118.8, 88.2, 39.7; IR (KBr) 3250, 3119, 1608, 1525, 1326, 1186, 1134, 1067, 1010, 928, 857, 741, 684, 639, 590 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup>415.0576 found 415.0566. N-((1-(3,5-dimethylphenyl)but-3-en-1-yl)oxy)-4-nitrobenzenesulphonamide (4f)



According to the representative procedure, the reaction gave 4f (1.37 g, 3.65 mmol, 73% yield) as a white solid from the corresponding alcohol (881 mg, 5.00 mmol).

TLC Rf = 0.45 (hexane / ethyl acetate = 3 : 1); M.p. 73.6-77.8 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.36 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.12 (dt, *J* = 8.8, 2.0 Hz, 2H), 6.95 (s, 1H), 6.86 (s, 2H), 6.80 (s, 1H, -N<u>H</u>), 5.85-5.75 (m, 1H), 5.14 (t, *J* = 1.2 Hz, 1H), 5.12-5.10 (m, 1H) 4.98 (dd, *J* = 8.4, 5.6 Hz, 1H), 2.64-2.56 (m, 1H), 2.49-2.42 (m, 1H) , 2.30 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.8, 142.4, 137.8, 134.3, 131.9, 130.1 x 2, 124.18, 124.17, 117.8, 85.9, 37.6, 20.9; IR (KBr) 3449, 2914, 1560, 1403, 1174, 925, 694 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>18</sub>H<sub>19</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup>375.1015 found 375.1009.

*N*-((1-mesitylbut-3-en-1-yl)oxy)-4-nitrobenzenesulphonamide (4g)



According to the representative procedure, the reaction gave 4g (1.21 g, 3.10 mmol, 62% yield) as a white solid from the corresponding alcohol (951 mg, 5.00 mmol).

TLC Rf = 0.33 (hexane / ethyl acetate = 3 : 1); M.p. 109.3-117.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.34 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.08 (dt, *J* = 9.2, 2.0 Hz, 2H), 6.91 (s, 1H, -N<u>H</u>), 6.80 (s, 2H), 5.85-5.74 (m, 1H), 5.56 (dd, *J* = 8.4, 6.0 Hz, 1H), 5.15-5.10 (m, 2H), 2.82-2.74 (m, 1H), 2.53-2.46 (m, 1H), 2.28 (s, 6H), 2.25 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.5, 139.2, 138.3, 134.1, 130.3, 130.2, 125.0, 124.2, 117.9, 88.9, 39.9, 21.4 x 2; IR (KBr) 3230, 1642, 1405, 1174, 921, 684 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>19</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>5</sub>S [M+Na]<sup>+</sup> 413.1147 found 413.1134.

*N*-((1-(furan-2-yl)but-3-en-1-yl)oxy)-4-nitrobenzenesulphonamide (4h)



According to the representative procedure, the reaction gave **4h** (473 mg, 1.40 mmol, 28% yield) as a white solid from the corresponding alcohol (690 mg, 5.00 mmol).

TLC Rf = 0.25 (hexane / ethyl acetate = 5 : 1); M.p. 143.3-145.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.36 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.11 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.40 (dd, *J* = 1.6, 0.8 Hz 1H), 6.92 (s, 1H, -N<u>H</u>), 6.42 (d, *J* = 3.2 Hz, 1H), 6.36 (dd, *J* = 3.2, 2.0 Hz 1H), 5.83-5.72 (m, 1H), 5.18-5.12 (m, 2H),

5.08 (t, J = 7.2 Hz, 1H), 2.79-2.71 (m, 1H), 2.68-2.60 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.3, 150.9, 143.3, 142.4, 133.1, 130.2, 124.3, 118.4, 110.6, 110.5, 81.2, 36.1; IR (KBr) 3232, 1525, 1349, 1170, 1087, 1011, 933, 855, 754, 596 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>14</sub>H<sub>13</sub>N<sub>2</sub>O<sub>6</sub>S [M-H]<sup>-</sup>337.0494 found 337.0492.

4-nitro-N-((1-(thiophen-2-yl)but-3-en-1-yl)oxy)benzenesulphonamide (4i)

According to the representative procedure, the reaction gave **4i** (443 mg, 1.25 mmol, 25% yield) as a white solid from the corresponding alcohol (770 mg, 5.00 mmol).

TLC Rf = 0.32 (hexane / ethyl acetate = 5 : 1); M.p. 138.3-140.3 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.37 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.12 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.32 (ddd, *J* = 5.2, 1.2, 0.4 Hz, 1H), 7.09 (ddd, *J* = 3.6, 1.2, 0.4 Hz, 1H), 7.00 (dd, *J* = 5.2, 3.6 Hz, 1H), 6.88 (s, 1H, -N<u>H</u>), 5.87-5.76 (m, 1H), 5.32 (dd, *J* = 7.6, 6.4 Hz, 1H), 5.19-5.14 (m, 2H), 2.79-2.71 (m, 1H), 2.66-2.58 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.4, 141.7, 133.3, 130.2, 127.6, 127.0, 126.4, 124.3, 118.5, 83.9, 39.7; IR (KBr) 3241, 1525, 1342, 1310, 1168, 1087, 936, 855, 816, 754 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>13</sub>N<sub>2</sub>O<sub>5</sub>S<sub>2</sub> [M-H]<sup>-</sup> 353.0266 found 353.0274.

N-((1-(benzo[d][1,3]dioxol-5-yl)but-3-en-1-yl)oxy)-4-nitrobenzenesulfonamide (4j)



According to the representative procedure, the reaction gave **4j** (863 mg, 2.20 mmol, 73% yield) as a white solid from the corresponding alcohol (577 mg, 3.00 mmol).

TLC Rf = 0.50 (hexane / ethyl acetate = 2 : 1); M.p. 133.7-138.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.37 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.10 (dt, *J* = 8.8, 2.0 Hz, 2H), 6.84 (s, 1H, -NH), 6.78-6.73 (m, 2H), 6.709-6.706 (m, 1H), 5.96 (br s, 2H), 5.81-5.71 (m, 1H), 5.13-5.09 (m, 2H), 4.96 (dd, *J* = 8.0, 6.4Hz, 1H), 2.61 (dt, *J* = 14.4, 8.0 Hz, 1H), 2.47-2.40 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl3)  $\delta$  : 150.9, 148.1, 148.0, 142.5, 133.7, 132.9, 130.2, 124.3, 121.5, 118.2, 108.4, 107.3, 101.4, 88.6, 39.6; IR (KBr) 3219, 2904, 2784, 1604, 1528, 1489, 1446, 1350, 1317, 1245, 1174, 1088, 1041, 926, 864, 818, 745, 686 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>15</sub>N<sub>2</sub>O<sub>7</sub>S [M-H]<sup>+</sup> 391.0600 found 391.0600. *N*-((2-methylhex-5-en-3-yl)oxy)-4-nitrobenzenesulphonamide (4k)



According to the representative procedure, the reaction gave **4k** (565 mg, 1.80 mmol, 36% yield) as a white solid from the corresponding alcohol (571 mg, 5.00 mmol).

TLC Rf = 0.36 (hexane / ethyl acetate = 5 : 1); M.p. 100.9-102.8 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.39 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.14 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.01 (s, 1H, -N<u>H</u>), 5.89-5.78 (m, 1H), 5.13-5.12 (m, 1H), 5.09-5.08 (m, 1H), 3.97 (dt, *J* = 6.8, 4.8 Hz, 1H), 2.41-2.35 (m, 1H), 2.30-2.23 (m, 1H), 2.05-1.97 (m, 1H), 0.90 (d, *J* = 6.8Hz, 3H), 0.88 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.7, 134.9, 130.2, 124.3, 117.5, 91.4, 33.6, 29.3, 18.3, 17.8; IR (KBr) 3242, 2970, 1529, 1351, 1172, 1089, 1013, 922, 859, 603 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>13</sub>H<sub>17</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 313.0858 found 313.0823.

N-((1-cyclohexylbut-3-en-1-yl)oxy)-4-nitrobenzenesulphonamide (41)



According to the representative procedure, the reaction gave **4l** (567 mg, 1.60 mmol, 32% yield) as a white solid from the corresponding alcohol (771 mg, 5.00 mmol).

TLC Rf = 0.43 (hexane / ethyl acetate = 5 : 1); M.p. 121.7-124.4 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.39 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.14 (dt, *J* = 9.2, 2.0 Hz, 2H), 6.95 (s, 1H, -N<u>H</u>), 5.88-5.78 (m, 1H), 5.12 (br s, 1H), 5.07 (br s, 1H), 3.96 (dt, *J* = 6.8, 4.8 Hz, 1H), 2.45-2.39 (m, 1H), 2.31-2.23 (m, 1H), 1.75-1.58 (m, 5H), 1.27-0.90 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.8, 134.9, 130.1, 124.3, 117.5, 90.9, 39.3, 33.9, 28.8, 28.3, 26.5, 26.24, 26.23; IR (KBr) 3244, 2934, 1533, 1347, 1178, 1090, 925, 857, 743, 692, 607 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>16</sub>H<sub>21</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 353.1171 found 353.1171.

N-(dodec-1-en-4-yloxy)-4-nitrobenzenesulphonamide (4m)



According to the representative procedure, the reaction gave 4m (1.13 g, 2.95 mmol, 59% yield) as a white solid from the corresponding alcohol (921 mg, 5.00 mmol).

TLC Rf = 0.43 (hexane / ethyl acetate = 5 : 1); M.p. 69.7-73.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.13 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.01 (s, 1H, -N<u>H</u>), 5.83-5.73 (m, 1H),

5.11-5.10 (m, 1H), 5.08-5.07 (m, 1H), 4.13 (quint., J = 6.0 Hz, 1H), 2.41-2.29 (m, 2H), 1.56-1.45 (m, 2H), 1.32-1.27 (m, 12H), 0.88 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.8, 142.6, 134.0, 130.1, 124.2, 117.8, 86.6, 37.0, 32.1, 31.9, 29.7, 29.6, 29.3, 25.3, 22.7, 14.2; IR (KBr) 3220, 2919, 2851, 1520, 1348, 1173, 1089, 1012, 934, 856, 762, 712, 597 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>18</sub>H<sub>27</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 383.1641 found 383.1637.

4-nitro-*N*-((1-phenylhex-5-en-3-yl)oxy)benzenesulphonamide (4n)



According to the representative procedure, the reaction gave **4n** (903 mg, 2.40 mmol, 48% yield) as a white solid from the corresponding alcohol (881 mg, 5.00 mmol).

TLC Rf = 0.63 (hexane / ethyl acetate = 2 : 1); M.p. 108.3-114.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.39 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.12 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.30-7.28 (m, 2H), 7.22-7.16 (m, 3H), 6.81 (s, 1H, -N<u>H</u>), 5.83-5.73 (m, 1H), 5.14-5.13 (m, 1H), 5.10-5.09 (m, 1H), 4.19 (quint, *J* = 6.0 Hz, 1H), 2.75-2.61 (m, 2H), 2.43-2.40 (m, 2H), 1.94-1.80 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.8, 142.5, 141.6, 133.7, 130.0, 128.6, 128.4, 126.2, 124.3, 118.1, 86.1, 37.0, 33.8, 31.6; IR (KBr) 3224, 2927, 1525, 1343, 1311, 1170, 1088, 855, 760, 698, 598 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>18</sub>H<sub>19</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 375.1015 found 375.1007.

N-((8-((tert-butyldiphenylsilyl)oxy)oct-1-en-4-yl)oxy)-4-nitrobenzenesulphonamide (40)

# P-Ns O<sup>-ŃH</sup> TBDPSO

According to the representative procedure, the reaction gave **4o** (1.89 g, 3.25 mmol, 65% yield) as pale yellow oil from the corresponding alcohol (1.91 g, 5.00 mmol).

TLC Rf = 0.32 (hexane / ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>);  $\delta$  : 8.33 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.09 (dt, *J* = 9.2, 2.0 Hz, 2H), 7.68-7.65 (m, 4H), 7.44-7.36 (m, 6H), 6.87 (s, 1H, -N<u>H</u>), 5.82-5.72 (m, 1H), 5.11-5.07 (m, 2H), 4.16-4.10 (m, 1H), 3.67 (t, *J* = 6.0 Hz, 2H), 2.37-2.32 (m, 2H), 1.57-1.41 (m, 6H), 1.05 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.6, 135.7, 134.1, 134.0, 130.1, 129.7, 127.8, 124.3, 117.9, 86.6, 63.7, 37.1, 32.5, 31.8, 27.0, 21.6, 19.4; IR (neat) 2930, 2858, 1535, 1349, 1176, 1111, 744, 704 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>30</sub>H<sub>38</sub>N<sub>2</sub>NaO<sub>6</sub>SSi [M+Na]<sup>+</sup> 605.2118 found 605.2106.

*N*-((1-(benzyloxy)hex-5-en-3-yl)oxy)-4-nitrobenzenesulfonamide (4p)

According to the representative procedure, the reaction gave 4p (1.08 g, 2.65 mmol, 66% yield) as a colorless oil from the corresponding alcohol (827 mg, 4.00 mmol).

TLC Rf = 0.60 (hexane / ethyl acetate = 2 : 1);<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.27 (dt, *J* = 9.2, 2.0 Hz, 2H), 7.94 (dt, *J* = 9.2.0, 2.0 Hz, 2H), 7.39-7.27 (m, 5H), 5.84-5.74 (m, 1H), 5.11-5.07 (m, 2H), 4.50 (d, *J* = 12.0, 1H), 4.46 (d, *J* = 12.0, 1H), 4.21 (dt, *J* = 11.6, 6.4 Hz, 1H), 3.62-3.53 (m, 2H), 2.45-2.31 (m, 2H), 1.90-1.85 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl3)  $\delta$  : 150.7, 142.7, 138.1, 133.9, 129.9, 128.7, 128.0, 127.9, 124.2, 118.0, 84.4, 73.3, 67.0, 37.5, 32.5; IR (neat) 3234, 3106, 2917, 2849, 1606, 1532, 1349, 1312, 1175, 1090, 1013, 919, 855, 744, 699, 599 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>19</sub>H<sub>23</sub>N<sub>2</sub>O<sub>6</sub>S [M+H]<sup>+</sup> 407.1277 found 407.1290.

tert-butyl (6-(((4-nitrophenyl)sulphonamido)oxy)non-8-en-1-yl)carbamate (4q)



According to the representative procedure, the reaction gave 4q (892 mg, 1.95 mmol, 39% yield) as yellow oil from the corresponding alcohol (1.29 g, 5.00 mmol).

TLC Rf = 0.33 (hexane / ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.15 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.94 (br s, 1H, -N<u>H</u>), 5.85-5.75 (m, 1H), 5.11 (br s, 1H), 5.09-5.06 (m, 1H), 4.58 (br s, 1H, -N<u>H</u>), 4.19-4.13 (m, 1H), 3.19-3.12 (m, 1H), 3.03-2.97 (m, 1H), 2.38-2.26 (m, 2H), 1.55-1.46 (m, 2H), 1.45 (s, 9H), 1.39-1.29 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 156.5, 150.8, 143.1, 134.4, 130.1, 124.2, 117.7, 86.0, 79.6, 39.8, 36.9, 31.0, 29.4, 28.6, 25.9, 22.7; IR (neat) 3449, 3212, 1534, 1350, 1174, 1090, 925, 853, 752, 694 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>20</sub>H<sub>31</sub>N<sub>3</sub>NaO<sub>7</sub>S [M+Na]<sup>+</sup> 480.1780 found 480.1782.

4-nitro-*N*-((2-phenylbut-3-en-1-yl)oxy)benzenesulphonamide (4r)



According to the representative procedure, the reaction gave **4r** (522 mg, 1.50 mmol, 30% yield) as a white solid from the corresponding alcohol (740 mg, 5.00 mmol).

TLC Rf = 0.24 (hexane / ethyl acetate = 5 : 1); M.p. 79.3-81.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.24 (dt, J = 8.8, 2.0 Hz, 2H), 7.74 (dt, J = 8.8, 2.0 Hz, 2H), 7.40-7.29 (m, 3H), 7.23-7.21(m, 2H),

6.99 (s, 1H, -N<u>H</u>), 5.95 (ddd, J = 17.6, 10.4, 7.2, 1H), 5.19-5.09 (m, 2H), 4.41-4.31 (m, 2H), 3.68 (q, J = 7.2 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ :150.8, 142.0, 140.3, 137.5, 130.1, 128.9, 128.2, 127.3, 124.2, 117.0, 80.4, 48.4; IR (KBr) 3249, 3101, 1531, 1348, 1170, 1088, 930, 857, 745, 703, 551 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 347.0702 found 347.0701.

*N*-(hexa-1,5-dien-3-yloxy)-4-nitrobenzenesulphonamide (4s)



According to the representative procedure, the reaction gave **4s** (700 mg, 2.35 mmol, 47% yield) as a white solid from the corresponding alcohol (490 mg, 5.00 mmol).

TLC Rf = 0.43 (hexane / ethyl acetate = 3 : 1); M.p. 93.6-94.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.39 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.13 (dt, *J* = 8.8, 2.0 Hz, 2H), 6.90 (s, 1H, -N<u>H</u>), 5.83-5.66 (m, 2H), 5.35-5.29 (m, 2H), 5.14-5.09 (m, 2H), 4.52 (q, *J* = 6.8 Hz, 1H), 2.45-2.32 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.5, 135.4, 133.3, 130.2, 124.3, 120.1, 118.2, 87.6, 37.9; IR (KBr) 3221, 3118, 2938, 1647, 1606, 1524, 1408, 1345, 1312, 1171, 1087, 987, 933, 856, 820, 761, 715, 687, 598, 542, 458; HRMS (ESI) *m*/*z* calcd for C<sub>12</sub>H<sub>13</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 297.0545 found 297.0547.

4-nitro-N-(octa-1,7-dien-4-yloxy)benzenesulphonamide (4t)

According to the representative procedure, the reaction gave **4t** (864 mg, 2.65 mmol, 53% yield) as a white solid from the corresponding alcohol (631 mg, 5.00 mmol).

TLC Rf = 0.4 (hexane / ethyl acetate = 3 : 1); M.p. 73.3-76.5 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.40 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.13 (dt, *J* = 8.8, 2.0 Hz, 2H), 6.92 (s, 1H, -N<u>H</u>), 5.85-5.73 (m, 2H), 5.14-4.98 (m, 4H), 4.16 (quint., *J* = 6.0 Hz, 1H), 2.40-2.36 (m, 2H), 2.15-2.08 (m, 2H), 1.73-1.58 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.6, 137.8, 133.9, 130.1, 124.4, 118.1, 115.4, 86.2, 37.1, 31.4, 29.5; IR (KBr) 3216, 3123, 2938, 2857, 1931, 1642, 1607, 1524, 1454, 1412, 1343, 1312, 1170, 1107, 1088, 1042, 1010, 926, 855, 825, 762, 709, 680, 627, 597 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>14H17N2O5S</sub> [M-H]<sup>-</sup> 325.0858 found 325.0847.

4-nitro-*N*-(oct-1-en-7-yn-4-yloxy)benzenesulphonamide (4u)

According to the representative procedure, the reaction gave **4u** (697 mg, 2.15 mmol, 43% yield) as a white solid from the corresponding alcohol (620 mg, 5.00 mmol).

TLC Rf = 0.24 (hexane / ethyl acetate = 5 : 1); M.p. 77.3-78.5 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.40 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.14 (dt, *J* = 9.2, 2.0 Hz, 2H), 7.00 (s, 1H, -N<u>H</u>), 5.83-5.72 (m, 1H), 5.15-5.10 (m, 2H), 4.25 (quint, *J* = 6.0 Hz, 1H), 2.47-2.34 (m, 2H), 2.27 (td, *J* = 7.2, 2.8 Hz, 2H), 1.98 (t, *J* = 2.8 Hz, 1H), 1.82-1.76(m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.6, 133.5, 130.1, 124.4, 118.4, 85.1, 83.6, 69.2, 36.9, 30.9, 14.7; IR (KBr) 3288, 3208, 3105, 2937, 2114, 1606, 1525, 1413, 1348, 1313, 1171, 1089, 1002, 923, 857, 752, 682, 643, 593 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>14</sub>H<sub>15</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 323.0702 found 323.0696.

#### 3. Representative procedure for the Mn(III)-catalysed oxygenative aminoperoxidation

(2-((4-nitrophenyl)sulphonyl)-5-phenylisoxazolidin-3-yl)methanol (2d)



### (Representative procedure)

To a stirred solution of sulphonamide **1d** (69.7 mg, 0.200 mmol) in EtOH (2.00 mL) at room temperature was added Mn(III)-complex **3d** (2.1 mg, 2.0  $\mu$ mol) under air (open flask). The progress of the reaction was monitored by TLC analysis. After 21 h, saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (0.5 mL) was added and the mixture was stirred for 30 min. The resulting mixture was extracted with ethyl acetate (3 x 1 mL). The combined organic layer was washed with brine (2 x 1 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 3 : 1) to give **2d** (65.4 mg, 0.180 mmol, 90% yield, dr = 17 : 1) as colorless oil. The diastereomeric ratio was determined by <sup>1</sup>H-NMR analysis of the crude product.

## (Gram-scale synthesis)

To a stirred solution of sulphonamide **1d** (1.10 g, 3.15 mmol) in EtOH (31.5 mL) at room temperature was added Mn(III)-complex **3d** (32.4 mg, 31.5  $\mu$ mol) under air (open flask). After 48 h, saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (8 mL) was added and the mixture was stirred for 30 min. The resulting mixture was extracted with ethyl acetate (3 x 15 mL). The combined organic layer was washed with brine (2 x 10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 3 : 1) to give **2d** (1.09 g, 3.00 mmol, 95% yield, dr = 17 : 1) as colorless oil. The diastereomeric ratio was determined by <sup>1</sup>H-NMR analysis of the crude product.

TLC Rf = 0.16 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.21 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.37-7.30 (m, 5H), 5.37 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.67-4.61 (m, 1H), 3.93-3.87 (m, 1H), 3.84-3.78 (m, 1H), 2.83 (ddd, *J* = 12.4, 8.0, 6.0 Hz, 1H), 2.29 (ddd, *J* = 12.4, 10.4, 7.6 Hz, 1H), 2.05 (t, *J* = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.0, 135.8, 130.7, 129.3, 128.9, 127.1, 124.4, 84.2, 64.5, 62.0, 39.0; IR (neat) 3545, 3107, 2929, 1606, 1532, 1458, 1351, 1312, 1168, 1091, 855, 741, 619 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>16</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 387.0627 found 387.0617.

(5-phenyl-2-tosylisoxazolidin-3-yl)methanol (2a)

О-N Рh О-N ОН

According to the representative procedure, the reaction gave 2a (50.0 mg, 0.150 mmol, 75% yield, dr = 17 : 1) as colorless oil from 1a (63.4 mg, 0.200 mmol).

TLC Rf = 0.13 (hexane / ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.85 (d, *J* = 8.0 Hz, 2H), 7.32-7.21 (m, 7H), 4.99 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.45-4.39 (m, 1H), 3.83-3.80 (m, 1H), 3.73 (dd, *J* = 11.6, 6.0 Hz, 1H), 2.64 (ddd, *J* = 12.0, 8.0, 6.0 Hz, 1H), 2.40 (s, 3H), 2.16 (ddd, *J* = 12.0, 10.4, 8.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 145.5, 136.3, 132.6, 130.0, 129.5, 129.1, 128.8, 127.1, 83.4, 64.7, 62.6, 39.2, 21.9; IR (neat) 3386, 2922, 2879, 1596, 1451, 1354, 1334, 1163, 1091, 815, 759, 699, 673, 590 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>17</sub>H<sub>19</sub>NNaO<sub>4</sub>S [M+Na]<sup>+</sup> 356.0933 found 356.0919.

(2-((4-methoxyphenyl)sulphonyl)-5-phenylisoxazolidin-3-yl)methanol (2b)

According to the representative procedure, the reaction gave 2b (50.3 mg, 0.144 mmol, 72% yield, dr = 17 : 1) as colorless oil from 1b (66.6 mg, 0.200 mmol).
TLC Rf = 0.11 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.94 (d, *J* = 8.8 Hz, 2H), 7.34-7.27 (m, 5H), 7.03 (dt, *J* = 8.8 Hz, 2H), 5.08 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.49-4.23 (m, 1H), 3.89-3.84 (m, 4H), 3.80-3.74 (m, 1H), 2.70 (ddd, *J* = 12.0, 8.0, 6.0 Hz, 1H), 2.28 (t, *J* = 6.4 Hz, 1H, -O<u>H</u>), 2.21 (ddd, *J* = 12.4, 10.4, 8.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 164.4, 136.4, 131.7, 129.0, 128.8, 127.1, 126.8, 114.6, 83.3, 64.6, 62.7, 55.9, 39.2; IR (neat) 3527, 2944, 1595, 1497, 1459, 1353, 1264, 1159, 1093, 1025, 836, 805, 760, 699, 678, 591 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>17</sub>H<sub>19</sub>NNaO<sub>6</sub>S [M+Na]<sup>+</sup> 372.0882 found 372.0886.

(5-phenyl-2-((4-(trifluoromethyl)phenyl)sulphonyl)isoxazolidin-3-yl)methanol (2c)

According to the representative procedure, the reaction gave 2c (64.3 mg, 0.166 mmol, 83% yield, dr = 17 : 1) as colorless oil from 1c (74.2 mg, 0.200 mmol).

TLC Rf = 0.11 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.15 (d, *J* = 8.4 Hz, 2H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.36-7.29 (m, 5H), 5.31 (dd, *J* = 10.4, 6.4 Hz, 1H), 4.64-4.58 (m, 1H), 3.92-3.87 (m, 1H), 3.83-3.77 (m, 1H), 2.80 (ddd, *J* = 12.4, 8.0, 6.0 Hz, 1H), 2.27 (ddd, *J* = 12.4, 10.4, 7.6 Hz, 1H), 2.12 (t, *J* = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 139.9 (q, <sup>4</sup>*J*<sub>F-C</sub> = 2 Hz), 135.8 (q, <sup>2</sup>*J*<sub>F-C</sub> = 33 Hz), 135.6, 129.9, 129.4, 128.9, 127.1, 126.4 (q, <sup>3</sup>*J*<sub>F-C</sub> = 4 Hz), 123.2 (q, <sup>1</sup>*J*<sub>F-C</sub> = 272 Hz), 83.9, 78.0, 57.2, 39.2; IR (neat) 3437, 2927, 1406, 1324, 1169, 1135, 1109, 1064, 1017, 845, 761, 715, 618 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>16</sub>F<sub>3</sub>NNaO<sub>4</sub>S [M+Na]<sup>+</sup>410.0650 found 410.0658.

(2-((4-nitrophenyl)sulphonyl)-5-(p-tolyl)isoxazolidin-3-yl)methanol (5a)



According to the representative procedure, the reaction gave 5a (62.0 mg, 0.164 mmol, 82% yield, dr = 17 : 1) as colorless oil from 4a (72.4 mg, 0.200 mmol).

TLC Rf = 0.12 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.20 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.15 (d, *J* = 8.0 Hz, 2H), 5.32 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.66-4.59 (m, 1H), 3.93-3.87 (m, 1H), 3.84-3.77 (m, 1H), 2.79 (ddd, *J* = 12.4, 8.0, 6.0 Hz, 1H), 2.36-2.24 (m, 1H), 2.33 (s, 3H), 2.07 (t, *J* = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.0, 139.4, 132.6, 130.7, 130.0, 127.2, 124.3, 84.1, 64.5, 62.1, 38.7, 21.3; IR (neat) 3399, 2918, 2856, 1529, 1353, 1308, 1260, 1167, 1088, 1031, 814 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 401.0783 found 401.0782.

(5-(4-(tert-butyl)phenyl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5b)

According to the representative procedure, the reaction gave **5b** (59.7 mg, 0.142 mmol, 71% yield, dr = 17 : 1) as yellow oil from **4b** (80.8 mg, 0.200 mmol).

TLC Rf = 0.21 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.20 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.37 (dt, *J* = 8.4, 2.0 Hz, 2H), 7.26-7.24 (m, 2H), 5.34 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.66-4.60 (m, 1H), 3.93-3.88 (m, 1H), 3.84-3.78 (m, 1H), 2.80 (ddd, *J* = 12.4, 8.0, 6.0 Hz, 1H), 2.29 (ddd, *J* = 12.4, 10.8, 8.0 Hz, 1H), 2.05 (t, *J* = 6.4 Hz, 1H, -O<u>H</u>), 1.29 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 152.6, 151.0, 142.0, 132.6, 130.7, 127.0, 125.8, 124.3, 84.1, 64.5, 62.1, 38.7, 34.8, 31.3; IR (neat) 3547, 3412, 2963, 1607, 1534, 1350, 1312, 1168, 1092, 855, 831, 741, 685, 620, 573 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>20</sub>H<sub>24</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 443.1253 found 443.1247.

(5-(4-methoxyphenyl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5c)

According to the representative procedure, the reaction gave 5c (40.2 mg, 0.102 mmol, 51% yield, dr = 17 : 1) as yellow oil from 4c (75.6 mg, 0.200 mmol).

TLC Rf = 0.14 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.20 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.24-7.23 (m, 2H), 6.89-6.85 (m, 2H), 5.31 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.66-4.60 (m, 1H), 3.94-3.88 (m, 1H), 3.84-3.78 (m, 1H), 3.79 (s, 3H), 2.77 (ddd, *J* = 12.4, 8.4, 6.0 Hz, 1H), 2.29 (ddd, *J* = 12.4, 10.4, 8.0 Hz, 1H), 2.05 (t, *J* = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 160.5, 151.0, 142.1, 130.7, 128.8, 127.3, 124.3, 114.3, 84.1, 64.6, 62.1, 55.5, 38.6; IR (neat) 3531, 3108, 2923, 1611, 1532, 1351, 1310, 1254, 1169, 1032, 855, 831, 741, 685, 620 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>18</sub>H<sub>19</sub>N<sub>2</sub>O<sub>9</sub>S [M+HCO<sub>2</sub>]<sup>-</sup>439.0811 found 439.0793.

(5-(4-bromophenyl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5d)



According to the representative procedure, the reaction gave **5d** (68.9 mg, 0.156 mmol, 78% yield, dr = 17:1) as brown oil from **4d** (85.1 mg, 0.200 mmol).

TLC Rf = 0.18 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, J = 8.8, 2.0

Hz, 2H), 8.19 (dt, J = 8.8, 2.0 Hz, 2H), 7.48 (dt, J = 8.8, 2.0 Hz, 2H), 7.19 (dt, J = 8.8, 2.0 Hz, 2H), 5.35 (dd, J = 10.0, 6.0 Hz, 1H), 4.68-4.61 (m, 1H), 3.89 (ddd, J = 11.6, 6.4, 4.0 Hz, 1H), 3.82-3.76 (m, 1H), 2.83 (ddd, J = 12.4, 8.0, 6.0 Hz, 1H), 2.24 (ddd, J = 12.4, 10.4, 8.0 Hz, 1H), 2.02 (t, J = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.1, 141.9, 135.0, 132.1, 130.7, 128.7, 124.4, 123.3, 83.4, 64.4, 61.9, 38.9; IR (neat) 3545, 3412, 1532, 1350, 1308, 1168, 1084, 1011, 863, 741, 619 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>16</sub>H<sub>14</sub>BrN<sub>2</sub>O<sub>6</sub>S [M-H]<sup>-</sup>440.9756 found 440.9745.

(2-((4-nitrophenyl)sulphonyl)-5-(4-(trifluoromethyl)phenyl)isoxazolidin-3-yl)methanol (5e)



According to the representative procedure, the reaction gave 5e (46.7 mg, 0.108 mmol, 54% yield, dr = 17 : 1) as colorless oil from 4e (83.2 mg, 0.200 mmol).

TLC Rf = 0.18 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.39 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.20 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.61 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 5.48 (dd, *J* = 10.0, 6.0 Hz, 1H), 4.71-4.65 (m, 1H), 3.90 (ddd, *J* = 12.0, 6.4, 4.0 Hz, 1H), 3.83-3.77 (m, 1H), 2.90 (ddd, *J* = 12.4, 8.4, 6.4 Hz, 1H), 2.26 (ddd, *J* = 12.4, 10.0, 7.6 Hz, 1H), 2.01 (t, *J* = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.2, 141.9, 140.1, 131.4 (q, <sup>2</sup>*J*<sub>F-C</sub> = 32 Hz, 1H), 130.7, 127.2, 125.9 (q, <sup>1</sup>*J*<sub>F-C</sub> = 275 Hz, 1H), 125.9 (q, <sup>3</sup>*J*<sub>F-C</sub> = 4 Hz, 1H), 124.4, 83.3, 64.4, 61.8, 39.2; IR (neat) 3481, 3425, 3103, 2940, 1532, 1335, 1172, 1118, 1069, 1016, 840, 741, 619, 568, 460 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>14</sub>F<sub>3</sub>N<sub>2</sub>O<sub>6</sub>S [M-H]<sup>-</sup>431.0525 found 431.0510.

(5-(3,5-dimethylphenyl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5f)



According to the representative procedure, the reaction gave **5f** (51.8 mg, 0.132 mmol, 66% yield, dr = >20:1) as colorless oil from **4f** (75.2 mg, 0.200 mmol).

TLC Rf = 0.33 (hexane / ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.37 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.20 (dt, *J* = 9.2, 2.0 Hz, 2H), 6.97 (s, 1H), 6.91 (s, 2H), 5.27 (dd, *J* = 10.0, 6.0 Hz, 1H), 4.64-4.58 (m, 1H), 3.89 (dd, *J* = 11.6, 4.0 Hz, 1H), 3.81 (dd, *J* = 11.6, 6.0 Hz, 1H), 2.78 (ddd, *J* = 12.4, 8.0, 6.0 Hz, 1H), 2.30-2.22 (m, 1H), 2.29 (s, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.1, 138.6, 135.6, 131.0, 130.7, 124.9, 124.3, 84.3, 64.5, 62.1, 39.0, 21.4; IR (neat) 3579, 2919, 1604, 1403, 11183, 1011, 780, 686, 465 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 415.0940 found 415.0934.

(5-mesityl-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5g)

According to the representative procedure, the reaction gave 5g (69.9 mg, 0.172 mmol, 86% yield, dr = >20 : 1) as a white solid from 4g (78.0 mg, 0.200 mmol).

TLC Rf = 0.37 (hexane / ethyl acetate = 3 : 1); M.p. 153.3-156.5 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.37 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.19 (dt, *J* = 9.2, 2.0 Hz, 2H), 6.82 (s, 2H), 5.64 (dd, *J* = 11.6, 6.4 Hz,1H), 4.63-4.57 (m, 1H), 3.95 (dd, *J* = 11.6, 4.0 Hz, 1H), 3.85 (dd, *J* = 11.6, 5.6 Hz, 1H), 2.60-2.49 (m, 2H), 2.29 (s, 6H), 2.24 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.2, 138.7, 137.5, 130.7, 130.5, 127.1, 124.3, 81.2, 64.6, 62.3, 35.2, 20.9, 20.8.; IR (KBr) 3368, 2924, 1544, 1365, 1261, 1038, 852, 703, 571 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>19</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 429.1096 found 429.1084.

(5-(furan-2-yl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5h)

According to the representative procedure, the reaction gave **5h** (58.1 mg, 0.164 mmol, 82% yield, dr = 7:1) as colorless oil from **4h** (67.6 mg, 0.200 mmol).

TLC Rf = 0.22 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>);  $\delta$  : 8.38 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.21 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.41 (dd, *J* = 2.0, 0.8 Hz, 1H), 6.45 (dd, *J* = 3.6, 0.8 Hz, 1H), 6.35 (dd, *J* = 3.6, 2.0 Hz, 1H), 5.53 (dd, *J* = 9.2, 7.6 Hz, 1H), 4.72-4.66 (m, 1H), 3.84 (br s, 2H), 2.77 (ddd, *J* = 12.4, 8.4, 7.2 Hz, 1H), 2.51 (ddd, *J* = 12.8, 9.2, 6.0 Hz, 1H), 2.05 (br t, *J* = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.1, 148.0, 144.1, 142.0, 130.7, 124.3, 111.5, 110.8, 77.1, 64.1, 61.6, 34.6; IR (neat) 3544, 3108, 2930, 1536, 1352, 1168, 1013, 855, 741, 619 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>14</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>7</sub>S [M+Na]<sup>+</sup> 377.0419 found 377.0417.

(2-((4-nitrophenyl)sulphonyl)-5-(thiophen-2-yl)isoxazolidin-3-yl)methanol (5i)

According to the representative procedure, the reaction gave 5i (61.4 mg, 0.166 mmol, 83% yield, dr = 8 : 1) as colorless oil from 4i (70.9 mg, 0.200 mmol).

TLC Rf = 0.24 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.21 (dt, *J* = 9.2, 2.0 Hz, 2H), 7.34 (dd, *J* = 5.2, 0.8 Hz, 1H), 7.11 (dd, *J* = 3.6, 0.8 Hz, 1H), 6.98 (dd, *J* = 5.2, 3.6 Hz, 1H), 5.71 (dd, *J* = 9.6, 6.4 Hz, 1H), 4.71-4.64 (m, 1H), 3.88 (dd, *J* = 11.6, 4.0 Hz, 1H), 3.82 (dd, *J* = 11.6, 6.0 Hz, 1H), 2.90 (ddd, *J* = 12.4, 8.4, 6.4 Hz, 1H), 2.36 (ddd, *J* = 12.4, 10.0, 7.2 Hz, 1H), 1.84 (br s, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.1, 142.0, 138.1, 130.7,

127.9, 127.2, 127.1, 124.4, 79.8, 64.4, 61.9, 39.0; IR (neat) 3544, 3107, 2939, 1607, 1538, 1350, 1166, 1091, 855, 742, 619 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for  $C_{14}H_{14}N_2NaO_6S_2$  [M+Na]<sup>+</sup> 393.0191 found 393.0182.

(5-(benzo[d][1,3]dioxol-5-yl)-2-((4-nitrophenyl)sulfonyl)isoxazolidin-3-yl)methanol (5j)

According to the representative procedure, the reaction gave 5j (53.4 mg, 0.131 mmol, 65% yield, dr = > 20 : 1) as yellow oil from 4j (78.5 mg, 0.200 mmol).

TLC Rf = 0.17 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.38 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.20 (dt, *J* = 8.8, 2.0 Hz, 2H), 6.81-6.75 (m, 3H), 5.95-5.94 (m, 2H), 5.28 (dd, *J* = 10.4, 6.0 Hz, 1H), 4.65-4.59 (m, 1H), 3.90 (dd, *J* = 11.6, 4.0 Hz, 1H), 3.80 (dd, *J* = 11.6, 6.0 Hz, 1H), 2.77 (ddd, *J* = 12.4, 8.0, 6.0 Hz, 1H), 2.25 (ddd, *J* = 12.4, 10.4, 8.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 148.5, 148.2, 142.0, 130.7, 129.2, 124.4, 121.5, 108.5, 107.3, 101.5, 84.2, 64.5, 61.9, 38.7; IR (neat) 3389, 2916, 2849, 1533, 1505, 1446, 1350, 1311, 1250, 1166, 1090, 1037, 931, 855, 741, 684, 618. cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>17</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>8</sub>S [M+Na]<sup>+</sup> 431.0525 found 431.0531.

(5-isopropyl-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5k)

According to the representative procedure, the reaction gave 5k (48.2 mg, 0.146 mmol, 73% yield, dr = >20:1) as a white solid from 4k (62.8 mg, 0.200 mmol).

TLC Rf = 0.26 (hexane / ethyl acetate = 2 : 1); M.p. 113.0-116.6 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.40 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.17 (dt, *J* = 8.8, 2.0 Hz, 2H), 4.46-4.39 (m, 1H), 3.99 (ddd, *J* = 10.4, 8.0, 6.0 Hz, 1H), 3.81-3.76 (m, 1H), 3.70-3.65 (m, 1H), 2.44 (ddd, *J* = 12.0, 8.0, 6.0 Hz, 1H), 2.05-2.01 (m, 1H, -O<u>H</u>), 1.85 (ddd, *J* = 12.0, 10.4, 7.6 Hz, 1H), 1.77-1.65 (m, 1H), 0.93 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.1, 142.1, 130.7, 124.3, 87.9, 64.5, 61.8, 34.8, 31.3, 19.5, 18.8; IR (KBr) 3536, 3105, 2966, 2871, 1525, 1353, 1064, 940, 743, 617 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>13</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 353.0783 found 353.0778.

(5-cyclohexyl-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5l)

According to the representative procedure, the reaction gave **5**l (61.4 mg, 0.166 mmol, 83% yield, dr = >20:1) as a white solid from **4**l (70.8 mg, 0.200 mmol).

TLC Rf = 0.32 (hexane / ethyl acetate = 2 : 1); M.p. 166.2-168.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.41 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.17 (dt, *J* = 8.8, 2.0 Hz, 2H), 4.43-4.37 (m, 1H), 3.97 (ddd, *J* = 10.4, 8.0, 5.6 Hz, 1H), 3.80-3.77 (m, 1H), 3.68-3.64 (m, 1H), 2.43 (ddd, *J* = 12.0, 8.0, 5.6 Hz, 1H), 2.02 (br t, *J* = 6.0 Hz, 1H, -O<u>H</u>), 1.85 (ddd, *J* = 12.0, 10.0, 8.0 Hz, 1H), 1.79-1.52 (m, 4H), 1.46-1.36 (m, 1H), 1.28-1.11 (m, 4H), 1.01-0.92 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.1, 130.7, 124.3, 86.9, 64.6, 61.7, 40.9, 34.7, 30.0, 29.1, 26.2, 25.8, 25.5; IR (KBr) 3569, 3111, 2924, 2852, 1531, 1353, 1179, 1056, 856, 741, 641, 741 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>16</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 393.1096 found 393.1084.

(2-((4-nitrophenyl)sulphonyl)-5-octylisoxazolidin-3-yl)methanol (5m)

O-N<sup>P-Ns</sup> OH

According to the representative procedure, the reaction gave 5m (68.8 mg, 0.172 mmol, 86% yield, dr = >20:1) as a white solid from 4m (76.8 mg, 0.200 mmol).

TLC Rf = 0.26 (hexane / ethyl acetate = 2 : 1); M.p. 48.0-51.2 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.40 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.18 (dt, *J* = 8.8, 2.0 Hz, 2H), 4.47-4.40 (m, 1H), 4.31-4.27 (m, 1H), 3.80-3.76 (m, 1H), 3.70-3.65 (m, 1H), 2.50 (ddd, *J* = 12.0, 8.0, 6.0 Hz, 1H), 2.02 (br t, *J* = 6.0 Hz, 1H, -O<u>H</u>), 1.80 (ddd, *J* = 12.0, 10.0, 7.6 Hz, 1H), 1.57-1.46 (m, 2H), 1.33-1.25 (s, 12H), 0.88 (t, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.2, 130.6, 124.3, 82.9, 64.5, 61.7, 36.8, 32.7, 31.9, 29.6, 29.5, 29.3, 26.2, 22.8, 14.2; IR (KBr) 3246, 2923, 2853, 1543, 1354, 1167, 1092, 854, 743, 617 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>18</sub>H<sub>28</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 423.1566 found 423.1573.

(2-((4-nitrophenyl)sulphonyl)-5-phenethylisoxazolidin-3-yl)methanol (5n)

According to the representative procedure, the reaction gave 5n (70.6 mg, 0.180 mmol, 90% yield, dr = 7:1) as brown oil from 4n (75.2 mg, 0.200 mmol).

TLC Rf = 0.18 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.35 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.13 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.31-7.28 (m, 2H), 7.23-7.20 (m, 1H), 7.14-7.11 (m, 2H),

4.43-4.37 (m, 1H), 4.25-4.16 (m, 1H), 3.82-3.76 (m, 1H), 3.72-3.66 (m, 1H), 2.71-2.56 (m, 2H), 2.47 (ddd, J = 12.0, 8.4, 6.0 Hz, 1H), 2.00 (t, J = 6.4, 1H, -O<u>H</u>), 1.96-1.79 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.0, 140.5, 130.6, 128.7, 128.4, 126.5, 124.4, 81.9, 64.5, 61.9, 36.7, 34.3, 32.3; IR (neat) 3545, 3382, 2934, 1605, 1532, 1455, 1351, 1173, 1090, 855, 741, 685, 619, 574, 462 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>18</sub>H<sub>20</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 415.0940 found 415.0922.

(5-(4-((*tert*-butyldiphenylsilyl)oxy)butyl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (50)

TBDPSO

According to the representative procedure, the reaction gave **50** (93.3 mg, 0.156 mmol, 78% yield, dr = 17 : 1) as colorless oil from **40** (116 mg, 0.200 mmol).

TLC Rf = 0.34 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.36 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.16 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.66-7.63 (m, 4H), 7.43-7.35 (m, 6H), 4.47-4.41 (m, 1H), 4.33-4.25 (m, 1H), 3.80-3.75 (m, 1H), 3.70-3.62 (m, 3H), 2.49 (ddd, *J* = 12.4, 8.4, 6.0, 1H), 2.05-1.98 (m, 1H, -O<u>H</u>), 1.78 (ddd, *J* = 12.0, 10.0, 7.6 Hz, 1H), 1.58-1.36 (m, 5H), 1.26 (s, 1H), 1.04 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.0, 142.2, 135.7, 134.0, 130.6, 129.8, 127.8, 124.3, 82.9, 64.5, 63.6, 61.7, 36.7, 32.4, 32.3, 27.0, 22.7, 19.4; IR (neat) 3413, 2918, 2857, 1536, 1350, 1217, 1168, 1109, 759 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>30</sub>H<sub>38</sub>N<sub>2</sub>NaO<sub>7</sub>SSi [M+Na]<sup>+</sup> 621.2067 found 621.2056.

(5-(2-(benzyloxy)ethyl)-2-((4-nitrophenyl)sulfonyl)isoxazolidin-3-yl)methanol (5p)

According to the representative procedure, the reaction gave 5p (63.4 mg, 0.150 mmol, 75% yield, dr = 7:1) as colorless oil from 4p (81.2 mg, 0.200 mmol).

The following physical data were measured as an inseparable diastereomeric mixture (*syn*-5**p** : *anti*- $5\mathbf{p} = 7 : 1$ ).

TLC Rf = 0.13 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) *syn*-**5p**  $\delta$  : 8.27 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.11 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.40-7.29 (m, 5H), 4.52-4.36 (m, 2H), 4.488-4.485 (m, 2H), 3.78 (dd, *J* = 11.6, 4.0 Hz, 1H), 3.67 (dd, *J* = 11.6, 6.0 Hz, 1H), 3.50 (t, *J* = 6.0 Hz, 2H), 2.51 (ddd, *J* = 12.4, 8.0, 6.0 Hz, 1H), 1.95-1.81 (m, 3H), 1.66 (br s, 1H, -O<u>H</u>); *anti*-**5p**  $\delta$  : 8.33 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.11 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.40-7.29 (m, 5H), 4.52-4.36 (m, 2H), 4.488-4.485 (m, 2H), 3.73 (dd, *J* = 11.6, 4.8 Hz, 1H), 3.67 (dd, *J* = 11.6, 6.0 Hz, 1H), 3.50 (t, *J* = 6.0 Hz, 2H), 2.31-2.26 (m, 1H), 1.95-1.81 (m, 3H), 1.66 (br s, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) *syn*-**5p**  $\delta$  : 151.0, 141.8, 138.1, 130.6, 128.7, 128.0, 127.8, 124.3, 80.2, 73.3, 66.8, 64.4, 61.9, 36.9, 33.0; *anti*-**5p**  $\delta$  :

151.0, 141.0, 138.1, 130.9, 128.6, 127.9, 127.7, 124.1, 80.9, 73.2, 66.9, 63.8, 62.5, 37.1, 34.5; IR (neat) 3403, 2916, 2846, 1532, 1455, 1349, 1311, 1168, 1091, 1025, 855, 740, 684, 619 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>19</sub>H<sub>22</sub>N<sub>2</sub>NaO<sub>7</sub>S [M+Na]<sup>+</sup> 445.1045 found 445.1028.

*tert*-butyl (5-(3-(hydroxymethyl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-5-yl)pentyl)carbamate (5q)

BocHN 0-N P-Ns HocHN 0H

According to the representative procedure, the reaction gave 5q (56.8 mg, 0.120 mmol, 60% yield, dr = >20:1) as yellow oil from 4q (91.4 mg, 0.200 mmol).

TLC Rf = 0.45 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.41 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.17 (dt, *J* = 9.2, 2.0 Hz, 2H), 4.50 (br s, 1H, -N<u>H</u>), 4.47-4.41 (m, 1H), 4.33-4.26 (m, 1H), 3.77 (dd, *J* = 11.6, 4.4 Hz, 1H), 3.67 (dd, *J* = 11.2, 6.4 Hz, 1H), 3.07 (br t, *J* = 6.4 Hz, 2H), 2.50 (ddd, *J* = 12.4, 8.0, 6.0 Hz, 1H), 1.84-1.77 (m, 3H), 1.59-1.51 (m, 2H), 1.43 (s, 9H), 1.36-1.25 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 156.2, 151.0, 142.2, 130.6, 124.4, 82.7, 79.4, 64.5, 61.6, 40.5, 36.7, 32.6, 30.0, 28.5, 26.6, 25.8; IR (neat) 3416, 2932, 1694, 1535, 1351, 1090, 856, 741, 620, 575 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>20</sub>H<sub>31</sub>N<sub>3</sub>NaO<sub>8</sub>S [M+Na]<sup>+</sup>496.1730 found 496.1729.

(2-((4-nitrophenyl)sulphonyl)-4-phenylisoxazolidin-3-yl)methanol (5r)

According to the representative procedure, the reaction gave 5r (47.3 mg, 0.130 mmol, 65% yield, dr = 17 : 1) as colorless oil from 4r (69.6 mg, 0.200 mmol).

TLC Rf = 0.36 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.43 (dt, *J* = 8.8, 2.0 Hz, 2H), 8.25 (dt, *J* = 8.8, 2.0 Hz, 2H), 7.39-7.28 (m, 5H), 4.34 (ddd, *J* = 8.4, 5.2, 3.2 Hz, 1H), 4.28 (d, *J* = 9.6 Hz, 2H), 3.95-3.90 (m, 1H), 3.79-3.71 (m, 2H), 2.08 (br t, *J* = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.1, 141.9, 135.4, 130.8, 129.4, 128.4, 128.1, 124.4, 76.4., 68.4, 62.8, 50.5; IR (neat) 3563, 3107, 2927, 1537, 1351, 1168, 1089, 856, 743, 619 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>16</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 387.0626 found 387.0619.

(2-((4-nitrophenyl)sulphonyl)-5-vinylisoxazolidin-3-yl)methanol (5s)

According to the representative procedure, the reaction gave 5s (46.5 mg, 0.148 mmol, 74% yield, dr = 17 : 1) as a yellow solid from 4s (59.6 mg, 0.200 mmol).

TLC Rf = 0.10 (hexane / ethyl acetate = 3 : 1); M.p. 96.9-98.3 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.40 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.19 (dt, *J* = 9.2, 2.0 Hz, 2H), 5.70 (ddd, *J* = 17.6, 10.0, 7.2 Hz, 1H), 5.36 (dt, *J* = 17.6, 0.8 Hz, 1H), 5.29 (d, *J* = 10.0 Hz, 1H), 4.86-4.80 (m, 1H), 4.56-4.50 (m, 1H), 3.82-3.77 (m, 1H), 3.73-3.67 (m, 1H), 2.66-2.59 (m, 1H), 2.03-1.96 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.1, 142.0, 133.3, 130.7, 124.3, 121.1, 83.7, 64.4, 61.7, 37.0; IR (KBr) 3497, 3103, 2920, 1607, 1531, 1350, 1178, 1055, 995, 943, 867, 854, 740, 686, 641, 577, 458; HRMS (ESI) *m*/*z* calcd for C<sub>12</sub>H<sub>14</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 337.0470 found 337.0462.

(5-(but-3-en-1-yl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5t)

According to the representative procedure, the reaction gave 5t (58.2 mg, 0.170 mmol, 85% yield, dr = 17 : 1) as brown oil from 4t (65.2 mg, 0.200 mmol).

TLC Rf = 0.21 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.41 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.18 (dt, *J* = 9.2, 2.0 Hz, 2H), 5.79-5.69 (m, 1H), 5.05-4.98 (m, 2H), 4.48-4.41 (m, 1H), 4.35-4.27 (m, 1H), 3.79 (dd, *J* = 7.6, 4.0 Hz, 1H), 3.68 (dd, *J* = 11.6, 6.4 Hz, 1H), 2.52 (ddd, *J* = 12.0, 8.4, 6.0 Hz, 1H), 2.15-2.01 (m, 2H), 1.82 (ddd, *J* = 12.0, 10.0, 7.6 Hz, 1H), 1.75-1.58 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 151.1, 142.1, 137.1, 130.7, 124.3, 115.8, 82.2, 64.5, 61.7, 36.7, 32.0, 30.4; IR (neat) 3542, 3106, 2917, 1731, 1641, 1607, 1536, 1448, 1351, 1169, 1090, 919, 856, 741, 685, 619, 576 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>14</sub>H<sub>18</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 365.0927 found 365.0917.

(5-(but-3-yn-1-yl)-2-((4-nitrophenyl)sulphonyl)isoxazolidin-3-yl)methanol (5u)

According to the representative procedure, the reaction gave 5u (50.3 mg, 0.148 mmol, 74% yield, dr = 5:1) as colorless oil from 4u (64.8 mg, 0.200 mmol).

The following physical data were measured as an inseparable diastereomeric mixture (*syn*-5**u** : *anti*- $5\mathbf{u} = 5 : 1$ ).

TLC Rf = 0.21 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) *syn*-**5u**  $\delta$  : 8.41 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.20 (dt, *J* = 9.2, 2.0 Hz, 2H), 4.45-4.35 (m, 2H), 3.80 (dd, *J* = 11.6, 3.6 Hz, 1H), 3.69 (dd, *J* = 11.6, 6.0 Hz, 1H), 2.54 (ddd, *J* = 14.0, 8.0, 6.0 Hz, 1H), 2.28-2.23 (m, 2H), 1.98 (t, *J* = 2.4 Hz, 1H), 1.87 (ddd, *J* = 12.0, 10.0, 7.6 Hz, 1H), 1.77 (q, *J* = 6.8 Hz, 2H and 1H, -O<u>H</u>); *anti*-**5u**  $\delta$  : 8.41 (dt, *J* = 9.2, 2.0 Hz, 2H), 8.16 (dt, *J* = 9.2, 2.0 Hz, 2H), 4.45-4.35 (m, 2H), 3.77-3.72 (m, 2H), 2.36 (ddd, *J* = 12.8, 6.8, 2.4 Hz, 1H), 2.28-2.23 (m, 2H), 1.96 (t, *J* = 2.4 Hz, 1H), 1.91-1.84 (m, 1H), 1.77 (q, *J* = 6.8 Hz, 2H and 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) *syn*-**5u**  $\delta$  : 151.0, 141.6, 130.7, 124.4, 82.6, 80.8, 69.7, 64.3, 62.0, 36.5, 31.4, 15.5; *anti*-**5u**  $\delta$  : 151.0, 141.0, 130.8, 124.2, 81.7, 77.4,

69.6, 63.7, 62.5, 36.7, 32.9, 15.7; IR (neat) 3535, 3292, 3106, 2938, 2118, 1725, 1607, 1534, 1351, 1312, 1173, 1090, 1051, 856, 741, 685, 620, 575 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>14</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 363.0627 found 363.0617.

### 4. Synthesis of 4-nitrobenzoate 12 and 13

2-((4-nitrophenyl)sulphonyl)-5-phenylisoxazolidin-3-yl)methyl 4-nitrobenzoate (12)



#### (Representative procedure)

To a solution of **2d** (67.3 mg, 0.185 mmol), DMAP (4.5 mg, 0.037 mmol) and Et<sub>3</sub>N (39.3  $\mu$ L, 0.278 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (930  $\mu$ L) at 0 °C was added 4-nitorobenzoyl chloride (41.2 mg, 0.222 mmol). The reaction mixture was warmed to room temperature and stirred for 1 h. The reaction was quenched with H<sub>2</sub>O (5 mL). The resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 5 mL) and the combined organic layer was washed with brine (3 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 5 : 1 to 3 : 1) to give **12** (61.1 mg, 0.134 mmol, 72% yield) as a white solid.

TLC Rf = 0.20 (hexane / ethyl acetate = 3 : 1); M.p. 164.7-171.7 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.37-8.27 (m, 6H), 8.14 (dt, *J* = 9.2, 2.0 Hz, 2H), 7.39-7.30 (m, 5H), 5.51 (dd, *J* = 10.0, 6.0 Hz, 1H), 5.03-4.95 (m, 1H), 4.61 (dd, *J* = 11.2, 4.4 Hz, 1H), 4.54 (dd, *J* = 11.2, 7.6 Hz, 1H), 3.01 (ddd, *J* = 12.8, 8.4, 6.0 Hz, 1H), 2.20 (ddd, *J* = 12.8, 10.0, 7.6 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 164.5, 151.0, 150.9, 142.2, 135.6, 135.1, 131.1, 130.5, 129.4, 129.0, 126.9, 124.3, 123.8, 83.9, 66.5, 58.3, 39.6; IR (KBr) 3110, 2965, 1730, 1606, 1531, 1348, 1276, 1167, 1122, 962, 857, 722, 699, 618, 567, 458 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>23</sub>H<sub>19</sub>N<sub>3</sub>NaO<sub>9</sub>S [M+Na]<sup>+</sup> 536.0740 found 536.0732.

(2-((4-nitrophenyl)sulphonyl)-4-phenylisoxazolidin-3-yl)methyl 4-nitrobenzoate (13)

According to the representative procedure, the reaction gave **13** (307 mg, 0.60 mmol, 60% yield) as a white solid from **5r** (364 mg, 1.00 mmol).

TLC Rf = 0.36 (hexane / ethyl acetate = 3 : 1); M.p. 184.7-187.5 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.40 (dt, J = 9.2, 2.0 Hz, 2H), 8.25 (dt, J = 9.2, 2.0 Hz, 2H), 8.20 (dt, J = 8.8, 2.0 Hz, 2H), 8.10 (dt, J = 9.2, 2.0 Hz, 2H), 7.39-7.33 (m, 5H), 4.79-4.74 (m, 1H), 4.64-4.56 (m, 2H), 4.42 (dd, J = 10.8,

8.4 Hz, 1H), 4.34 (t, J = 8.0 Hz, 1H), 3.65 (dt, J = 11.2 ,8.0 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta : 164.4, 151.1, 150.9, 142.1, 134.95, 134.94, 131.0, 130.7, 129.6, 128.6, 128.1, 124.4, 123.7, 76.7,$ 66.0, 64.4, 52.7; IR (KBr) 3110, 2909, 1724, 1524, 1348, 1277, 1168, 951, 854, 744, 619, 557 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>23</sub>H<sub>19</sub>N<sub>3</sub>NaO<sub>9</sub>S [M+Na]<sup>+</sup> 536.0739 found 536.0749.

## 5. Synthesis of peroxide 6

3-(hydroperoxymethyl)-5-phenyl-2-tosylisoxazolidine (6)



To a stirred solution of **1a** (63.4 mg, 0.200 mmol) in EtOH (2.00 mL) at room temperature was added Mn(III)-complex **3d** (2.1 mg, 2.0  $\mu$ mol) under air (open flask). The progress of the reaction was monitored by TLC analysis. The reaction was quenched with saturated aqueous NaCl solution (0.5 mL). The resulting mixture was extracted with ethyl acetate (3 x 1 mL). The combined organic layers were washed with brine (2 x 1 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 3 : 1) to give **6** (48.2 mg, 0.138 mmol, 69% yield, dr = 17 : 1) as colorless oil.

TLC Rf = 0.50 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 9.46 (br s, 1 H), 7.91 (d, J = 8.4 Hz, 2H), 7.36-7.27 (m, 7H), 5.29 (dd, J = 10.4, 5.6 Hz, 1H), 4.94 (m, 1H), 4.25 (dd, J = 13.2, 4.0 Hz, 1H), 4.03 (dd, J = 12.8, 8.8 Hz, 1H), 2.81 (ddd, J = 12.0, 8.0, 5.6 Hz, 1H), 2.44 (s, 3H), 2.00 (ddd, J = 12.0, 10.4, 8.4 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 145.5, 135.9, 132.8, 130.0, 129.4, 129.1, 128.8, 127.0, 83.3, 78.0, 57.5, 39.3, 21.8; IR (neat) 3421, 2923, 2850, 1596, 1455, 1355, 1163, 1088, 889, 758, 672, 589 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>17</sub>H<sub>19</sub>NNaO<sub>5</sub>S [M+Na]<sup>+</sup> 372.0882 found 372.0873.

#### 6. Synthesis of 8



(Z)-tert-butyl((4-cyclopropyl-1-phenylbut-3-en-1-yl)oxy)dimethylsilane (17)

OTBS Ph (Z/E = 2.3 : 1)

A stirred solution of **14** (495 mg, 1.88 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (9.25 mL) and MeOH (0.150 mL) at -78 °C was treated with O<sub>3</sub> for 30 min. After N<sub>2</sub> was passed through the solution for 1 h to remove excess of O<sub>3</sub>, PPh<sub>3</sub> (542 mg, 2.07 mmol) was added. The solution was allowed to warm up to room temperature. After 1 h, the mixture was filtered through a pad of celite and the filtrate was concentrated under reduced pressure to afford the corresponding aldehyde **15**, which was directly used without further purification.

To a stirred solution of triphenylphosphonium bromide **16** (596 mg, 1.50 mmol) in THF (10.0 mL) at 0 °C was added LiHMDS (2.23 mL, 2.90 mmol, 1.30 M in THF) under N<sub>2</sub> atmosphere. The resulting mixture was stirred at 0 °C for 30 min, and then a solution of aldehyde **15** in THF (5.00 mL) was added. The resulting mixture was stirred at 0 °C for 2 h, and the reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL). The resulting mixture was extracted with EtOAc (10 mL x 3). The combined organic layer was washed with brine (5 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 50 : 1) to give **17** (444 mg, 1.47 mmol, Z/E = 2.3 : 1, 78% yield (2 steps)) as

colorless oil.

The following physical data were measured as a mixture of the geometric isomers (Z/E = 2.3 : 1). TLC Rf = 0.4 (hexane / ethyl acetate = 40 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (Z)-major isomer  $\delta$  : 7.34-7.28 (m, 4H), 7.24-7.19 (m, 1H), 5.34-5.27 (m, 1H), 4.82-4.76 (m, 1H), 4.70 (dd, J = 7.2, 5.2 Hz, 1H), 2.63-2.55 (m, 1H), 2.52-2.45 (m, 1H), 1.50-1.41 (m, 1H), 0.88 (s, 9H), 0.68-0.61 (m, 2H), 0.31-0.23 (m, 2H), 0.03 (s, 3H), -0.12 (s, 3H) ; (E)-minor isomer  $\delta$  : 7.34-7.28 (m, 4H), 7.24-7.19 (m, 1H), 5.45 (dt, J = 15.2, 7.2 Hz, 1H), 4.98 (ddt, J = 15.2, 8.8, 1.2 Hz, 1H), 4.61 (dd, J = 7.8, 5.2 Hz, 1H), 2.39-2.25 (m, 2H), 1.35-1.28 (m, 1H), 0.88 (s, 9H), 0.68-0.61 (m, 2H), 0.31-0.23 (m, 2H), 0.03 (s, 3H), -0.13 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (Z)-major isomer  $\delta$  : 145.6, 135.9, 128.1, 127.0, 126.1, 124.2, 75.3, 39.4, 26.0, 18.4, 9.9, 7.0, 6.9, -4.5, -4.7; (E)-minor isomer  $\delta$  : 145.6, 136.5, 128.1, 126.9, 126.0, 124.5, 7.5.6, 44.4, 26.0, 18.4, 13.7, 6.5, 6.4, -4.5, -4.7; IR (neat) 3082, 3005, 2929, 2857, 1654, 1602, 1492, 1471, 1388, 1361, 1255, 1090, 1004, 946, 835, 776, 699, 628 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>19</sub>H<sub>30</sub>NaOSi [M+Na]<sup>+</sup> 325.2139 found 325.2149.

(Z)-4-cyclopropyl-1-phenylbut-3-en-1-ol (18)



To a stirred solution of **17** (302 mg, 1.00 mmol) in THF (16.0 mL) at room temperature was added TBAF (2.00 mL, 2.00 mmol, 1.0 M in THF). After stirred for 1 h, the reaction was quenched with saturated aqueous NH<sub>4</sub>Cl (5 mL), and the resulting mixture was extracted with EtOAc (3 x 10 mL). The combined organic layer was washed with brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 15 : 1) to give **18** (160 mg, 0.851 mmol, Z/E = 1.9 : 1, 85% yield) as colorless oil.

The following physical data measured as a mixture of the geometric isomers (Z/E = 1.9 : 1).

TLC Rf = 0.36 (hexane / ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (*Z*)-major isomer  $\delta$ : 7.41-7.34 (m, 4H), 7.30-7.26 (m, 1H), 5.37-5.30 (m, 1H), 4.97-4.91 (m, 1H), 4.76 (dd, *J* = 8.0, 5.2 Hz, 1H), 2.74-2.66 (m, 1H), 2.63-2.56 (m, 1H), 1.61-1.52 (m, 1H), 0.79-0.66 (m, 2H), 0.38-0.29 (m, 2H); (*E*)-minor isomer  $\delta$  : 7.41-7.34 (m, 4H), 7.30-7.26 (m, 1H), 5.53-5.46 (m, 1H), 5.13 (ddt, *J* = 15.2, 8.8, 1.2 Hz, 1H), 4.68 (dd, *J* = 8.0, 4.4 Hz, 1H), 2.50-2.35 (m, 2H), 1.43-1.34 (m, 1H), 0.79-0.66 (m, 2H), 0.38-0.29 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (*Z*)-major isomer  $\delta$  : 144.2, 138.0, 128.5, 127.6, 126.0, 123.0, 74.0, 37.8, 9.9, 7.2 x 2; (*E*)-minor isomer  $\delta$  : 144.2, 138.7, 128.5, 127.5, 125.9, 123.2, 73.6, 42.9, 13.8, 6.8, 6.7; IR (neat) 3374, 3081, 3004, 2915, 1653, 1601, 1493, 1454, 1197, 1047, 964, 884, 809, 757, 700 cm<sup>-1</sup>; HRMS (FAB) *m*/*z* calcd for C<sub>13</sub>H<sub>16</sub>NaO [M+Na]<sup>+</sup> 211.1099 found 211.1107.

(Z)-2-((4-cyclopropyl-1-phenylbut-3-en-1-yl)oxy)isoindoline-1,3-dione (19)



A solution of diethyl azodicarboxylate (90.5  $\mu$ L, 1.99 mmol, 40% in toluene, ca. 2.2 M) was added dropwise to a solution of the alcohol **18** (150 mg, 0.797 mmol), triphenylphosphine (251 mg, 0.956 mmol) and *N*-hydroxyphthalimide (156 mg, 0.956 mmol) in THF (5.30 mL) under N<sub>2</sub> at 0 °C. The reaction mixture was warmed to room temperature and stirred for 2 h. The mixture was filtered through a pad of celite and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 12 : 1) to give **19** (194 mg, 0.583 mmol, *Z*/*E* = 1.7 : 1, 73% yield) as yellow oil.

The following physical data measured as a mixture of the geometric isomers (Z/E = 1.7 : 1).

TLC Rf = 0.30 (hexane / ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (*Z*)-major isomer  $\delta$  : 7.75-7.70 (m, 2H), 7.69-7.65 (m, 2H), 7.51-7.45 (m, 2H), 7.35-7.28 (m, 3H), 5.46-5.38 (m, 1H), 5.36-5.26 (m, 1H), 4.85-4.79 (m, 1H), 3.13-3.06 (m, 1H), 2.91-2.80 (m, 1H), 1.53-1.44 (m, 1H), 0.76-0.58 (m, 2H), 0.33-0.21 (m, 2H); (*E*)-minor isomer  $\delta$  : 7.75-7.70 (m, 2H), 7.69-7.65 (m, 2H), 7.51-7.45 (m, 2H), 7.35-7.28 (m, 3H), 5.46-5.38 (m, 1H), 5.36-5.26 (m, 1H), 5.07 (ddt, *J* = 15.2, 8.4, 1.2 Hz, 1H), 2.91-2.80 (m, 1H), 2.69-2.61 (m, 1H), 1.33-1.24 (m, 1H), 0.76-0.58 (m, 2H), 0.33-0.21 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (*Z*)-major isomer  $\delta$  : 163.9, 137.9, 137.0, 134.4, 129.1, 129.0, 128.4 x 2, 123.5, 121.8, 88.9, 33.4, 9.9, 7.1, 7.0; (*E*)-minor isomer  $\delta$  : 163.8, 137.80, 137.76, 134.4, 129.1, 129.0, 128.4 x 2, 123.5, 121.8, 88.9, 38.1, 13.7, 6.64, 6.56; IR (neat) 3005, 2917, 1789, 1732, 1466, 1374, 1186, 1126, 1081, 1015, 974, 877, 759, 700 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>21</sub>H<sub>19</sub>NNaO<sub>3</sub> [M+Na]<sup>+</sup> 356.1263 found 356.1256.

(Z)-N-((4-cyclopropyl-1-phenylbut-3-en-1-yl)oxy)-4-methylbenzenesulphonamide (7)



To a stirred solution of *N*-alkoxyphthalimide **19** (194 mg, 0.543 mmol) in Et<sub>2</sub>O (2.90 mL) at room temperature was added aqueous methylamine (140  $\mu$ L, 1.74 mmol, 40 wt% in H<sub>2</sub>O). After 30 min, the mixture was filtered through a pad of celite and the filtrate was concentrated under reduced pressure. The saturated aqueous NaHCO<sub>3</sub> (1 mL) was added to the residue and extracted with Et<sub>2</sub>O (3 × 5 mL). The combined organic layer was washed with brine (2 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered,

and concentrated under reduced pressure to afford the corresponding hydroxylamine **20**, which was used without further purification.

A solution of TsCl (166 mg, 0.871 mmol) and pyridine (210 µL, 1.74 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (1.90 mL) was added dropwise to a stirred solution of the crude hydroxylamine **20** in CH<sub>2</sub>Cl<sub>2</sub> (1.00 mL) at room temperature. The resulting mixture was stirred at room temperature for 17 h. The reaction was quenched with water. The resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> ( $3 \times 5$  mL) and the combined organic layer was washed with water (5 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 15 : 1) to give sulphonamide 7 (100 mg 0.280 mmol, *Z*/*E* = 2 : 1, 48% yield (2 steps)) as a white solid.

The following physical data measured as a mixture of the geometric isomers (Z/E = 2 : 1).

TLC Rf = 0.25 (hexane / ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (*Z*)-major isomer  $\delta$  : 7.84-7.81 (m, 2H), 7.35-7.23 (m, 7H), 6.68 (br s, 1H, -N<u>H</u>), 5.28 (dt, *J* = 10.8, 7.2 Hz, 1H), 5.04-5.01 (m, 1H), 4.87-4.81 (m, 1H), 2.83-2.76 (m, 1H), 2.59-2.49 (m, 1H), 2.45 (s, 3H), 1.45-1.35 (m, 1H), 0.73-0.63 (m, 2H), 0.34-0.24 (m, 2H); (*E*)-minor isomer  $\delta$  : 7.84-7.81 (m, 2H), 7.35-7.23 (m, 7H), 6.63 (br s, 1H, -N<u>H</u>), 5.49-5.41 (m, 1H), 5.04-5.01 (m, 1H), 4.99-4.95 (m, 1H), 2.59-2.49 (m, 1H), 2.45 (s, 3H), 2.41-2.34 (m, 1H), 1.45-1.35 (m, 1H), 0.73-0.63 (m, 2H), 0.34-0.24 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (*Z*)-major isomer  $\delta$  : 144.9, 140.0, 136.3, 134.0, 129.8, 128.9, 128.5, 128.3, 127.3, 122.6, 88.6, 33.7, 21.8, 9.8, 7.1, 7.0; (*E*)-minor isomer  $\delta$  : 144.9, 140.1, 137.2, 134.0, 129.8, 128.8, 128.5, 128.3, 127.3, 122.9, 88.6, 38.7, 21.8, 13.7, 6.7, 6.5; IR (KBr) 3224, 3000, 2919, 2850, 1597, 1451, 1345, 1167, 1092, 919, 814, 701 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>20</sub>H<sub>23</sub>NNaO<sub>3</sub>S [M+Na]<sup>+</sup> 380.1296 found 380.1302.

(*E*)-4-(5-phenyl-2-tosylisoxazolidin-3-yl)but-3-en-1-ol (**8**)

To a stirred solution of sulphonamide 7 (35.7 mg, 0.100 mmol) in EtOH (1.00 mL) at room temperature was added Mn(III)-complex **3d** (1.0 mg, 1.0  $\mu$ mol) under air (open flask). After 24 h, saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (0.5 mL) was added and the mixture was stirred for 30 min. The resulting mixture was extracted with ethyl acetate (3 x 1 mL). The combined organic layer was washed with brine (2 x 1 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by preparative thin layer chromatography (silica gel, hexane / ethyl acetate = 2 : 1) to give **8** (11.2 mg, 0.0300 mmol, 30% yield, dr = 17 : 1) as colorless oil.

TLC Rf = 0.2 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.89 (dt, *J* = 8.0, 6.0 Hz, 2H), 7.35-7.27 (m, 7H), 5.82 (dt, *J* = 15.6, 8.8 Hz, 1H), 5.73 (dd, *J* = 15.6, 6.4 Hz, 1H), 5.10 (dd, *J* = 10.0, 6.4 Hz, 1H), 4.84-4.78 (m, 1H), 3.70 (t, *J* = 6.4 Hz, 2H), 2.79 (ddd, *J* = 12.4, 6.4, 5.6 Hz,

1H), 2.45 (s, 3H), 2.39-2.34 (m, 2H), 2.19 (ddd, J = 12.4, 10.0, 8.4 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 145.2, 136.7, 133.0, 131.8, 130.3, 129.9, 129.5, 128.9, 128.7, 127.1, 83.2, 62.5, 61.8, 44.0, 35.7, 21.9; IR (neat) 3403, 2924, 2854, 1728, 1597, 1494, 1456, 1360, 1261, 1163, 1091, 968, 893, 804, 760, 700, 673, 593 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>20</sub>H<sub>23</sub>NNaO<sub>4</sub>S [M+Na]<sup>+</sup> 396.1245 found 396.1254.

(5-phenyl-2-tosylisoxazolidin-3-yl)methanol (2a)



To a stirred solution of sulphonamide **1a** (63.4 mg, 0.200 mmol) in EtOH (2.00 mL) at room temperature was added Mn(III)-complex **3d** (2.1 mg, 2.0  $\mu$ mol) under pure O<sub>2</sub> (balloon, 1 atm). After 24 h, saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (0.5 mL) was added and the mixture was stirred for 30 min. The resulting mixture was extracted with ethyl acetate (3 x 1 mL). The combined organic layer was washed with brine (2 x 1 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered, and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 3 : 1) to give **2a** (50.6 mg, 0.152 mmol, 76% yield, dr = 17 : 1) as colorless oil.

*N*-(2-hydroxy-2-phenylpropyl)-4-methyl-*N*-((1-phenylbut-3-en-1-yl)oxy)benzenesulphonamide (27)



To a stirred solution of sulphonamide **1a** (31.7 mg, 0.100 mmol) and  $\alpha$ -methylstyrene (130 µL, 1.00 mmol) in EtOH (1.00 mL) at room temperature was added Mn(III)-complex **3d** (1.0 mg, 1.0 µmol) under air (open flask). After 24 h, saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (0.5 mL) was added and the mixture was stirred for 30 min. The resulting mixture was extracted with ethyl acetate (3 x 1 mL). The combined organic layer was washed with brine (2 x 1 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by preparative thin layer chromatography (silica gel, hexane / ethyl acetate = 2 : 1) to give **27** (5.6 mg, 0.0124 mmol, 12% yield) as colorless oil and **2a** (9.7 mg, 0.0291 mmol, 29% yield, dr = 17 : 1) as colorless oil.

Data of **27**: TLC Rf = 0.53 (hexane / ethyl acetate = 3 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.83 (d, J = 0.8 Hz, 1H), 7.40-7.31 (m, 7H), 7.24-7.12 (m, 5H), 5.76-5.65 (m, 1H), 5.21(t, J = 7.2 Hz, 1H), 5.07-

5.03 (m, 2H), 3.98 (s, 1H,  $-O\underline{H}$ ), 3.14-3.04 (m, 2H), 2.74-2.66 (m, 1H), 2.48-2.41 (m, 4H), 1.04 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 146.1, 145.4 140.0, 133.9, 130.2, 129.7, 129.2, 128.78, 128.76, 128.3, 128.1, 127.0, 125.1, 117.9, 86.6, 73.4, 67.7, 40.0, 27.0, 21.8; IR (neat) 3514, 2916, 2848, 1577, 1538, 1444, 1380, 1348, 1165, 1027, 914, 818, 768, 700, 649, 566, 464 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>26</sub>H<sub>29</sub>NNaO<sub>4</sub>S [M+Na]<sup>+</sup> 474.1715 found 474.1716.

## 7. Synthesis of HPA-12

(S)-4-nitro-N-((1-phenylbut-3-en-1-yl)oxy)benzenesulphonamide ((S)-1d)



A solution of diethyl azodicarboxylate (7.48 mL, 16.4 mmol, 40% in toluene, *ca*. 2.2 M) was added dropwise to a stirred solution of the alcohol (*R*)-**21**<sup>8</sup> (2.03 g, 13.7 mmol), triphenylphosphine (4.30 g, 16.4 mmol) and *N*-hydroxyphthalimide (2.68 g, 16.4 mmol) in THF (137 mL) under N<sub>2</sub> at 0 °C. The reaction mixture was warmed to room temperature and stirred for 3 h, and then hydrazine monohydrate (1.53 mL, 31.5 mmol) was added dropwise. After 2 h, the mixture was filtered through a pad of celite and the filtrate was concentrated under reduced pressure to afford the corresponding amine (*S*)-**23**, which was used without further purification. A solution of the 4-nitrobenzensulphonyl chloride (3.35 g, 15.1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (30.0 mL) was added dropwise over 15 min to a stirred suspension of crude amine (*S*)-**23** and Na<sub>2</sub>CO<sub>3</sub> (2.32 g, 21.9 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (38.5 mL). The resulting mixture was stirred at room temperature for 18 h, monitoring the conversion by TLC analysis. The reaction was quenched by addition of water. Then, the resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 30 mL) and the combined organic layer was washed with water (30 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 15 : 1 to 5 : 1) to give sulphonamide (*S*)-**1d** (3.67 g, 10.5 mmol, 77% yield (3 steps), 99% ee) as a white solid.

TLC Rf = 0.26 (hexane / ethyl acetate = 5 : 1); M.p. 124.9-128.7 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 8.37 (dt, J = 8.8, 2.0 Hz, 2H), 8.11 (dt, J = 8.8, 2.0 Hz, 2H), 7.38-7.31 (m, 3H), 7.29-7.24 (m, 2H),

6.82 (s, 1H, -NH), 5.84-5.74 (m, 1H), 5.14-5.05 (m, 3H), 2.68-2.61 (m, 1H), 2.53-2.46 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 150.9, 142.4, 139.2, 133.7, 130.1, 128.70, 128.68, 127.2, 124.2, 118.1, 88.8, 39.8; IR (KBr) 3321, 3235, 3103, 1527, 1349, 1300, 1170, 1088, 849, 752, 702 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>16</sub>H<sub>15</sub>N<sub>2</sub>O<sub>5</sub>S [M-H]<sup>-</sup> 347.0702 found 374.0685; [ $\alpha$ ]<sup>27</sup><sub>D</sub> +74.0 (*c* 0.20, CHCl<sub>3</sub>) for 99% ee.

HPLC (CHIRALPAK<sup>®</sup> IB,  $\phi 0.46 \text{ cm} \times 25 \text{ cm}$ , hexane/*i*-PrOH = 95:5, detected at 254 nm, flow rate 1.0 mL/min, t<sub>R</sub> = 26.2 min (minor), 38.7 min (major).



((3R,5S)-2-((4-nitrophenyl)sulphonyl)-5-phenylisoxazolidin-3-yl)methanol ((+)-2d)



To a stirred solution of sulphonamide (*S*)-1d (69.7 mg, 0.200 mmol) in EtOH (2.00 mL) at room temperature was added Mn(III)-complex 3d (2.1 mg, 2.0  $\mu$ mol) under air (open flask). The progress of the reaction was monitored by TLC analysis. After 21 h, saturated aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> solution (0.5 mL) was added and the mixture was stirred for 30 min. The resulting mixture was extracted with ethyl acetate (3 x 1 mL). The combined organic layer was washed with brine (2 x 1 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 3 : 1) to give (+)-2d (65.4 mg, 0.180 mmol, 90%

yield, dr = 17 : 1) as colorless oil.

TLC Rf = 0.16 (hexane / ethyl acetate = 2 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) δ : 8.38 (dt, J = 8.8, 2.0 Hz, 2H), 8.21 (dt, J = 8.8, 2.0 Hz, 2H), 7.37-7.30 (m, 5H), 5.37 (dd, J = 10.4, 6.0 Hz, 1H), 4.67-4.61 (m, 1H), 3.93-3.87 (m, 1H), 3.84-3.78 (m, 1H), 2.83 (ddd, J = 12.4, 8.0, 6.0 Hz, 1H), 2.29 (ddd, J = 12.4, 10.4, 7.6 Hz, 1H), 2.05 (t, J = 6.4 Hz, 1H, -O<u>H</u>); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) δ : 151.0, 142.0, 135.8, 130.7, 129.3, 128.9, 127.1, 124.3, 84.1, 64.5, 62.0, 38.9; IR (neat) 3545, 3107, 2929, 1606, 1532, 1458, 1351, 1312, 1168, 1091, 855, 741, 619 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>16</sub>H<sub>16</sub>N<sub>2</sub>NaO<sub>6</sub>S [M+Na]<sup>+</sup> 387.0627 found 387.0617; [α]<sup>27</sup><sub>D</sub> +87.2 (*c* 0.20, CHCl<sub>3</sub>).

### (2 mmol Scale Reaction)

To a stirred solution of sulphonamide (*S*)-1d (697 mg, 2.00 mmol) in EtOH (20.0 mL) at room temperature was added Mn(III)-complex 3d (18.9 mg, 0.0200 mmol) under air (open flask). The progress of the reaction was monitored by TLC analysis. After 48 h, saturated aqueous  $Na_2S_2O_3$  solution (5 mL) was added and the mixture was stirred for 30 min. The resulting mixture was extracted with ethyl acetate (3 x 10 mL). The combined organic layer was washed with brine (2 x 10 mL), dried over  $Na_2SO_4$ , filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 3 : 1) to give (+)-2d (690 mg, 1.90 mmol, 95% yield, dr = 17 : 1) as colorless oil.

### ((3*R*,5*S*)-5-phenylisoxazolidin-3-yl)methanol (10)

$$(+)-2d \xrightarrow{\text{O-N}'} (2,5 \text{ equiv}) \xrightarrow{\text{NS}} (+)-2d \xrightarrow{\text{HSCH}_2CO_2H (2.5 \text{ equiv})} \xrightarrow{\text{NS}} (2,5 \text{ equiv}) \xrightarrow{\text{O-NH}} (2,5 \text{$$

To a stirred solution of (+)-**2d** (200 mg, 0.549 mmol) in MeOH (7.85 mL) at 0 °C was dropwise added thioglycolic acid (94.0  $\mu$ L, 1.38 mmol) under N<sub>2</sub>. Anhydrous potassium carbonate (253 mg, 2.75 mmol) was added portionwise. The resulting mixture was stirred at 0 °C for 2.5 h and gradually warmed up to room temperature. After 0.5 h, the mixture was concentrated under reduced pressure. The residue was dissolved in aqueous 9% Na<sub>2</sub>CO<sub>3</sub> (10 mL), and the resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 10 mL) and the combined organic layer was washed with aqueous 9% Na<sub>2</sub>CO<sub>3</sub> (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, CHCl<sub>3</sub> : MeOH = 100 : 1) to give **10** (80.6 mg, 0.450 mmol, 82% yield) as colorless oil.

TLC Rf = 0.48 (CHCl<sub>3</sub> : MeOH = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.37-7.28 (m, 5H), 4.81 (t, J = 8.4 Hz, 1H), 3.77-3.70 (m, 1H), 3.62 (dd, J = 11.2, 8.8 Hz, 1H), 3.54 (dd, J = 11.2, 4.4 Hz, 1H), 2.74 (dt, J = 12.8, 8.0 Hz, 1H), 1.80 (ddd, J = 13.2, 9.2, 4.8 Hz, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 138.7, 128.7, 128.3, 126.6, 85.4, 64.3, 62.5, 40.0; IR (neat) 3372, 2918, 2881, 1637, 1489, 1454,

1379, 1262, 1061, 1022, 944, 904, 799, 759, 700 cm<sup>-1</sup>; HRMS (ESI) m/z calcd for C<sub>10</sub>H<sub>13</sub>NNaO<sub>2</sub> [M+Na]<sup>+</sup> 202.0844 found 202.0836; [ $\alpha$ ]<sup>27</sup><sub>D</sub> -111.8 (*c* 0.80, CHCl<sub>3</sub>)

(1S,3R)-3-amino-1-phenylbutane-1,4-diol (11)



A mixture of **10** (20.0 mg, 0.112 mmol) and 10% Pd/C (5.80 mg) in ethyl acetate (1.10 mL) was stirred for 3 h under H<sub>2</sub> atmosphere (balloon, 1 atm). The catalyst was filtered off and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, CHCl<sub>3</sub> : MeOH = 10 : 1) to give **11** (19.3 mg, 0.10 mmol, 95% yield) as colorless oil. TLC Rf = 0.13 (CHCl<sub>3</sub> / MeOH = 10 : 1); <sup>1</sup>H NMR (400 MHz, CDOD)  $\delta$  : 7.39-7.31 (m, 4H), 7.26-7.23 (m, 1H), 4.84-4.81 (m, 1H), 3.59 (dd, *J* = 10.8, 4.4 Hz, 1H), 3.47 (dd, *J* = 10.8, 6.4 Hz, 1H), 3.15-3.09 (m, 1H), 1.87-1.71 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  : 146.3, 129.4, 128.4, 126.8, 73.9, 65.8, 53.2, 41.9; IR (neat) 3357, 2923, 2845, 1561, 1495, 1454, 1407, 1204, 1054, 912, 849, 760, 702, 563 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>10</sub>H<sub>16</sub>NO<sub>2</sub> [M+H]<sup>+</sup> 182.1181 found 182.1180; [ $\alpha$ ]<sup>27</sup><sub>D</sub> -43.2 (*c* 0.90, MeOH)

(1R,3S)-HPA-12 (N-((2R,4S)-1,4-dihydroxy-4-phenylbutan-2-yl)dodecanamide)



To a stirred solution of amine **11** (19.3 mg, 0.100 mmol) and *N*,*N*-diisopropylethylamine (55.0  $\mu$ L, 0.300 mmol) in dichloromethane (1.67 mL) at 0 °C was added dropwise lauroyl chloride (25.3  $\mu$ L, 0.100 mmol). After stirred for 20 min at this temperature, the mixture was gradually warmed to room temperature and stirred for additional 30 min. The reaction was quenched by slowly addition of ice-cold 1 M HCl solution (2 mL) at 0 °C. The resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 x 5 mL) and the combined organic layer was washed with aqueous saturated NaHCO<sub>3</sub> solution (5 mL), brine (5 mL), dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 3 : 1 to CHCl<sub>3</sub> : MeOH = 7 : 1) to give (1*R*,3*S*)-HPA-12 (26.9 mg, 0.074 mmol, 74% yield) as a white solid.

TLC Rf = 0.47 (CHCl<sub>3</sub> : MeOH = 10 : 1); M.p. 87.2-89.0 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  : 7.35-7.34 (m, 4H), 7.31-7.27 (m, 1H), 6.56 (br d, 1.6 Hz, 1H), 4.83 (dd, J = 8.8, 3.2 Hz, 1H), 4.09-4.06 (m, 1H), 3.70 (dd, J = 11.6, 4.4 Hz, 1H), 3.67 (dd, J = 11.6, 4.0 Hz, 1H), 2.96 (br s, 2H), 2.20 (t, J = 7.6 Hz, 2H), 2.06 (ddd, J = 14.4, 5.2, 3.2 Hz, 2H), 1.94 (ddd, J = 14.4 8.8 7.2 Hz, 2H), 1.65-1.58 (m,

2H), 1.33-1.26 (m, 16H), 0.88 (t, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>)  $\delta$  :174.6, 144.4, 128.7, 127.9, 125.7, 72.1, 65.8, 50.7, 40.9, 36.9, 32.1, 29.78, 29.76, 29.7, 29.51, 29.48, 29.4, 25.9, 22.8, 14.3; IR (KBr) 3360, 3055, 2927, 2854, 1647, 1521, 1422, 1265, 743 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>22</sub>H<sub>37</sub>NNaO<sub>3</sub> [M+Na]<sup>+</sup> 386.2671 found 386.2660; [ $\alpha$ ]<sup>25</sup><sub>D</sub> -35.4 (c 0.2, CHCl<sub>3</sub>) for 99% ee.

### 8. Preparation of the (ferrocenyl)butane-1,3-dione derivatives (26b-e, g, h)

5-ferrocenyl-5-hydroxy-1-methylpent-4-en-3-one  $(26b)^9$  $Fe = \underbrace{(1.2 \text{ equiv})}_{Fe} \underbrace{(1.2 \text{ equiv})}_{DMF (0.10 \text{ M})} \underbrace{Fe}_{Fe} \underbrace{(1.2 \text{ equiv})}_{26b}$ 

#### (Representative procedure)

To a stirred solution of *t*-BuOK (7.50 mL, 7.50 mmol, solution 1.00 M in THF) in DMF (15.0 mL) at 50 °C under N<sub>2</sub> atmosphere was added dropwise a solution of acetylferrocene (684 mg, 3.00 mmol) in DMF (5.00 mL). After 10 min, methyl isobutyrate (413  $\mu$ L, 3.60 mmol) was added slowly. The progress of the reaction was monitored by TLC analysis. The reaction was quenched with brine (10 mL). The resulting mixture was extracted with Et<sub>2</sub>O (3 x 10 mL) and the combined organic layer was washed with HCl (10 mL, 3.0 M in H<sub>2</sub>O), water (10 mL), and brine (10 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated under reduced pressure. The crude product was purified by column chromatography (silica gel, hexane : ethyl acetate = 20 : 1) to give **26b** (823 mg, 2.76 mmol, 92% yield, enol form : diketone form = 8 : 1) as a dark-orange solid.

TLC Rf = 0.52 (hexane : ethyl acetate = 5 : 1); M.p. 55.4-59.7 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (enol form)  $\delta$  : 5.72 (s, 1H), 4.78 (t, J = 2.0 Hz, 2H), 4.49 (t, J = 2.0 Hz, 2H), 4.18 (s, 5H), 2.50 (q, J = 6.8 Hz, 1H), 1.21 (d, J = 6.8 Hz, 6H). (diketone form)  $\delta$  : 4.7 8 (t, J = 2.0 Hz, 2H), 4.56 (t, J = 2.0 Hz, 2H), 4.24 (s, 5H), 3.89 (s, 2H), 2.50 (q, J = 6.8 Hz, 1H), 1.15 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (enol form)  $\delta$  : 194. 1, 193.0, 94.3, 78.1, 72.0, 70.4, 68.7, 36.1, 19.8. (diketone form)  $\delta$  : 208.3, 197.9, 79.0, 7 3.0, 70.1, 69.9, 52.8, 41.3, 18.1; IR (neat) 3374, 3097, 2969, 2929, 2871, 2335, 1710, 160 3, 1326, 1026, 925, 820, 754 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>16</sub>H<sub>18</sub><sup>56</sup>FeNaO<sub>2</sub> [M+Na]<sup>+</sup> 3 21.0554 found 321.0538.

2,2-dimethyl-5-ferrocenyl-5-hydroxypent-4-en-3-one (26c)<sup>10</sup>



According to the representative procedure, the reaction gave **26c** (655 mg, 2.10 mmol, 70% yield, enol form : diketone form = 12.5 : 1) as dark-orange amorphous material from acetylferrocene (684 mg, 3.00 mmol) and methyl pivalate (475  $\mu$ L, 3.60 mmol).

TLC Rf = 0.52 (hexane : ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (enol form)  $\delta$  : 5.82 (s, 1H), 4.79 (t, *J* = 2.0 Hz, 2H), 4.49 (t, *J* = 2.0 Hz, 2H), 4.18 (s, 5H), 1.24 (s, 9H). (diketone form)  $\delta$  : 4.76 (t, *J* = 2.0 Hz, 2H), 4.54 (t, *J* = 2.0 Hz, 2H), 4.26 (s, 5H), 3.93 (s, 2H), 1.22 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (enol form)  $\delta$  : 195.9, 193.5, 92.5, 78.4, 72.0, 70.4, 68.7, 38.5, 27.7. (diketone form)  $\delta$  : 209.8, 198.5, 79.1, 72.8, 70.1, 69.9, 48.8, 45.2, 26.3; IR (KBr) 3449, 2964, 2873, 1654, 1560, 1293, 1105, 1032, 824, 502 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>17</sub>H<sub>20</sub><sup>56</sup>FeO<sub>2</sub> [M]<sup>+</sup> 312.0813 found 312.0806.

3-ethyl-6-ferrocenyl-6-hydroxyhex-5-en-4-one (26d)



According to the representative procedure, the reaction gave **26d** (186 mg, 0.570 mmol, 19% yield, enol form : diketone form = 9.3 : 1) as a dark-red solid from acetylferrocene (684 mg, 3.00 mmol) and methyl 2-ethylbutanoate (469 mg, 3.60 mmol).

TLC Rf = 0.76 (hexane : ethyl acetate = 3 : 1); M.p. 64.9-66.1 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (enol form)  $\delta$  : 5.71 (s, 1H), 4.80 (t, *J* = 2.0 Hz, 2H), 4.50 (t, *J* = 2.0 Hz, 2H), 4.18 (s, 5H), 2.05-1.98 (m, 1H), 1.72-1.47 (m, 4H), 0.94 (t, *J* = 7.2 Hz, 6H). (diketone form)  $\delta$  : 4.79 (t, *J* = 2.0 Hz, 2H), 4.55 (t, *J* = 2.0 Hz, 2H), 4.18 (s, 5H), 2.05-1.98 (m, 1H), 1.72-1.43 (m, 4H), 0.88 (t, *J* = 7.3 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (enol form)  $\delta$  : 193.5, 191.1, 97.5, 72.16, 72.15, 70.4, 68.8, 51.3, 25.8, 12.2. (diketone form)  $\delta$  : 209.1, 199.6, 78.1, 73.1, 70.1, 70.0, 55.3, 54.4, 23.5, 11.7; IR (KBr) 3426, 2964, 2929, 2873, 1622, 1558, 1476, 1274, 1105, 998, 936, 820, 500 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>18</sub>H<sub>22</sub><sup>56</sup>FeNaO<sub>2</sub> [M+Na]<sup>+</sup> 349.0867 found 349.0857.

7-ferrocenyl-7-hydroxy-4-propylsept-6-en-5-one (26e)

According to the representative procedure, the reaction gave **26e** (266 mg, 0.751 mmol, 25% yield, enol form : diketone form = 12.6 : 1) as dark-orange oil from acetylferrocene (684 mg, 3.00 mmol) and methyl 2-propylpentanoate (569 mg, 3.60 mmol).

TLC Rf = 0.62 (hexane : ethyl acetate = 5 : 1); <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (enol form)  $\delta$ : 5.70 (s,1H), 4.80 (br s, 2H), 4.50 (br s, 2H), 4.18 (s, 5H), 2.24-2.17 (m, 1H), 1.69-1.60 (m, 2H), 1.49-1.25 (m, 6H), 0.92 (t, *J* = 7.2, 6H). (diketone form)  $\delta$ : 4.78 (br s, 2H), 4.55 (br s, 2H), 4.25 (s, 5H), 3.85 (s, 2H), 2.24-2.17 (m, 1H), 1.69-1.60 (m, 2H), 1.49-1.25 (m, 6H), 0.90 (t, *J* = 7.2, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (only enol form)  $\delta$ : 193.3, 191.7, 97.3, 72.17, 72.16, 70.4, 68.8, 47.5, 35.4, 20.9, 14.3. (diketone form)  $\delta$ : 208.2, 199.6, 78.1, 73.1, 70.1, 70.0, 54.2, 52.2, 33.3, 20.7, 14.4; IR (neat) 3374, 2957, 2929, 2869, 1713, 1608, 1356, 1272, 1104, 1024, 923, 818, 694 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>20</sub>H<sub>26</sub><sup>56</sup>FeNaO<sub>2</sub> [M+Na]<sup>+</sup> 377.1180 found 377.1169.

3-ferrocenyl-3-hydroxy-1-(4-methoxyphenyl)prop-2-en-1-one (26g)



According to the representative procedure, the reaction gave 26g (988 mg, 2.73 mmol, 91% yield, enol form : diketone form = 1.6 : 1) as a dark-red solid from acetylferrocene (684 mg, 3.00 mmol) and methyl *p*-anisate (598 mg, 3.60 mmol).

TLC Rf = 0.36 (hexane : ethyl acetate = 5 : 1); M.p. 102.4-108.8 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (only enol form)  $\delta$ : 7.92 (d, *J* = 8.8 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 6.34 (s,1H), 4.87 (br s, 2H), 4.53 (br s, 2H), 4.21 (s, 5H), 3.88 (s, 3H). (diketone form)  $\delta$  : 8.11 (d, *J* = 8.8 Hz, 2H), 6.97 (d, *J* = 8.8 Hz, 2H), 4.88 (br s, 2H), 4.55 (br s, 2H), 4.30 (s, 5H), 4,13 (s, 2H), 3.87 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (enol form)  $\delta$ : 192.7, 180.6, 162.9, 131.7, 128.8, 114.1, 92.8, 78.4, 72.1, 70.4, 68.7, 55.6. (diketone form)  $\delta$  : 197.7, 191.7, 164.1, 129.8, 127.9, 114.1, 79.2, 73.0, 70.3, 70.2, 55.7, 52.9; IR (KBr) 3855, 3449, 3083, 2995, 2934, 2244, 1603, 1524, 1261, 1032, 996, 815, 713, 495 cm<sup>-1</sup>; HRMS (ESI) *m/z* calcd for C<sub>20</sub>H<sub>18</sub><sup>56</sup>FeNaO<sub>3</sub> [M+Na]<sup>+</sup> 385.0503 found 385.0492.

3-ferrocenyl-3-hydroxy-1-(4-(trifluoromethyl)phenyl)prop-2-en-1-one (26h)

According to the representative procedure, the reaction gave **26h** (1.07 g, 2.67 mmol, 89% yield, only enol form) as a dark-red solid from acetylferrocene (684 mg, 3.00 mmol) and methyl 4-(trifluoromethyl)benzoate (565  $\mu$ L, 3.60 mmol).

TLC Rf = 0.51 (hexane : ethyl acetate = 5 : 1); M.p. 135-137.5 °C; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>) (only enol form)  $\delta$ : 8.03 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 6.38 (s,1 H), 4.91 (br s, 2H), 4.61 (br s, 2H), 4.24 (s, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>) (only eno 1 form)  $\delta$ : 195.3, 177.3, 138.7, 133.3 (q,  $J_{F-C}$  = 32 Hz), 127.1, 125.8 (q,  $J_{F-C}$  = 4 Hz) 123. 9 (q,  $J_{F-C}$  = 271 Hz), 94.7, 78.1, 72.8, 70.6, 69.1; IR (KBr) 3855, 3442, 3083, 2225, 1610, 1507, 1326, 1125, 1013, 855, 729, 485 cm<sup>-1</sup>; HRMS (ESI) *m*/*z* calcd for C<sub>20</sub>H<sub>15</sub>F<sub>3</sub><sup>56</sup>FeNaO 2 [M+Na]<sup>+</sup> 423.0271 found 423.0262.

#### 9. Preparation of the Mn(III)-complexes (3a-i)

tris(1-ferrocenyl-4-methylpentane-1,3-dionato)manganese(III) (3b)



### (Representative procedure)

To a stirred solution of ligand **26b** (293 mg, 0.900 mmol) in acetone (30.0 mL) at room temperature was added an aqueous solution of  $Mn(OAc)_3 \cdot 2H_2O$  (80.0 mg, 0.300 mmol) in  $H_2O$  (9.00 mL). After the dropwise addition of a solution of NaOAc (73.8 mg, 0.900 mmol) in  $H_2O$  (6.00 mL), the reaction mixture was allowed to stir under ambient conditions for 16 h. The resulting precipitate was collected by filtration and washed first with plenty of water and then with MeOH. Dried under vacuum at room temperature to afford **3b** (503 mg, 0.532 mmol, 73% yield) as a brown solid.

M.p. 170.3-175.9 °C; IR (KBr) 2959, 2925, 2867, 1654, 1509, 1411, 1087, 485 cm<sup>-1</sup>; HRM S (APCI+) *m*/*z* calcd for C<sub>48</sub>H<sub>52</sub><sup>56</sup>Fe<sub>3</sub><sup>55</sup>MnO<sub>6</sub> [M+H]<sup>+</sup> 947.1193 found 947.1154.

3a, f, and i were prepared by a known procedure<sup>11</sup>.

tris(1-ferrocenylpentane-1,3-dionato)manganese(III) (3c)



According to the representative procedure, the reaction gave 3c (702 mg, 0.711 mmol, 79% yield) as a brown solid from Mn(OAc)<sub>3</sub>•2H<sub>2</sub>O (80.0 mg, 0.300 mmol) and 26c (281 mg, 0.900 mmol). M.p. 172.3-178.1 °C; IR (KBr) 2961, 1560, 1509, 1401, 1287, 1111, 951, 715, 488 cm<sup>-1</sup>; HRMS (APCI+) *m*/*z* calcd for C<sub>51</sub>H<sub>58</sub><sup>56</sup>Fe<sub>3</sub><sup>55</sup>MnO<sub>6</sub> [M+H]<sup>+</sup>989.1662 found 989.1621.

tris(4-ethyl-1-ferrocenylhexane-1,3-dionato)manganese(III) (3d)



According to the representative procedure, the reaction gave **3d** (238 mg, 0.231 mmol, 77% yield) as a brown solid from Mn(OAc)<sub>3</sub>•2H<sub>2</sub>O (80.0 mg, 0.300 mmol) and **26d** (293 mg, 0.900 mmol). M.p. 155.5-158.9 °C; IR (KBr) 2960, 2925, 2869, 1561, 1509, 1412, 1273, 1105, 951, 732, 503 cm<sup>-1</sup>; HRMS (APCI+) m/z calcd for C<sub>54</sub>H<sub>64</sub><sup>56</sup>Fe<sub>3</sub><sup>55</sup>MnO<sub>6</sub> [M+H]<sup>+</sup> 1031.2132 found 1031. 2046.

tris(1-ferrocenyl-4-propylseptane-1,3-dionato)manganese(III) (3e)



According to the representative procedure, the reaction gave 3e (298 mg, 0.267 mmol, 89% yield) as a brown solid from Mn(OAc)<sub>3</sub>•2H<sub>2</sub>O (80.0 mg, 0.300 mmol) and **26e** (319 mg, 0.900 mmol). M.p. 144.8-155.4 °C; IR (KBr) 2953, 2925, 2864, 1561, 1509, 1410, 1270, 1058, 734, 479 cm<sup>-1</sup>; HRMS (APCI+) *m*/*z* calcd for C<sub>60</sub>H<sub>76</sub><sup>56</sup>Fe<sub>3</sub><sup>55</sup>MnO<sub>6</sub> [M+H]<sup>+</sup> 1115.3071 found 1115.2908. tris(1-ferrocenyl-3-(4-methoxyphenyl)propane-1,3-dionato)manganese(III) (3g)



According to the representative procedure, the reaction gave **3g** (297 mg, 0.261 mmol, 87% yield) as a red solid from Mn(OAc)<sub>3</sub>•2H<sub>2</sub>O (80.0 mg, 0.300 mmol) and **26g** (326 mg, 0.900 mmol). M.p. 242.2-249.2 °C; IR (KBr) 3090, 2959, 2836, 1522, 1497, 1374, 1233, 1172, 1026, 78 6, 496 cm<sup>-1</sup>; HRMS (APCI+) m/z calcd for C<sub>60</sub>H<sub>52</sub><sup>56</sup>Fe<sub>3</sub><sup>55</sup>MnO<sub>9</sub> [M+H]<sup>+</sup> 1139.1040 found 11 39.0980.

tris(1-ferrocenyl-3-(4-(trifluoromethyl)phenyl)propane-1,3-dionato)manganese(III) (3h)



According to the representative procedure, the reaction gave **3h** (364 mg, 0.291 mmol, 97% yield) as a black solid from Mn(OAc)<sub>3</sub>•2H<sub>2</sub>O (80.0 mg, 0.300 mmol) and **26h** (360 mg, 0.900 mmol). M.p. 197.2-208.6 °C; IR (KBr) 3097, 1528, 1500, 1322, 938, 785, 484 cm<sup>-1</sup>; HRMS (APCI +) m/z calcd for C<sub>60</sub>H<sub>43</sub>F<sub>9</sub><sup>56</sup>Fe<sub>3</sub><sup>55</sup>MnO<sub>6</sub> [M+H]<sup>+</sup> 1253.0345 found 1253.0118.

# 10. X-ray structure of 12, 13 and 3d

All the crystals were obtained by the slow diffusion method from the mixture of AcOEt/*n*-hexane at room temperature. A suitable single crystal was selected and mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID diffractometer using graphite monochromated Cu-Ka radiation.

Figure S13. X-ray crystallography of 12



The detail of the obtained data is available as a crystallographic information file (CIF), which is available from CCDC (2131101).

# EXPERIMENTAL DETAILS

A. Crystal Data

| Empirical Formula    | C <sub>23</sub> H <sub>19</sub> N <sub>3</sub> O <sub>9</sub> S                                                                                                         |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula Weight       | 513.48                                                                                                                                                                  |
| Crystal Color, Habit | colorless, platelet                                                                                                                                                     |
| Crystal Dimensions   | 0.300 X 0.300 X 0.100 mm                                                                                                                                                |
| Crystal System       | triclinic                                                                                                                                                               |
| Lattice Type         | Primitive                                                                                                                                                               |
| Lattice Parameters   | a = 7.23789(13) Å<br>b = 12.2345(2) Å<br>c = 13.6811(3) Å<br>$\alpha$ = 72.142(5) °<br>$\beta$ = 82.584(6) °<br>$\gamma$ = 80.322(6) °<br>V = 1132.82(5) Å <sup>3</sup> |
| Space Group          | P-1 (#2)                                                                                                                                                                |
| Z value              | 2                                                                                                                                                                       |
| D <sub>calc</sub>    | 1.505 g/cm <sup>3</sup>                                                                                                                                                 |
| F <sub>000</sub>     | 532.00                                                                                                                                                                  |
| μ(CuKα)              | 18.214 cm <sup>-1</sup>                                                                                                                                                 |

B. Intensity Measurements

| Diffractometer                        | R-AXIS RAPID                                                    |
|---------------------------------------|-----------------------------------------------------------------|
| Radiation                             | CuK $\alpha$ ( $\lambda$ = 1.54187 Å)<br>graphite monochromated |
| Voltage, Current                      | 50kV, 40mA                                                      |
| Temperature                           | -180.0 <sup>0</sup> C                                           |
| Detector Aperture                     | 460.0 x 256.0 mm                                                |
| Data Images                           | 90 exposures                                                    |
| ω oscillation Range (χ=54.0, φ=0.0)   | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 30.0 sec./ <sup>o</sup>                                         |
| ω oscillation Range (χ=54.0, φ=90.0)  | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 30.0 sec./ <sup>o</sup>                                         |
| ω oscillation Range (χ=54.0, φ=180.0) | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 30.0 sec./ <sup>o</sup>                                         |
| ω oscillation Range (χ=54.0, φ=270.0) | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 30.0 sec./ <sup>o</sup>                                         |
| ω oscillation Range (χ=0.0, φ=0.0)    | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 30.0 sec./ <sup>o</sup>                                         |
| Detector Position                     | 127.40 mm                                                       |

| Pixel Size                  | 0.100 mm                                                                                                                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|
| $2\theta_{max}$             | 136.4 <sup>0</sup>                                                                                                           |
| No. of Reflections Measured | Total: 12761<br>Unique: 4072 (R <sub>int</sub> = 0.0302)                                                                     |
| Corrections                 | Lorentz-polarization<br>Absorption<br>(trans. factors: 0.591 - 0.833)<br>Secondary Extinction<br>(coefficient: 6.10000e-004) |

| C. Structure Solution and Refinement |                                                                                                                                     |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Structure Solution                   | Direct Methods (SHELXS2013)                                                                                                         |
| Refinement                           | Full-matrix least-squares on F <sup>2</sup>                                                                                         |
| Function Minimized                   | $\Sigma \text{ w} (\text{Fo}^2 - \text{Fc}^2)^2$                                                                                    |
| Least Squares Weights                | w = 1/ [ $\sigma^2(Fo^2)$ + (0.0385 · P) <sup>2</sup><br>+ 0.7575 · P]<br>where P = (Max(Fo <sup>2</sup> ,0) + 2Fc <sup>2</sup> )/3 |
| $2\theta_{max}$ cutoff               | 136.4 <sup>0</sup>                                                                                                                  |
| Anomalous Dispersion                 | All non-hydrogen atoms                                                                                                              |
| No. Observations (All reflections)   | 4072                                                                                                                                |
| No. Variables                        | 326                                                                                                                                 |
| Reflection/Parameter Ratio           | 12.49                                                                                                                               |
| Residuals: R1 (I>2.00σ(I))           | 0.0394                                                                                                                              |
| Residuals: R (All reflections)       | 0.0462                                                                                                                              |
| Residuals: wR2 (All reflections)     | 0.0963                                                                                                                              |
| Goodness of Fit Indicator            | 1.036                                                                                                                               |
| Max Shift/Error in Final Cycle       | 0.001                                                                                                                               |
| Maximum peak in Final Diff. Map      | 0.45 e <sup>-</sup> /Å <sup>3</sup>                                                                                                 |
| Minimum peak in Final Diff. Map      | -0.33 e <sup>-</sup> /Å <sup>3</sup>                                                                                                |
|                                      |                                                                                                                                     |

Figure S14. X-ray crystallography of 13



The detail of the obtained data is available as a crystallographic information file (CIF), which is available from CCDC (2132840).

# EXPERIMENTAL DETAILS

A. Crystal Data

| Empirical Formula    | C <sub>23</sub> H <sub>19</sub> N <sub>3</sub> O <sub>9</sub> S                                                                                                                     |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula Weight       | 513.48                                                                                                                                                                              |
| Crystal Color, Habit | colorless, platelet                                                                                                                                                                 |
| Crystal Dimensions   | 0.300 X 0.200 X 0.200 mm                                                                                                                                                            |
| Crystal System       | monoclinic                                                                                                                                                                          |
| Lattice Type         | Primitive                                                                                                                                                                           |
| Lattice Parameters   | a = $15.7934(3)$ Å<br>b = $6.97062(13)$ Å<br>c = $20.9252(4)$ Å<br>$\alpha$ = $90.0000$ °<br>$\beta$ = $106.862(8)$ °<br>$\gamma$ = $90.0000$ °<br>V = $2204.60(11)$ Å <sup>3</sup> |
| Space Group          | P2 <sub>1</sub> /c (#14)                                                                                                                                                            |
| Z value              | 4                                                                                                                                                                                   |
| D <sub>calc</sub>    | 1.547 g/cm <sup>3</sup>                                                                                                                                                             |
| F <sub>000</sub>     | 1064.00                                                                                                                                                                             |
| μ(CuKα)              | 18.718 cm <sup>-1</sup>                                                                                                                                                             |

B. Intensity Measurements

| Diffractometer                        | R-AXIS RAPID                                                    |
|---------------------------------------|-----------------------------------------------------------------|
| Radiation                             | CuK $\alpha$ ( $\lambda$ = 1.54187 Å)<br>graphite monochromated |
| Voltage, Current                      | 50kV, 40mA                                                      |
| Temperature                           | -180.0 <sup>0</sup> C                                           |
| Detector Aperture                     | 460.0 x 256.0 mm                                                |
| Data Images                           | 180 exposures                                                   |
| ω oscillation Range (χ=54.0, φ=0.0)   | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 60.0 sec./ <sup>0</sup>                                         |
| ω oscillation Range (χ=54.0, φ=90.0)  | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 60.0 sec./ <sup>0</sup>                                         |
| ω oscillation Range (χ=54.0, φ=180.0) | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 60.0 sec./ <sup>0</sup>                                         |
| ω oscillation Range (χ=54.0, φ=270.0) | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 60.0 sec./ <sup>0</sup>                                         |
| ω oscillation Range (χ=10.0, φ=60.0)  | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 60.0 sec./ <sup>0</sup>                                         |
| Detector Position                     | 127.40 mm                                                       |

| Pixel Size                  | 0.100 mm                                                                                                                     |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------|
| 20 <sub>max</sub>           | 136.4 <sup>0</sup>                                                                                                           |
| No. of Reflections Measured | Total: 24080<br>Unique: 4006 (R <sub>int</sub> = 0.0283)                                                                     |
| Corrections                 | Lorentz-polarization<br>Absorption<br>(trans. factors: 0.515 - 0.688)<br>Secondary Extinction<br>(coefficient: 1.20000e-004) |

| C. Structure Solution and Refinement |                                                                                                                                     |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Structure Solution                   | Direct Methods (SIR2008)                                                                                                            |
| Refinement                           | Full-matrix least-squares on F <sup>2</sup>                                                                                         |
| Function Minimized                   | $\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$                                                                                   |
| Least Squares Weights                | w = 1/ [ $\sigma^2(Fo^2)$ + (0.0376 · P) <sup>2</sup><br>+ 1.5675 · P]<br>where P = (Max(Fo <sup>2</sup> ,0) + 2Fc <sup>2</sup> )/3 |
| $2\theta_{max}$ cutoff               | 136.4 <sup>0</sup>                                                                                                                  |
| Anomalous Dispersion                 | All non-hydrogen atoms                                                                                                              |
| No. Observations (All reflections)   | 4006                                                                                                                                |
| No. Variables                        | 326                                                                                                                                 |
| Reflection/Parameter Ratio           | 12.29                                                                                                                               |
| Residuals: R1 (I>2.00σ(I))           | 0.0340                                                                                                                              |
| Residuals: R (All reflections)       | 0.0385                                                                                                                              |
| Residuals: wR2 (All reflections)     | 0.0852                                                                                                                              |
| Goodness of Fit Indicator            | 1.040                                                                                                                               |
| Max Shift/Error in Final Cycle       | 0.000                                                                                                                               |
| Maximum peak in Final Diff. Map      | 0.27 e⁻/Å <sup>3</sup>                                                                                                              |
| Minimum peak in Final Diff. Map      | -0.41 e <sup>-</sup> /Å <sup>3</sup>                                                                                                |
Figure S15. X-ray crystallography of 3d



The detail of the obtained data is available as a crystallographic information file (CIF), which is available from CCDC (2132912).

## EXPERIMENTAL DETAILS

A. Crystal Data

| Empirical Formula    | C <sub>54</sub> H <sub>63</sub> Fe <sub>3</sub> MnO <sub>6</sub>                                                                                                                  |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Formula Weight       | 1030.57                                                                                                                                                                           |
| Crystal Color, Habit | black, platelet                                                                                                                                                                   |
| Crystal Dimensions   | 0.500 X 0.300 X 0.300 mm                                                                                                                                                          |
| Crystal System       | monoclinic                                                                                                                                                                        |
| Lattice Type         | Primitive                                                                                                                                                                         |
| Lattice Parameters   | a = $11.5777(2)$ Å<br>b = $23.2895(4)$ Å<br>c = $17.4903(3)$ Å<br>$\alpha$ = $90.0000$ °<br>$\beta$ = $92.923(7)$ °<br>$\gamma$ = $90.0000$ °<br>V = $4709.91(15)$ Å <sup>3</sup> |
| Space Group          | P2 <sub>1</sub> /n (#14)                                                                                                                                                          |
| Z value              | 4                                                                                                                                                                                 |
| D <sub>calc</sub>    | 1.453 g/cm <sup>3</sup>                                                                                                                                                           |
| F <sub>000</sub>     | 2152.00                                                                                                                                                                           |
| μ(CuKα)              | 97.983 cm <sup>-1</sup>                                                                                                                                                           |

B. Intensity Measurements

| Diffractometer                        | R-AXIS RAPID                                                    |
|---------------------------------------|-----------------------------------------------------------------|
| Radiation                             | CuK $\alpha$ ( $\lambda$ = 1.54187 Å)<br>graphite monochromated |
| Voltage, Current                      | 50kV, 40mA                                                      |
| Temperature                           | -180.0 <sup>o</sup> C                                           |
| Detector Aperture                     | 460.0 x 256.0 mm                                                |
| Data Images                           | 90 exposures                                                    |
| ω oscillation Range (χ=54.0, φ=0.0)   | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 120.0 sec./ <sup>o</sup>                                        |
| ω oscillation Range (χ=54.0, φ=90.0)  | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 120.0 sec./ <sup>o</sup>                                        |
| ω oscillation Range (χ=54.0, φ=180.0) | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 120.0 sec./ <sup>o</sup>                                        |
| ω oscillation Range (χ=54.0, φ=270.0) | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 120.0 sec./ <sup>o</sup>                                        |
| ω oscillation Range (χ=0.0, φ=0.0)    | 80.0 - 260.0 <sup>0</sup>                                       |
| Exposure Rate                         | 120.0 sec./ <sup>o</sup>                                        |
| Detector Position                     | 127.40 mm                                                       |

| Pixel Size                  | 0.100 mm                                                              |
|-----------------------------|-----------------------------------------------------------------------|
| 2θ <sub>max</sub>           | 136.5 <sup>0</sup>                                                    |
| No. of Reflections Measured | Total: 51218<br>Unique: 8583 (R <sub>int</sub> = 0.1000)              |
| Corrections                 | Lorentz-polarization<br>Absorption<br>(trans. factors: 0.026 - 0.053) |

| C. Structure Solution and Refinement |                                                                                                                                                       |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Structure Solution                   | Direct Methods (SHELXS2013)                                                                                                                           |
| Refinement                           | Full-matrix least-squares on F <sup>2</sup>                                                                                                           |
| Function Minimized                   | $\Sigma \text{ w } (\text{Fo}^2 - \text{Fc}^2)^2$                                                                                                     |
| Least Squares Weights                | w = 1/ [ σ <sup>2</sup> (Fo <sup>2</sup> ) + (0.1004 · P) <sup>2</sup><br>+ 6.0496 · P ]<br>where P = (Max(Fo <sup>2</sup> ,0) + 2Fc <sup>2</sup> )/3 |
| $2\theta_{max}$ cutoff               | 136.5 <sup>0</sup>                                                                                                                                    |
| Anomalous Dispersion                 | All non-hydrogen atoms                                                                                                                                |
| No. Observations (All reflections)   | 8583                                                                                                                                                  |
| No. Variables                        | 577                                                                                                                                                   |
| Reflection/Parameter Ratio           | 14.88                                                                                                                                                 |
| Residuals: R1 (I>2.00σ(I))           | 0.0785                                                                                                                                                |
| Residuals: R (All reflections)       | 0.1145                                                                                                                                                |
| Residuals: wR2 (All reflections)     | 0.2166                                                                                                                                                |
| Goodness of Fit Indicator            | 1.081                                                                                                                                                 |
| Max Shift/Error in Final Cycle       | 0.001                                                                                                                                                 |
| Maximum peak in Final Diff. Map      | 0.77 e <sup>-</sup> /Å <sup>3</sup>                                                                                                                   |
| Minimum peak in Final Diff. Map      | -0.84 e <sup>-</sup> /Å <sup>3</sup><br>S-77                                                                                                          |

## 11. Reference

<sup>1</sup> P. Zanello, F. F. d. Biani, C. Glidewell, J. Koenig, S. J. Marsh, *Polyhedron*. 1998, 17, 1795.

<sup>2</sup> The reaction mechnisms of other manganese complexes with molecular oxygen were discussed. a)

J. A. Kovacs, Acc. Chem. Res., 2015, 48, 2744; b) S. Sahu, D. P. Goldberg, J. Am. Chem. Soc.,

2016, **138**, 11410; c) X. Huang, J. T. Groves, *Chem. Rev.*, 2018, **118**, 2491; d) E. N. Cook, C. W. Machan, *Dalton Trans.*, 2021, **50**, 16871.

<sup>3</sup> C. Petrier, J. Einhorn, J. L. Luche, *Tetrahedron Lett.*, 1985, 26, 1449.

<sup>4</sup> G. Zhu, E. Negishi, Org. Lett., 2007, 9, 2771.

<sup>5</sup> W. Doherty, P. Evans, J. Org. Chem., 2016, **81**, 1416.

<sup>6</sup> a) S. D. Karyakarte, T. P. Smith, S. R. Chemler, J. Org. Chem., 2012, 77, 7755; b) J. Chen, H.-M.

Guo, Q.-Q. Zhao, J.-R. Chen, W.-J. Xiao, *Chem. Commun.*, 2018, **54**, 6780. c) J. Chen, M.-N. Yang, J.-R. Chen, W.-J. Xiao, *Org. Lett.*, 2018, **20**, 3314.

<sup>7</sup> S. D. Karyakarte, T. P. Smith, S. R. Chemler, J. Org. Chem., 2012, 77, 7755.

<sup>8</sup> a) K. Kubota, J. L. Leighton, Angew. Chem. Int. Ed., 2005, 44, 938; b) L. M. Suen, M. L.

Steigerwald, J. L. Leighton, Chem. Sci., 2013, 4, 2413.

<sup>9</sup> A. Patti, S. Pedotti, *Tetrahedron: Asymmetry*, 2006, **17**, 1824.

<sup>10</sup> C. M. Zakaria, C. A. Morrison, D. McAndrew, W. Bell, C. Glidewell, *J. Organomet. Chem.*, 1995, **485**, 201.

<sup>11</sup> B. E. Buitendach, E. Erasmus, M. Landman, J. W. Niemantsverdriet, J. C. Swarts, *Inorg. Chem.*, 2016, **55**, 1992.









































S-88





S-89





















S-94



























S-100





S-101











S-104









S-106





S-107





S-108




S-109





S-110

## ROESY analysis.







S-112









S-114





S-115





S-116





S-117





S-118





S-119





S-120









S-122













S-125









S-127









S-129





S-130





S-131









S-133





S-134





S-135









S-137





S-138





S-139





S-140





S-141





S-142





S-143





S-144








S-146









S-148





S-149





S-150