Supporting Information for:

Nickel(I)-catalyzed (de)hydrogenative coupling of amines and alkyl

heteroarenes with alcohols

Chunyan Zhang,^a Qianqian Liang,^{a,c} Wei Yang,^a Guohui Zhang,^a Maolin Hu*^b Guoying Zhang*^a

^a State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China.

^b College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China.

^c University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

E-mail: zhanggy@sxicc.ac.cn.

CONTENTS

- 1. General experimental details and materials
- 2. Optimization of the reaction conditions
- 3. General procedure for Ni-catalyzed N-alkylation
- 4. Characterization data
- 5. Synthesis of [Ni-N₄]Br
- 6. Gram scale experiments and tandem experiments
- 7. Control experiments
- 8. Mechanism study experiments
- 9. References
- **10.** Copies for NMR of the products

1. General experiment details and materials

Experimental: All reactions and manipulations with air sensitive compounds being present were performed under dry argon (Ar) or nitrogen (N₂), using Schlenk and glove box techniques. Deuterated solvents were bought from Cambridge Isotope Laboratories, distilled accordingly, and stored over molecular sieves (3 Å). Other chemicals were purchased from commercial vendors and used without further purification. NMR spectra were collected on a Varian INOVA 300 MHz spectrometer. Chemical shifts (δ) are reported in ppm relative to residual solvent signal. Coupling constants (J) are given in Hz (coupling patterns: s: singlet, br: broad singlet, d: doublet, t: triplet, q: quartet, m: multiplet). GC analyses were carried out using an Agilent Technologies 6890N system equipped with a Machinery-Nagel (MN) Optima 5 HT column (30 m, 320 µm, 0.25 µm) or an Agilent Technologies 6850 system equipped with a MN Optima 17 column (30 m, 320 µm, 0.25 µm). GC/MS analyses were carried out on an Agilent 7890A/MSD 5975C system equipped with a HP-5MS column (30 m, 320 µm, 0.25 µm). Gas mixtures were analyzed using an Agilent Technologies 6890N equipped with a TCD and an Agilent special plot and molsieve capillary column (30 m, 320 µm, 0.25 µm). Elemental analyses were performed using the Elementar Vario EL III. MN silica gel 60 (0.040 - 0.063 mm particle size) was used for flash column chromatography. High resolution mass spectra (HRMS) were recorded on Bruker MicroTOF-QII mass instrument (ESI).

2. Optimization of the reaction conditions

2.1 Optimization of the Ni-catalyzed N-alkylation of amines by alcohols

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (38 mL volume) was charged with a magnetic stirring bar, [Ni] (0.02 mmol), base, **1a** and **2a**. Then the Schlenk tube was closed tightly with a teflon cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (design temperature). After design time the reaction was cooled and quenched with ethyl acetate, a small aliquot of the organic phase was analyzed by GC or GC-MS to monitor product formation. The **3aa** yield was determined by GC analysis relative to the **2a** with *n*-hexadecane as internal standard. After evaporation of the solvents under reduced pressure, the residue was directly loaded onto a silica gel column (petroleum ether/ethyl acetate = 20/1) to afford the corresponding product **3aa** in the reported yield.

Entry	Parameter
Table S1	The difference of Ni-catalyst screening
Table S2	The difference of ligand screening
Table S3	The difference of base screening
Table S4	The loading of base screening
Table S5	The ratio of substrate screening
Table S6	Reaction temperature screening
Table S7	Reaction time screening
Table S8	The loading of Ni-catalyst screening
Table S9	Reaction system screening

	Ni-cat. (1 mol%)	Ph Ph
1a 2a	L (2.2 mol%)	H 3aa
Entry	Ni-catalyst	3aa (%)
1	-	0
2	NiCl ₂	10
3	NiBr ₂	12
4	NiI ₂	8
5	NiCl ₂ (DME)	31
6	NiBr ₂ (DME)	95
7	Ni ₂ O ₃	0
8	[NiCl(allyl)] 2	31
9	Li ₂ NiBr ₄	20
10	Ni(acac) ₂	28
11	Ni(cod) ₂	21
12	Ni(PPh ₃) ₄	22
13	Ni(PPh ₃) ₂ Cl ₂	23
14	Ni(DPPM)Cl ₂	32
15	Ni(DPPB)Cl ₂	10
16	Ni(DPPP)Cl ₂	24
17	Ni(DPPB)Cl ₂	36
18	Ni(DPPH)Cl ₂	21
19	Ni(PCy ₃) ₂ Cl ₂	12
20	[Ni-N4]Br	96

Table S1: The difference of Ni-catalyst screening^[a]

^[a] Reaction conditions: **[Ni]** (0.02 mmol), **L3** (0.04 mmol), *t*-BuOK (2.0 mmol), **1a** (4.0 mmol), **2a** (2.0 mmol), N₂, 130 °C, 15 h. Yield of **3aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

	H _o N—Ph	Ni-cat. (1 mol%)	Ph Ph
1a	2a	L (2.2 mol%)	H 3aa
Entry	Ligan	d	3aa (%)
1	L1		83
2	L2		78
3	L3		95
4	L4		82
5	L5		74
6	L6		<5
7	L7		<5
8	L8		<5
9	L9		<5
10	L10		<5
11	L11		26
12	1,10-p	ohenanthroline	34
13	-		0
14	[Ni-N	4]Br	96

 Table S2: The difference of ligand screening^[a]

^[a] Reaction conditions: NiBr₂(DME) (0.02 mmol), Ligand (0.04 mmol), *t*-BuOK (x mmol), **1a** (4.0 mmol), **2a** (2.0 mmol), N₂, 130 °C, 15 h. Yield of **3aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

Ni-cat. (1 mol%)	► Ph Ph
2a	H 3aa
Base (1.0 equiv)	3aa (%)
LiOH	0
NaOH	<5
КОН	<5
CsOH	<5
Li ₂ CO ₃	0
Na ₂ CO ₃	0
K_2CO_3	0
Cs ₂ CO ₃	0
t-BuOLi	<5
t-BuONa	68
t-BuOK	96
t-BuOCs	<5
pyridine	<5
TEA	0
TBD	0
DBU	0
t-BuLi	0
NaH	41
NaNH ₂	36
KH	71
	Ni-cat. (1 mol%) 2a Base (1.0 equiv) LiOH NaOH KOH CsOH Li2CO3 Na2CO3 K2CO3 Cs2CO3 t-BuOLi t-BuOLi t-BuOK t-BuOCs pyridine TEA TBD DBU t-BuLi NaH NaH NaNH2 KH

Table S3: The difference of base screening

^[a] Reaction conditions: **[Ni-N4]Br** (0.02 mmol), base (2.0 mmol), **1a** (4.0 mmol), **2a** (2.0 mmol), N₂, 130 °C, 15 h. Yield of **3aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

Ph $OH + H_2N$	—PhNi-cat. (1 mol%)	► Ph Ph
1a 2a	3	3aa
Entry	t-BuOK (mmol)	3aa (%)
1	0	0
2	0.5	23
3	1.0	51
4	1.75	86
5	2.0	96
6	2.25	95
7	2.5	93
8	3.0	90

Table S4: The loading of base screening^[a]

^[a] Reaction conditions: **[Ni-N₄]Br** (0.02 mmol), *t*-BuOK (x mmol), **1a** (4.0 mmol), **2a** (2.0 mmol), N₂, 130 °C, 15 h. Yield of **3aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

 Table S5:
 The ratio of substrate screening^[a]

		Ni-cat. (1 mol%)	Ph
Ph' OH T			Ph [°] N H
1a	2a		3aa
Entry	1a	2a	3aa (%)
1	2	2	72
2	3	2	89
3	4	2	96
4	2	3	71
5	2	4	73

^[a] Reaction conditions: **[Ni-N₄]Br** (0.02 mmol), *t*-BuOK (2 mmol), **1a** (x mmol), **2a** (x mmol), N₂, 130 °C, 15 h. Yield of **3aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

Ph +	H ₂ N—Ph Ni-cat. (1 mol%)	Ph Ph
1a	2a	⊓ 3aa
Entry	T [°C]	3aa (%)
1	RT	0
2	50	18
3	100	56
4	120	87
5	130	96
6	140	91
7	150	82

 Table S6:
 Reaction temperature screening^[a]

^[a] Reaction conditions: **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2 mmol), **1a** (4.0 mmol), **2a** (2.0 mmol), N₂, T $^{\circ}$ C, 15 h. Yield of **3aa** determined by GC-analysis using *n*-hexadecane (100 µL) as internal standard.

Table S7	': Reaction	time	screening ^[a]
	· iteaction	unit	sereening

Ph + H ₂	N—Ph Ni-cat. (1 mol%	\rightarrow Ph h
1a	2a	3aa
Entry	t [h]	3aa (%)
1	3	22
2	6	49
3	12	80
4	15	96
5	24	95

^[a] Reaction conditions: **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2 mmol), **1a** (4.0 mmol), **2a** (2.0 mmol), N₂, 130 °C, x h. Yield of **3aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

Ph <mark>O</mark> H +	H ₂ N—Ph	Ni-cat. (x mol%)	► Ph Ph
1a	2a		⊓ 3aa
Entry		[Ni-N4]Br (mol%)	3aa (%)
1		0	0
2		0.05	86
3		0.1	96
4		0.5	95
5		1.0	96
6		2	95

Table S8: The loading of Ni-catalyst screening^[a]

^[a] Reaction conditions: **[Ni-N4]Br** (x mmol), *t*-BuOK (2.0 mmol), **1a** (4.0 mmol), **2a** (2.0 mmol), N₂, 130 °C, 15 h. Yield of **3aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

	CO	D /		•
Ohla	SU.	RADOCTION	cuctom	corponing
	177.	NUAUHUH	SVSICIII	SCICCIIII
			~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ph OH	+ H ₂ N—Ph -	Ni-cat. (1 mol%)	Ph Ph
1a	2a		3aa
Entry	system		3aa (%)
1	open	N_2	93
2	open	air	48
3	open	O_2	0
4	closed	N_2	96
5	closed	air	56
6	closed	O_2	0

^[a] Reaction conditions: [Ni-N4]Br (0.02 mmol), t-BuOK (2.0 mmol), 1a (4.0 mmol),
2a (2.0 mmol), N₂, 130 °C, 15 h. Yield of 3aa determined by GC-analysis using *n*-hexadecane (100 μL) as internal standard.

2.2 Optimization of the Ni-catalyzed olefination of N-heteroarenes by alcohols

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (100 mL volume) was charged with a magnetic stirring bar, [Ni] (0.02 mmol), base, **1a** and **4a**. Then the Schlenk tube was closed tightly with a teflon cap, removed from the glove box. Then the Schlenk tube was closed tightly with a teflon cap, removed from the glove box. A reflux condenser was evacuated and refilled with dry N₂ and then attached to the Schlenk tube maintaining dry air stream. A bubble counter was attached to the top of the condenser and the whole system was purged with dry N₂ for 30 seconds. The Schlenk tube was immersed into a pre-heated metal bath (design temperature). After design time the reaction was cooled, a small aliquot of the organic phase was analyzed by GC or GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 - 2/1) gave the corresponding products **5aa** in the reported yield.

Entry	Parameter
Table S10	The difference of ligand screening
Table S11	The difference of base screening
Table S12	The loading of base screening
Table S13	The ratio of substrate screening
Table S14	Reaction temperature screening
Table S15	Reaction time screening
Table S16	The loading of Ni-catalyst screening
Table S17	Reaction system screening

Ph OH +	-	[Ni]	
1a	4a		5aa
Entry		Ligand	5aa (%)
1		L1	78
2		L2	81
3		L3	92
4		L4	71
5		L5	70
6		L6	<5
7		L7	<5
8		L8	<5
9		L9	<5
10		L10	<5
11		L11	32
12		-	0
13		[Ni-N4]Br	93 (83) ^[b]

Table S10: The difference of ligand screening^[a]

^[a] Reaction conditions: NiBr₂(DME) (0.05 mmol), Ligand (0.1 mmol), KOH (2.0 mmol), **1a** (4.0 mmol), **4a** (2.0 mmol), N₂, 140 °C, 15 h. Yield of **5aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard. ^[b] Isolated product.

PhOH	+ [Ni]	Ph
1a	4a	5aa
Entry	Base (1.0 equiv)	5aa (%)
1	LiOH	<5
2	NaOH	25
3	КОН	93
4	CsOH	32
5	Li ₂ CO ₃	0
6	Na ₂ CO ₃	0
7	K ₂ CO ₃	0
8	Cs ₂ CO ₃	0
9	t-BuOLi	<5
10	t-BuONa	49
11	t-BuOK	81
12	t-BuOCs	21
13	pyridine	0
14	TEA	0
15	TBD	0
16	DBU	0
17	t-BuLi	0
18	NaH	39
19	NaNH ₂	52
20	KH	82

Table S11: The difference of base screening

^[a] Reaction conditions: **[Ni-N4]Br** (0.05 mmol), base (2.0 mmol), **1a** (4.0 mmol), **4a** (2.0 mmol), N₂, 140 °C, 15 h. Yield of **5aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

Ph OH +		h
1a	4a	5aa
Entry	KOH (mmol)	5aa (%)
1	0	0
2	0.5	26
3	1.0	46
4	1.75	82
5	2.0	93
6	2.5	92
7	3.0	91

 Table S12:
 The loading of base screening^[a]

^[a] Reaction conditions: **[Ni-N4]Br** (0.05 mmol), KOH (x mmol), **1a** (4.0 mmol), **4a** (2.0 mmol), N₂, 140 °C, 15 h. Yield of **5aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

Table S13:	The ratio	of substrate	screening ^[a]
------------	-----------	--------------	--------------------------

Ph OH +		[Ni]	
1a	4a		5aa
Entry	1 a	2a	5aa (%)
1	2	2	74
2	3	2	87
3	4	2	93
4	2	3	75
5	2	4	79

^[a] Reaction conditions: **[Ni-N₄]Br** (0.05 mmol), KOH (2 mmol), **1a** (x mmol), **4a** (x mmol), N₂, 130 °C, 15 h. Yield of **5aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

Ph OH +		
1a 4a		5aa
Entry	T [°C]	5aa (%)
1	RT	0
2	50	26
3	100	43
4	120	83
5	130	90
6	140	93
7	150	82

 Table S14:
 Reaction temperature screening^[a]

^[a] Reaction conditions: **[Ni-N4]Br** (0.05 mmol), KOH (2 mmol), **1a** (4.0 mmol), **4a** (2.0 mmol), N₂, T $^{\circ}$ C, 15 h. Yield of **5aa** determined by GC-analysis using *n*-hexadecane (100 µL) as internal standard.

Рһ ОН +		
1a	4a	5aa
Entry	t [h]	5aa (%)
1	3	20
2	6	47
3	12	79
4	15	93
5	24	93

 Table S15: Reaction time screening^[a]

^[a] Reaction conditions: **[Ni-N4]Br** (0.05 mmol), KOH (2 mmol), **1a** (4.0 mmol), **4a** (2.0 mmol), N₂, 140 °C, x h. Yield of **5aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

Ph OH +		Ph
1a	4a	5aa
Entry	[Ni-N 4] Br (mol%)	5aa (%)
1	0	0
2	0.1	73
3	2.5	93
4	5	92
5	10	93
6	20	93

Table S16: The loading of Ni-catalyst screening^[a]

^[a] Reaction conditions: **[Ni-N₄]Br** (x mmol), KOH (2.0 mmol), **1a** (4.0 mmol), **4a** (2.0 mmol), N₂, 140 °C, 15 h. Yield of **5aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

 Table S17: Reaction system screening

Ph OH +		[Ni]	N
1a	4a		5aa
Entry	system		5aa (%)
1	open	N_2	93
2	open	air	52
3	open	O_2	0
4	closed	\mathbf{N}_2	74
5	closed	air	44
6	closed	O_2	0

^[a] Reaction conditions: **[Ni-N4]Br** (0.05 mmol), KOH (2 mmol), **1a** (4.0 mmol), **4a** (2.0 mmol), N₂, 140 °C, 15 h. Yield of **5aa** determined by GC-analysis using *n*-hexadecane (100 μ L) as internal standard.

3. General procedure for Ni-catalyzed *N*-alkylation

3.1 General procedure for Ni-catalyzed *N*-alkylation of amines by alcohols Closed system:

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (38 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.002 mmol, 0.1 mol%), *t*-BuOK (2.0 mmol), **1** (4.0 mmol) and **2** (2.0 mmol). Then the Schlenk tube was closed tightly with a teflon cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (design temperature). After design time the reaction was cooled, a small aliquot of the organic phase was analyzed by GC or GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 - 5/1, Et₃N 1%) gave the corresponding products **3** in the reported yields.

3.2 General procedure for Ni-catalyzed olefination of *N*-heteroarenes

by alcohols

Opened system:

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (100 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.05 mmol, 2.5 mol%), KOH (2.0 mmol), **1** (4.0 mmol) and **4** (2.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. A reflux condenser was evacuated and refilled with dry N₂ and then attached to the Schlenk tube maintaining dry air stream. A bubble counter was attached to the top of the condenser and the whole system was purged with dry N₂ for 30 seconds. The Schlenk tube was immersed into a pre-heated metal bath (design temperature). After design time the reaction was cooled, a small aliquot of the organic phase was analyzed by GC or GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 - 2/1, DCM 2%) gave the corresponding products **5** in the reported yields.

4. Characterization data

N-benzylaniline (3aa)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 329.6 mg, 90% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.13 (m, 5H), 7.07 (t, *J* = 7.6 Hz, 2H), 6.62 (t, *J* = 7.2 Hz, 1H), 6.53 (d, *J* = 8.1 Hz, 2H), 4.22 (s, 2H), 3.92 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 148.08, 139.37, 129.22, 128.59, 127.47, 127.18, 117.52, 112.80, 48.28.

MS (70 eV): m/z (%) = 183.

HRMS (ESI) calcd. for C₁₃H₁₄N [M+H]: 184.1126, found: 184.1120.

N-(3-methylbenzyl)aniline (3ab)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 339.1 mg, 86% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 7.25 (d, *J* = 7.2 Hz, 1H), 6.88 (t, *J* = 7.3 Hz, 1H), 6.77 (d, *J* = 7.6 Hz, 2H), 4.41 (s, 2H), 4.09 (s, 1H), 2.51 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.20, 139.36, 138.23, 129.23, 128.51, 128.25, 127.96, 124.56, 117.45, 112.79, 48.28, 21.43.

MS (70 eV): m/z (%) = 197.

HRMS (ESI) calcd. for C₁₄H₁₆N [M+H]: 198.1283, found: 198.1272.

N-(4-(tert-butyl)benzyl)aniline (3ac)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 38.2 - 39.4 °C, 440.1 mg, 92% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.35 (dd, *J* = 19.9, 8.3 Hz, 4H), 7.19 (t, *J* = 6.2 Hz, 2H), 6.72 (t, *J* = 7.3 Hz, 1H), 6.66 (d, *J* = 7.8 Hz, 2H), 4.30 (s, 2H), 4.00 (s, 1H), 1.33 (s, 9H).

¹³**C NMR** (101 MHz, CD₂Cl₂) δ 149.75, 147.95, 136.21, 128.70, 126.77, 125.03, 116.80, 112.30, 47.28, 33.95, 30.70.

MS (70 eV): m/z (%) = 239.

HRMS (ESI) calcd. for C₁₇H₂₂N [M+H]: 240.1752, found: 240.1746.

N-(4-methoxybenzyl)aniline (3ad)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 63.5 - 64.2 °C, 387.9 mg, 91% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.27 (d, *J* = 8.3 Hz, 2H), 7.16 (t, *J* = 7.5 Hz, 2H), 6.86 (d, *J* = 8.0 Hz, 2H), 6.70 (t, *J* = 7.3 Hz, 1H), 6.62 (d, *J* = 7.7 Hz, 2H), 4.23 (s, 2H), 3.92 (s, 1H), 3.78 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 158.85, 148.20, 131.40, 129.26, 128.82, 117.50, 114.02, 112.83, 55.31, 47.80.

MS (70 eV): m/z (%) = 213.

HRMS (ESI) calcd. For C₁₄H₁₆NO [M+H]: 214.1232, found: 214.1227.

N-(2-methoxybenzyl)aniline (3ae)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 93.1 - 94.3 °C, 285.6 mg, 67% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.25 (d, *J* = 7.4 Hz, 1H), 7.19 (t, *J* = 8.1 Hz, 1H), 7.11 (dd, *J* = 11.3, 4.3 Hz, 2H), 6.85 (dd, *J* = 16.1, 7.9 Hz, 2H), 6.72 – 6.49 (m, 3H), 4.28 (s, 2H), 4.06 (s, 1H), 3.80 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 157.58, 148.62, 129.38, 129.09, 128.50, 127.52, 120.72, 117.52, 113.25, 110.42, 55.50, 43.65.

MS (70 eV): m/z (%) = 213.

HRMS (ESI) calcd. for C₁₄H₁₆NO [M+H]: 214.1232, found: 214.1229.

N-(4-chlorobenzyl)aniline (3af)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 47.1 - 48.2 °C, 356.0 mg, 82% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (d, *J* = 3.8 Hz, 4H), 7.32 – 7.21 (m, 2H), 6.89 – 6.74 (m, 1H), 6.74 – 6.59 (m, 2H), 4.37 (s, 2H), 4.11 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.86, 138.05, 132.86, 129.35, 128.78, 128.73, 117.82, 112.91, 47.61.

MS (70 eV): m/z (%) = 217.

HRMS (ESI) calcd. for C₁₃H₁₃ClN [M+H]: 218.0737, found: 218.0734.

N-(4-bromobenzyl)aniline (3ag)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 51.3 - 52.1 °C, 396.8 mg, 76% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 (dd, *J* = 8.2, 1.6 Hz, 2H), 7.38 – 7.18 (m, 4H), 6.79 (dd, *J* = 10.4, 4.2 Hz, 1H), 6.66 (d, *J* = 7.1 Hz, 2H), 4.34 (s, 2H), 4.10 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.68, 138.44, 131.58, 129.19, 128.93, 120.80, 117.70, 112.78, 47.53.

MS (70 eV): m/z (%) = 261.

HRMS (ESI) calcd. for C₁₃H₁₃BrN [M+H]: 262.0231, found: 262.0223.

N-(naphthalen-1-ylmethyl)aniline (3ah)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 68.1 - 69.0 °C, 289.1 mg, 62% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.22 (dd, *J* = 6.1, 3.4 Hz, 1H), 8.06 (dd, *J* = 6.2, 3.3 Hz, 1H), 7.98 (d, *J* = 8.1 Hz, 1H), 7.72 – 7.64 (m, 3H), 7.63 – 7.53 (m, 1H), 7.39 (t, *J* = 7.8 Hz, 2H), 6.95 (t, *J* = 7.3 Hz, 1H), 6.81 (d, *J* = 7.9 Hz, 2H), 4.83 (s, 2H), 4.06 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 148.35, 134.46, 134.00, 131.66, 129.46, 128.90, 128.31, 126.46, 126.18, 125.97, 125.68, 123.72, 117.70, 112.86, 46.56.

MS (70 eV): m/z (%) = 233.

HRMS (ESI) calcd. for C₁₇H₁₆N [M+H]: 234.1283, found: 234.1274.

N-(thiophen-2-ylmethyl)aniline (3ai)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 294.9 mg, 78% yield.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.30 – 7.12 (m, 3H), 7.09 – 6.88 (m, 2H), 6.80 – 6.56 (m, 3H), 4.51 (s, 2H), 4.16 (s, 1H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 147.29, 142.95, 128.70, 126.36, 124.47, 123.98, 117.39, 112.59, 42.83.

MS (70 eV): m/z (%) = 189.

HRMS (ESI) calcd. for C₁₁H₁₂NS [M+H]: 190.0690, found: 190.0684.

N-benzhydrylaniline (3aj)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 58.5 - 59.1 °C, 217.7 mg, 42% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.43 – 7.36 (m, 7H), 7.32 (d, *J* = 7.2 Hz, 2H), 7.21 – 7.09 (m, 2H), 6.76 (dd, *J* = 10.5, 4.1 Hz, 1H), 6.66 – 6.44 (m, 2H), 5.56 (s, 1H), 4.28 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.60, 143.19, 129.38, 129.01, 127.72, 127.62, 117.92, 113.74, 63.30.

MS (70 eV): m/z (%) = 259.

HRMS (ESI) calcd. for C₁₉H₁₈N [M+H]: 260.1439, found: 260.1436.

N-butylaniline (3ak)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 152.1 mg, 51% yield.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.23 (dd, *J* = 8.5, 7.3 Hz, 2H), 6.74 (t, *J* = 7.3 Hz, 1H), 6.68 (d, *J* = 7.6 Hz, 2H), 3.74 (s, 1H), 3.19 (t, *J* = 7.0 Hz, 2H), 1.73 – 1.64 (m, 2H), 1.59 – 1.48 (m, 2H), 1.06 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 148.37, 128.67, 116.33, 112.07, 43.18, 31.25, 19.90, 13.29.

MS (70 eV): m/z (%) = 149.

HRMS (ESI) calcd. for C₁₀H₁₆N [M+H]: 150.1283, found: 150.1278.

N-hexylaniline (3al)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 248.0 mg, 70% yield.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.28 – 7.14 (m, 2H), 6.79 – 6.56 (m, 3H), 3.70 (s, 1H), 3.17 – 3.12 (m, 2H), 1.66 (dd, *J* = 14.6, 7.7 Hz, 2H), 1.49 – 1.35 (m, 6H), 0.98 (t, *J* = 6.8 Hz, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 148.79, 129.10, 116.75, 112.50, 43.94, 31.71, 29.55, 26.88, 22.69, 13.86.

MS (70 eV): m/z (%) = 177.

HRMS (ESI) calcd. for C₁₂H₂₀N [M+H]: 178.1596, found: 178.1593.

N-octylaniline (3am)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 291.4 mg, 71% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.32 – 7.24 (m, 1H), 6.84 – 6.54 (m, 3H), 3.60 (s, 1H), 3.34 – 3.04 (m, 2H), 1.70 (dd, *J* = 14.6, 7.3 Hz, 2H), 1.54 – 1.31 (m, 11H), 1.08 – 0.94 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.40, 129.06, 116.89, 112.53, 43.86, 31.74, 29.46, 29.33, 29.19, 27.09, 22.58, 14.01.

MS (70 eV): m/z (%) = 197.

HRMS (ESI) calcd. for C₁₄H₂₄N [M+H]: 206.1909, found: 206.1906.

N-icosylaniline (3an)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 307.6 mg, 66% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.21 – 7.10 (m, 2H), 6.67 (t, *J* = 7.3 Hz, 1H), 6.58 (d, *J* = 7.9 Hz, 2H), 3.54 (s, 1H), 3.08 (t, *J* = 7.1 Hz, 2H), 1.65 – 1.52 (m, 2H), 1.46 – 1.15 (m, 16H), 0.88 (dd, *J* = 7.7, 5.9 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.59, 129.24, 117.09, 112.72, 44.05, 31.98, 29.69, 29.65, 29.54, 29.41, 27.26, 22.76, 14.19.

MS (70 eV): m/z (%) = 233.

HRMS (ESI) calcd. for C₁₆H₂₈N [M+H]: 234.2222, found: 234.2219.

N-(3,7-dimethyloct-6-en-1-yl)aniline (3ao)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 222.0 mg, 48% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.24 (dd, *J* = 15.2, 7.6 Hz, 2H), 6.74 (td, *J* = 7.3, 0.8 Hz, 1H), 6.65 (d, *J* = 8.5 Hz, 2H), 5.16 (t, *J* = 7.1 Hz, 1H), 3.58 (s, 1H), 3.32 – 3.05 (m, 2H), 2.06 (dt, *J* = 15.5, 7.8 Hz, 2H), 1.75 (s, 3H), 1.72 – 1.56 (m, 5H), 1.46 (tdd, *J* = 11.9, 11.0, 7.0 Hz, 2H), 1.34 – 1.23 (m, 1H), 1.03 – 0.92 (m, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 148.41, 131.17, 129.07, 124.54, 116.94, 112.54,
41.79, 36.97, 36.57, 30.30, 25.62, 25.36, 19.48, 17.56.

MS (70 eV): m/z (%) = 231.

HRMS (ESI) calcd. for C₁₆H₂₆N [M+H]: 232.2065, found: 232.2059.

N-benzyl-4-ethylaniline (3ba)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 384.3 mg, 91% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 7.61 – 7.18 (m, 5H), 7.07 (dd, J = 8.2, 1.5 Hz, 2H), 6.64 (dd, J = 8.4, 1.8 Hz, 2H), 4.35 (d, J = 1.3 Hz, 2H), 3.95 (s, 1H), 2.60 (q, J = 7.5 Hz, 2H), 1.25 (t, J = 7.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 145.86, 139.39, 133.14, 128.33, 128.31, 127.26, 126.89, 112.70, 48.38, 27.69, 15.74.

MS (70 eV): m/z (%) = 211.

HRMS (ESI) calcd. for C₁₅H₁₈N [M+H]: 212.1439, found: 212.1433.

N-benzyl-3,5-dimethylaniline (3ca)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 342.1 mg, 81% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.41 – 7.23 (m, 5H), 6.38 (d, *J* = 3.7 Hz, 1H), 6.26 (d, *J* = 4.2 Hz, 2H), 4.27 (d, *J* = 4.2 Hz, 2H), 3.84 (s, 1H), 2.23 (d, *J* = 4.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 148.15, 139.51, 138.72, 128.42, 127.37, 126.98, 119.43, 110.60, 48.18, 21.36.

MS (70 eV): m/z (%) = 211.

HRMS (ESI) calcd. for C₁₅H₁₈N [M+H]: 212.1439, found: 212.1435.

N-benzyl-[1,1'-biphenyl]-2-amine (3da)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 89.1 - 90.1 °C, 368.0 mg, 71% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.22 (m, 4H), 7.22 – 6.92 (m, 8H), 6.65 (t, J = 7.3 Hz, 1H), 6.53 (d, J = 8.1 Hz, 1H), 4.28 (s, 1H), 4.14 (s, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 144.73, 139.35, 130.11, 129.25, 128.81, 128.61, 128.43, 127.49, 127.12, 126.86, 117.08, 110.65.

MS (70 eV): m/z (%) = 259.

HRMS (ESI) calcd. for C₁₉H₁₈N [M+H]: 260.1439, found: 260.1436.

N-benzyl-4-methoxyaniline (3ea)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 49.4 - 50.2 °C, 392.1 mg, 92% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.34 (m, 3H), 7.30 (d, *J* = 6.9 Hz, 1H), 6.87 – 6.73 (m, 2H), 6.70 – 6.57 (m, 2H), 4.30 (s, 2H), 4.27 (s, 1H), 3.76 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 152.18, 142.22, 139.52, 128.54, 127.53, 127.14, 114.83, 114.15, 55.73, 49.23.

MS (70 eV): m/z (%) = 213.

HRMS (ESI) calcd. for C₁₄H₁₆NO [M+H]: 214.1232, found: 214.1225.

N-benzyl-3-methoxyaniline (3fa)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, 341.0 mg, 80% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.51 – 7.29 (m, 5H), 7.14 (t, *J* = 8.1 Hz, 1H), 6.41 – 6.28 (m, 2H), 6.25 (t, *J* = 2.3 Hz, 1H), 4.35 (s, 2H), 3.79 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 160.71, 149.40, 139.21, 129.91, 128.54, 127.43, 127.15, 105.91, 102.59, 98.79, 54.94, 48.20.

MS (70 eV): m/z (%) = 213.

HRMS (ESI) calcd. for C₁₄H₁₆NO [M+H]: 214.1232, found: 214.1224.

N-benzyl-4-chloroaniline (3ga)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 45.2 - 46.0 °C, 373.4 mg, 86% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.55 – 7.26 (m, 5H), 7.22 – 7.05 (m, 2H), 6.68 – 6.46 (m, 2H), 4.34 (s, 2H), 4.09 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 146.63, 138.93, 129.04, 128.68, 127.39, 127.35, 122.00, 113.90, 48.27.

MS (70 eV): m/z (%) = 217.

HRMS (ESI) calcd. for C₁₃H₁₃ClN [M+H]: 218.0737, found: 218.0733.

N-benzyl-4-bromoaniline (3ha)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 51.3 - 52.2 °C, 396.8 mg, 76% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 – 7.14 (m, 7H), 6.52 (d, *J* = 8.8 Hz, 2H), 4.32 (s, 2H), 4.10 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 146.81, 138.63, 131.69, 128.48, 127.16, 114.19, 108.84, 47.96.

MS (70 eV): m/z (%) = 261.

HRMS (ESI) calcd. for C₁₃H₁₃BrN [M+H]: 262.0231, found: 262.0225.

N-benzylpyridin-2-amine (3ia)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 268.8 mg, 73% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.04 (d, *J* = 4.4 Hz, 1H), 7.42 – 7.24 (m, 5H), 7.24 – 7.18 (m, 1H), 6.61 – 6.45 (m, 1H), 6.31 (d, *J* = 8.4 Hz, 1H), 4.88 (s, 1H), 4.45 (d, *J* = 5.7 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 164.63, 155.79, 148.09, 138.85, 137.34, 131.65, 128.50, 127.27, 113.02, 106.66, 46.18.

MS (70 eV): m/z (%) = 184

HRMS (ESI) calcd. for C₁₂H₁₃N₂ [M+H]: 185.1079, found: 185.1074.

N-benzylpyridin-3-amine (3ja)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give the yellow oil, 272.5 mg, 74% yield.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 8.03 (d, *J* = 2.9 Hz, 1H), 7.90 (dd, *J* = 4.6, 1.3 Hz, 1H), 7.41 – 7.21 (m, 5H), 7.04 (dd, *J* = 8.3, 4.6 Hz, 1H), 6.87 (ddd, *J* = 8.3, 2.9, 1.3 Hz, 1H), 4.34 (s, 3H).

¹³**C NMR** (101 MHz, CD₂Cl₂) δ 144.09, 138.83, 138.51, 136.00, 128.55, 127.26, 127.22, 123.48, 118.26, 47.55.

MS (70 eV): m/z (%) = 184

HRMS (ESI) calcd. for C₁₂H₁₃N₂ [M+H]: 185.1079, found: 185.1078.

(E)-N-benzyl-4-styrylaniline (3ka)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 89.2 - 91.1 °C, 399.2 mg, 70% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.53 (d, *J* = 7.7 Hz, 2H), 7.46 – 7.23 (m, 10H), 7.02 (dd, *J* = 39.8, 16.2 Hz, 2H), 6.68 (d, *J* = 8.3 Hz, 2H), 4.42 (s, 2H), 4.26 (s, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 147.82, 139.20, 138.15, 128.85, 128.76, 128.66, 127.85, 127.55, 127.40, 127.11, 126.84, 126.12, 124.68, 113.03, 48.29.

MS (70 eV): m/z (%) = 285.

HRMS (ESI) calcd. for C₁₂H₁₃N₂ [M+H]: 286.1596, found: 286.1591.

N-benzyl-4-(thiophen-3-yl)aniline (3la)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, 424.2 mg, 80% yield.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 8.02 (d, *J* = 2.9 Hz, 1H), 7.89 (dd, *J* = 4.6, 1.3 Hz, 1H), 7.40 – 7.20 (m, 5H), 7.03 (dd, *J* = 8.3, 4.6 Hz, 1H), 6.86 (ddd, *J* = 8.3, 2.9, 1.3 Hz, 1H), 4.33 (s, 3H).

¹³**C NMR** (101 MHz, CD₂Cl₂) δ 144.17, 138.91, 138.59, 136.08, 128.62, 127.34, 127.30, 123.56, 118.34, 47.63.

MS (70 eV): m/z (%) = 265.

HRMS (ESI) calcd. for C₂₁H₂₀N [M+H]: 266.1003, found: 266.0998.

N^1 -butyl- N^3 -(4-methoxybenzyl)benzene-1,3-diamine (3ma)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, 454.7 mg, 80% yield.

¹**H** NMR (400 MHz, CD₂Cl₂) δ 7.39 – 7.26 (m, 2H), 6.97 – 6.84 (m, 3H), 6.01 (dt, J = 7.9, 2.1 Hz, 2H), 5.90 (t, J = 2.2 Hz, 1H), 4.25 (s, 2H), 3.82 (s, 3H), 3.08 (t, J = 7.0 Hz, 2H), 1.64 – 1.52 (m, 2H), 1.44 (dd, J = 15.2, 7.1 Hz, 2H), 0.98 (t, J = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 158.73, 149.79, 149.39, 131.88, 129.64, 128.57, 113.74, 102.61, 102.35, 96.85, 55.12, 47.51, 43.54, 31.66, 20.25, 13.64.

MS (70 eV): m/z (%) = 284.

HRMS (ESI) calcd. for C₁₇H₁₆NS [M+H]: 285.1967, found: 285.1962.

N^1 -hexyl- N^3 -(4-methoxybenzyl)benzene-1,3-diamine (3na)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, 505.8 mg, 81% yield.

¹H NMR (400 MHz, CD₂Cl₂) δ 7.33 (d, J = 8.6 Hz, 2H), 6.96 - 6.85 (m, 3H),
6.02 (d, J = 8.0 Hz, 2H), 5.90 (s, 1H), 4.26 (s, 2H), 3.82 (s, 3H), 3.08 (t, J = 7.1 Hz, 2H), 1.68 - 1.54 (m, 2H), 1.41 (dd, J = 16.8, 5.9 Hz, 6H), 0.96 (t, J = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 158.81, 149.87, 149.47, 131.96, 129.72, 128.65, 113.82, 102.68, 102.42, 96.93, 55.19, 47.58, 43.95, 31.70, 29.60, 26.88, 22.68, 13.86.

MS (70 eV): m/z (%) = 312.

HRMS (ESI) calcd. for C₁₈H₂₅N₂O [M+H]: 313.2280, found: 313.2277.

N^1 -benzyl- N^3 -(4-methoxybenzyl)benzene-1,3-diamine (30a)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, 445.5 mg, 70% yield.

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.40 – 7.34 (m, 7H), 7.36 – 7.28 (m, 3H), 6.95 (t, J = 8.0 Hz, 1H), 6.05 (dd, J = 8.0, 2.1 Hz, 2H), 5.94 (d, J = 2.1 Hz, 1H), 4.30 (d, J = 3.5 Hz, 4H), 4.07 (s, 2H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 149.41, 140.01, 129.82, 128.49, 127.41, 127.01, 102.89, 97.21, 48.08.

MS (70 eV): m/z (%) = 318.

HRMS (ESI) calcd. for C₂₀H₂₉N₂O [M+H]: 319.1810, found: 319.1802.

N^1 , N^3 -dibenzylbenzene-1,3-diamine (3pa)¹

The title compound was prepared according to the general procedure and purified by column chromatography to give a yellow solid, mp: 120.1 - 121.0 °C, 363.1 mg, 63% yield.

¹**H** NMR (400 MHz, CD₂Cl₂) δ 7.39 (dd, J = 7.2, 4.1 Hz, 4H), 7.36 – 7.23 (m, 3H), 7.03 – 6.82 (m, 3H), 6.05 (dd, J = 8.0, 2.2 Hz, 2H), 5.94 (t, J = 1.8 Hz, 1H), 4.31 (s, 2H), 4.23 (s, 2H), 4.05 (d, J = 7.4 Hz, 2H), 3.82 (s, 3H).

¹³C NMR (101 MHz, CD₂Cl₂) δ 158.81, 149.47, 149.40, 140.03, 131.86, 129.78, 128.66, 128.48, 128.42, 127.39, 126.99, 126.85, 113.84, 102.92, 102.84, 97.21, 65.03, 55.20, 48.08, 47.55.

MS (70 eV): m/z (%) = 288.

HRMS (ESI) calcd. for C₂₁H₂₃N₂O [M+H]: 289.1705, found: 289.1699.

(E)-2-styrylquinoline (5aa)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 98.1 - 99.0 °C, 383.6 mg, 83% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.19 – 8.06 (m, 2H), 7.78 (d, *J* = 8.0 Hz, 1H), 7.73 – 7.64 (m, 4H), 7.49 (t, *J* = 7.5 Hz, 1H), 7.46 – 7.36 (m, 3H), 7.36 – 7.29 (m, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.88, 148.14, 136.42, 136.27, 134.36, 129.67, 129.10, 128.90, 128.72, 128.56, 127.43, 127.19, 126.09, 119.17.

MS (70 eV): m/z (%) = 230.

HRMS (ESI) calcd. for C₁₇H₁₄N [M+H]: 232.1126, found: 232.1121.

(*E*)-2-(4-methylstyryl)quinoline (5ab)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 133.2 - 134.1 °C, 402.0 mg, 82% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 8.6 Hz, 1H), 8.10 (d, *J* = 8.5 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.73 (dt, *J* = 5.3, 4.7 Hz, 2H), 7.68 (d, *J* = 5.0 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 2H), 7.52 (dd, *J* = 8.0, 7.0 Hz, 1H), 7.40 (d, *J* = 16.3 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.03, 148.11, 138.56, 136.09, 134.23, 133.58, 129.52, 129.37, 128.99, 127.89, 127.32, 127.11, 127.05, 125.87, 119.04, 21.22.

MS (70 eV): m/z (%) = 244.

HRMS (ESI) calcd. for C₁₈H₁₆N [M+H]: 246.1283, found: 246.1279.

(E)-2-(3-methylstyryl)quinoline (5ac)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 68.0 - 69.2 °C, 348.1 mg, 71% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.25 (d, *J* = 8.6 Hz, 1H), 8.20 (d, *J* = 8.5 Hz, 1H), 7.91 (d, *J* = 8.1 Hz, 1H), 7.87 – 7.79 (m, 2H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.65 – 7.51 (m, 4H), 7.42 (t, *J* = 7.5 Hz, 1H), 7.27 (d, *J* = 7.4 Hz, 1H), 2.53 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.56, 148.73, 138.82, 136.94, 136.78, 135.00, 130.19, 129.95, 129.69, 129.36, 129.17, 128.43, 127.97, 126.60, 124.96, 119.70, 21.94.
MS (70 eV): m/z (%) = 244.

HRMS (ESI) calcd. for C₁₈H₁₆N [M+H]: 246.1283, found: 246.1276.

(E)-2-(2-([1,1'-biphenyl]-4-yl)vinyl)quinoline (5ad)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 123.5 - 124.6 °C, 454.6 mg, 74% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.5 Hz, 1H), 8.04 (d, *J* = 8.5 Hz, 1H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.72 – 7.65 (m, 4H), 7.65 – 7.53 (m, 5H), 7.48 – 7.42 (m, 2H), 7.39 (d, *J* = 7.2 Hz, 2H), 7.31 (dd, *J* = 11.2, 4.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 156.04, 148.33, 141.40, 140.56, 136.45, 135.61, 134.04, 129.86, 129.26, 129.03, 128.92, 127.81, 127.60, 127.53, 127.43, 127.05, 126.27, 119.39.

MS (70 eV): m/z (%) = 307.

HRMS (ESI) calcd. for C₂₃H₁₈N [M+H]: 308.1439, found: 308.1436.

(*E*)-2-(4-methoxystyryl)quinoline (5ae)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 127.1 - 128.3 °C, 423.0 mg, 81% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.5 Hz, 1H), 8.01 (d, *J* = 8.5 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 1H), 7.69 – 7.61 (m, 2H), 7.56 (dd, *J* = 11.4, 6.7 Hz, 3H), 7.43 (t, *J* = 7.4 Hz, 1H), 7.27 – 7.20 (m, 2H), 6.89 (d, *J* = 7.3 Hz, 2H), 3.80 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 159.96, 156.19, 148.13, 136.07, 133.89, 129.52, 129.15, 128.94, 128.49, 127.34, 127.06, 126.72, 125.78, 119.00, 114.11, 55.20.

MS (70 eV): m/z (%) = 260.

HRMS (ESI) calcd. for C₁₈H₁₆NO [M+H]: 262.1232, found: 262.1244.

(E)-2-(4-chlorostyryl)quinoline (5af)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 142.0 - 143.1 °C, 371.1 mg, 70% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.5 Hz, 1H), 8.07 (d, *J* = 8.5 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.74 – 7.61 (m, 3H), 7.60 – 7.48 (m, 3H), 7.37 (dd, *J* = 12.1, 3.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 155.56, 148.25, 136.40, 135.02, 134.26, 132.96, 129.81, 129.50, 129.22, 128.99, 128.37, 127.51, 127.38, 126.28, 119.35.

MS (70 eV): m/z (%) = 264.

HRMS (ESI) calcd. for C₁₇H₁₃ClN [M+H]: 266.0736, found: 266.0735.

(E)-2-(4-bromostyryl)quinoline (5ag)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 140.3 - 141.4 °C, 377.0 mg, 61% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.14 (d, *J* = 8.6 Hz, 1H), 8.09 (d, *J* = 8.5 Hz, 1H), 7.80 (d, *J* = 8.1 Hz, 1H), 7.72 (dd, *J* = 8.4, 7.0 Hz, 1H), 7.66 (d, *J* = 1.3 Hz, 1H), 7.62 (d, *J* = 5.8 Hz, 1H), 7.55 – 7.48 (m, 5H), 7.39 (d, *J* = 16.3 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 155.66, 148.31, 136.64, 135.59, 133.26, 132.09, 130.02, 129.67, 129.31, 128.82, 127.67, 127.54, 126.49, 122.70, 119.50.

MS (70 eV): m/z (%) = 308.

HRMS (ESI) calcd. for C₁₇H₁₃BrN [M+H]: 310.0231, found: 310.0227.

(E)-2-(2-(naphthalen-1-yl)vinyl)quinoline (5ah)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 104.2 - 105.3 °C, 348.6 mg, 62% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.54 (d, *J* = 16.0 Hz, 1H), 8.36 (d, *J* = 8.2 Hz, 1H), 8.16 (t, *J* = 8.8 Hz, 2H), 7.97 – 7.84 (m, 3H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.78 – 7.70 (m, 2H), 7.65 – 7.53 (m, 3H), 7.53 – 7.45 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.04, 148.35, 136.43, 134.08, 133.78, 131.79, 131.51, 131.37, 129.79, 129.37, 128.97, 128.70, 127.54, 127.44, 126.35, 126.25, 125.97, 125.73, 124.22, 123.78, 119.60.

MS (70 eV): m/z (%) = 280.

HRMS (ESI) calcd. for C₂₁H₁₆N [M+H]: 282.1283, found: 282.1276.

(*E*)-2-(2-(thiophen-2-yl)vinyl)quinoline (5ai)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 91.4 - 92.6 °C, 331.9 mg, 70% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.09 (dd, J = 14.8, 8.5 Hz, 2H), 7.86 (d, J = 16.1 Hz, 1H), 7.78 – 7.68 (m, 2H), 7.54 (d, J = 8.6 Hz, 1H), 7.50 (dd, J = 7.9, 0.9 Hz, 1H), 7.30 (d, J = 5.1 Hz, 1H), 7.27 – 7.21 (m, 2H), 7.13 – 6.98 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 155.42, 148.17, 142.00, 136.18, 129.65, 129.01, 128.13, 128.01, 127.74, 127.42, 127.16, 125.98, 125.92, 119.24.

MS (70 eV): m/z (%) = 236.

HRMS (ESI) calcd. for C₁₅H₁₂NS [M+H]: 238.0690, found: 238.0684.

(E)-2-(2-(pyridin-2-yl)vinyl)quinoline (5aj)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 95.1 - 96.0 °C, 190.3 mg, 41% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.77 – 8.60 (m, 1H), 8.20 (t, *J* = 8.5 Hz, 2H), 7.90 (dd, *J* = 4.0, 2.3 Hz, 2H), 7.83 (d, *J* = 8.1 Hz, 1H), 7.75 (ddd, *J* = 13.0, 8.1, 5.0 Hz, 3H), 7.63 (d, *J* = 6.9 Hz, 1H), 7.56 (t, *J* = 7.5 Hz, 1H), 7.24 (dd, *J* = 7.0, 3.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 155.15, 154.93, 149.76, 136.89, 136.77, 134.07, 132.19, 130.02, 129.10, 127.57, 126.61, 122.95, 122.88, 120.32, 109.99.

MS (70 eV): m/z (%) = 231.

HRMS (ESI) calcd. for C₁₆H₁₃N₂ [M+H]: 233.1079, found: 233.1077.

(E)-2-(2-cyclohexylvinyl)quinoline (5ak)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 49.1 - 49.2 °C, 237.2 mg, 50% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.00 (dd, J = 8.6, 2.7 Hz, 2H), 7.71 (d, J = 8.1 Hz, 1H), 7.68 – 7.62 (m, 1H), 7.52 – 7.32 (m, 2H), 6.76 (d, J = 15.7 Hz, 1H), 6.37 (dd, J = 15.7, 9.3 Hz, 1H), 1.83 – 1.56 (m, 1H), 0.95 – 0.87 (m, 2H), 0.69 – 0.56 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.11, 148.06, 141.96, 136.05, 129.41, 128.95, 128.19, 127.34, 126.96, 125.56, 118.78, 14.86, 8.00.

MS (70 eV): m/z (%) = 237.

HRMS (ESI) calcd. for C₁₇H₂₀N [M+H]: 238.1596, found: 238.1594.

(E)-2-(4,8-dimethylnona-1,7-dien-1-yl)quinoline (5al)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 290.4 mg, 52% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.02 (t, J = 8.5 Hz, 2H), 7.73 (d, J = 8.1 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.51 (d, J = 8.7 Hz, 1H), 7.44 (t, J = 7.5 Hz, 1H), 6.76 (dt, J = 30.0, 11.4 Hz, 2H), 5.10 (t, J = 6.3 Hz, 1H), 2.45 – 2.25 (m, 1H), 2.15 (dd, J = 14.1, 7.2 Hz, 1H), 2.02 (dt, J = 15.6, 7.6 Hz, 2H), 1.67 (s, 3H), 1.60 (s, 3H), 1.47 – 1.41 (m, 1H), 1.29 – 1.19 (m, 1H), 0.96 (d, J = 6.7 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 156.43, 136.31, 132.25, 131.37, 129.65, 129.10, 127.49, 127.21, 125.96, 124.75, 118.74, 40.72, 36.92, 32.79, 25.83, 25.71, 19.72, 17.78.

MS (70 eV): m/z (%) = 279.

HRMS (ESI) calcd. for C₂₀H₂₆N [M+H]: 280.2065, found: 280.2064.

(E)-6-methoxy-2-styrylquinoline (5ba)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 149.2 - 150.0 °C, 417.8 mg, 80% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.98 (s, 1H), 7.95 (s, 1H), 7.61 (d, *J* = 5.9 Hz, 2H), 7.59 – 7.56 (m, 2H), 7.40 – 7.34 (m, 3H), 7.33 – 7.24 (m, 2H), 7.01 (d, *J* = 2.8 Hz, 1H), 3.89 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 157.45, 153.42, 143.91, 136.46, 134.97, 133.12, 130.33, 128.70, 128.57, 128.22, 128.09, 126.95, 122.17, 119.33, 105.05, 55.34.

MS (70 eV): m/z (%) = 260.

HRMS (ESI) calcd. for C₁₈H₁₆NO [M+H]: 262.1232, found: 262.1223.

(E)-6-chloro-2-styrylquinoline (5ca)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 149.1 - 150.3 °C, 371.1 mg, 70% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.11 – 7.94 (m, 2H), 7.76 (d, *J* = 2.1 Hz, 1H), 7.71 (d, *J* = 11.8 Hz, 1H), 7.68 – 7.58 (m, 4H), 7.42 (d, *J* = 8.2 Hz, 2H), 7.40 – 7.30 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 156.14, 146.50, 136.27, 135.40, 134.94, 131.76, 130.62, 128.80, 128.39, 127.80, 127.29, 126.17, 120.17.

MS (70 eV): m/z (%) = 264.

HRMS (ESI) calcd. for C₁₇H₁₃ClN [M+H]: 266.0736, found: 266.0735.

(*E*)-4-styrylquinoline (5da)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 99.4 - 100.5 °C, 189.5 mg, 41% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.24 (t, J = 8.2 Hz, 2H), 7.88 – 7.74 (m, 2H), 7.71 – 7.57 (m, 4H), 7.47 (dd, J = 14.8, 7.1 Hz, 2H), 7.38 (d, J = 16.1 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 149.96, 148.41, 143.06, 136.46, 135.19, 129.88, 129.36, 128.86, 128.79, 127.10, 126.52, 126.36, 123.42, 122.73, 116.99.

MS (70 eV): m/z (%) = 230.

HRMS (ESI) calcd. for C₁₇H₁₄N [M+H]: 232.1126, found: 232.1120.

(E)-1-styrylisoquinoline (5ea)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 100.1 - 101.0 °C, 328.2 mg, 71% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.57 (d, *J* = 5.6 Hz, 1H), 8.39 (d, *J* = 8.4 Hz, 1H), 8.01 (s, 2H), 7.84 (d, *J* = 8.2 Hz, 1H), 7.67 (ddd, *J* = 15.3, 14.8, 7.1 Hz, 4H), 7.58 (d, *J* = 5.6 Hz, 1H), 7.43 (dd, *J* = 10.9, 4.4 Hz, 2H), 7.38 – 7.29 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 154.52, 142.47, 136.91, 136.72, 135.81, 129.88, 128.75, 128.58, 127.42, 127.30, 127.17, 124.44, 122.82, 119.94.

MS (70 eV): m/z (%) = 230.

HRMS (ESI) calcd. for C₁₇H₁₄N [M+H]: 232.1126, found: 232.1124.

(E)-2-styrylbenzo[d]oxazole (5fa)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 84.6 - 85.7 °C, 287.4 mg, 65% yield.

¹**H** NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.5 Hz, 1H), 8.01 (d, J = 8.5 Hz, 1H), 7.73 (d, J = 8.0 Hz, 1H), 7.69 – 7.62 (m, 1H), 7.57 – 7.48 (m, 2H), 7.44 (dt, J = 8.0, 4.0 Hz, 2H), 7.22 (d, J = 2.1 Hz, 1H), 6.51 (d, J = 2.8 Hz, 1H), 6.43 (dd, J = 3.3, 1.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 162.84, 150.47, 142.25, 139.51, 135.20, 129.83, 129.03, 127.61, 125.27, 124.56, 119.94, 114.01, 110.38.

MS (70 eV): m/z (%) = 220.

HRMS (ESI) calcd. for C₁₅H₁₂NO [M+H]: 222.0919, found: 222.0916.

(*E*)-3-styrylpyridazine (5ga)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 85.1 - 86.2 °C, 265.9 mg, 73% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 9.05 (d, *J* = 4.8 Hz, 1H), 7.69 (d, *J* = 16.4 Hz, 1H), 7.62 (t, *J* = 4.9 Hz, 2H), 7.59 (s, 1H), 7.46 – 7.43 (m, 1H), 7.38 (dd, *J* = 8.7, 4.6 Hz, 3H), 7.33 (d, *J* = 5.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 158.20, 149.60, 135.85, 135.12, 129.03, 128.83, 127.29, 126.36, 125.09, 123.88.

MS (70 eV): m/z (%) = 181.

HRMS (ESI) calcd. for C₁₂H₁₁N₂ [M+H]: 183.0922, found: 183.0922.

(*E*)-2-styrylpyrazine (5ha)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 95.7 - 96.6 °C, 298.6 mg, 82% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.61 (s, 1H), 8.50 (s, 1H), 8.37 (d, *J* = 2.3 Hz, 1H), 7.72 (d, *J* = 16.1 Hz, 1H), 7.58 – 7.54 (m, 2H), 7.40 – 7.28 (m, 3H), 7.12 (d, *J* = 16.1 Hz, 1H).

¹³**C NMR** (101 MHz, CDCl₃) δ 151.23, 144.31, 143.76, 142.74, 136.01, 135.15, 128.96, 128.82, 127.30, 124.00.

MS (70 eV): m/z (%) = 181.

HRMS (ESI) calcd. for C₁₂H₁₁N₂ [M+H]: 183.0922, found: 183.0923.

(E)-2-methyl-6-styrylpyrazine (5ia)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 204.0 mg, 52% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.45 (s, 1H), 8.28 (s, 1H), 7.72 (d, *J* = 16.1 Hz, 1H), 7.58 (d, *J* = 7.1 Hz, 2H), 7.36 (dt, *J* = 13.9, 6.9 Hz, 3H), 7.13 (d, *J* = 16.1 Hz, 1H), 2.58 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 153.03, 149.80, 142.29, 140.22, 135.95, 134.36, 128.52, 126.98, 124.17, 21.46.

MS (70 eV): m/z (%) = 195 [M]+ (100).

HRMS (ESI) calcd. for C₁₃H₁₃N₂ [M+H]: 197.1079, found: 197.1074.

(E)- 2-(1-phenylprop-1-en-2-yl)pyrazine (5ja)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 90.1 mg, 23% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 8.86 (s, 1H), 8.56 (s, 1H), 8.45 (d, J = 2.1 Hz, 1H), 7.50 (s, 1H), 7.45 – 7.38 (m, 4H), 7.33 – 7.28 (m, 1H), 2.38 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 143.39, 142.53, 141.94, 137.12, 132.05, 129.39, 128.30, 127.39, 15.38.

MS (70 eV): m/z (%) = 195.

HRMS (ESI) calcd. for C₁₃H₁₃N₂ [M+H]: 197.1079, found: 197.1072.

(E)-4-(1,2-diphenylvinyl)pyridine (5ka)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 85.1 - 86.1 °C, 164.2 mg, 32% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.77 (s, 2H), 7.73 (dd, J = 23.0, 11.7 Hz, 6H), 7.48 – 7.25 (m, 7H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 148.36, 142.54, 135.80, 133.26, 128.20, 128.05, 126.61, 124.30.

MS (70 eV): m/z (%) = 256.

HRMS (ESI) calcd. for C₁₉H₁₆N [M+H]: 258.1283, found: 258.1281.

2,6-di((*E*)-styryl)pyrazine (5ma)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 218.4 - 219.6 °C, 363.7 mg, 64% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.76 (s, 2H), 7.79 (s, 1H), 7.74 (s, 1H), 7.70 (d, *J* = 7.4 Hz, 4H), 7.43 (d, *J* = 6.4 Hz, 4H), 7.40 (s, 2H), 7.35 (d, *J* = 7.3 Hz, 2H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 149.31, 141.49, 135.52, 133.97, 128.41, 126.85, 124.17, 109.02.

HRMS (ESI) calcd. for C₂₀H₁₇N₂ [M+H]: 285.1392, found: 285.1386.

2,5-di((*E*)-styryl)pyrazine (5na)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 301.2 mg, 53% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.66 (s, 2H), 7.89 (d, J = 16.2 Hz, 2H), 7.74 (d, J = 7.8 Hz, 4H), 7.45 (t, J = 7.5 Hz, 5H), 7.40 – 7.30 (m, 3H).

¹³C NMR (101 MHz, DMSO-*d*₆) δ 147.62, 142.06, 135.10, 132.70, 127.58, 125.98, 123.57.

HRMS (ESI) calcd. for $C_{20}H_{17}N_2$ [M+H]: 285.1392, found: 285.1387.

(E)-2-(2-([1,1'-biphenyl]-4-yl)vinyl)-6-methoxyquinoline (STB-8)²

The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, mp: 151.6 - 152.3 °C, 492.0 mg, 73% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 8.03 (t, *J* = 8.2 Hz, 2H), 7.84 – 7.55 (m, 8H), 7.41 (dd, *J* = 22.4, 7.8 Hz, 5H), 7.07 (s, 1H), 3.94 (s, 3H).

¹³C NMR: Not in deuterium solvent (CDCl₃, CD₂Cl₂, DMSO- d_6 , THF- d_8 , PhMe- d_9 and CD₃OD).

HRMS (ESI) calcd. for C₂₄H₂₀NO [M+H]: 338.1545, found: 338.1544.

Elemental Analysis calcd for C₂₄H₁₉NO: C, 85.43; H, 5.68; N, 4.15; found: C, 85.45; H, 5.65; N, 4.16.

5. Synthesis of [Ni-N4]Br

The ligand (**L1-L10**) was known compounds and synthesis according to the literature.³

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (50 mL volume) was charged with a magnetic stirring bar, NiBr₂(DME) (0.2 mmol), 2,2'-(1-phenyl-1H-1,2,4-triazole-3,5-diyl)dipyridine L3 (0.4 mmol), and 1,4-dioxane (2.0 mL). Then the Schlenk tube was closed tightly with a teflon cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (120 °C). After 10 hours the reaction was cooled, recrystallized in the MeOH under air gave the lumpy translucent bright green crystals [Ni-N4]Br (M) in 47% yield (87.1 mg).

(di(2,2'-(1-phenyl-1H-1,2,4-triazole-3,5-diyl)dipyridine))(dibromin

e) nickel(I)bromide ([Ni-N₄]Br)

Elemental Analysis calcd for C₃₆H₃₀Br₃N₁₀NiO₂: C, 46.34; H, 3.24; Br, 25.69; N, 15.01; Ni, 6.29; O, 3.43; found: C, 46.30; H, 3.26; N, 15.03.

¹³C Solid NMR (600 MHz) δ 168.1, 158.5, 144.2, 139.7, 137.0, 121.2

HRMS (ESI):

calcd. for C₃₆H₂₆BrN₁₀Ni [M-Br₂-2·H₂O]: 735.0879, found: 735.0883.

calcd. for $C_{36}H_{30}N_{10}NiO_2$ [M-Br₃]⁺: 692.1907, found: 692.1903.

calcd. for C₃₆H₂₆N₁₀Ni [M-Br₃-2·H₂O]⁺: 656.1695, found: 656.1699.

Figure S2 Solid-NMR of [Ni-N4]Br

6. Gram scale experiments and tandem experiment

6.1 Gram scale experiment with 0.1 mol% catalyst

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (100 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.01 mmol, 0.1 mol%), *t*-BuOK (20.0 mmol), **1d** (20.0 mmol) and **2a** (10.0 mmol). Then the Schlenk tube was closed tightly with a teflon cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 24 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 - 5/1, Et₃N 1%) gave the corresponding product **3ad** in 87% yield (1.85 g, TON = 868).

$$TON = \frac{N_s}{Nc} = \frac{\frac{1850 \ mg}{213 \ mg/mmol}}{0.01 \ mmol} = 868$$

Ns: The number of molecules of the substrate transformed in the reaction Nc: The number of active catalyst centers involved in the reaction

6.2 Gram scale experiment with 0.01 mol% catalyst

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (100 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.001 mmol, 0.01 mol%), *t*-BuOK (20.0 mmol), **1d** (20.0 mmol) and **2a** (10.0 mmol). Then the Schlenk tube was closed tightly with a teflon cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 72 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 - 5/1, Et₃N 1%) gave the corresponding product **3ad** in 71% yield (1.51g, TON = 7089).

$$\text{TON} = \frac{N_s}{Nc} = \frac{\frac{1510 \ mg}{213 \ mg/mmol}}{0.001 \ mmol} = 7089$$

Ns: The number of molecules of the substrate transformed in the reaction Nc: The number of active catalyst centers involved in the reaction

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (500 mL volume) was charged with a magnetic stirring bar, [Ni-N4]Br (2.5 mmol, 2.5 mol%), KOH (100 mmol), 1a (200 mmol) and 4a (100 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. A reflux condenser was evacuated and refilled with dry N₂ and then attached to the Schlenk tube maintaining dry air stream. A bubble counter was attached to the top of the condenser and the whole system was purged with dry N₂ for 60 seconds. The Schlenk tube was immersed into a pre-heated metal bath (140 °C). After 72 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC or GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 - 10/1, DCM 1%) gave the **5aa** in 74% yield (17.09 g).

6.4 Tandem experiment

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (20 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.01 mmol, 1 mol%), *t*-BuOK (1.0 mmol), **1a** (1.0 mmol) and **2p** (1.0 mmol). Then the Schlenk tube was closed tightly with a teflon cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours, *t*-BuOK (1.0 mmol) and **1d** (1.0 mmol) were added under the nitrogen. After another 15 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC or GC-MS to monitor product formation. Purification of the remainder by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1 - 5/1, Et₃N 1%, DCM 5%) gave the corresponding product **30a** in 70% yield.

7. Control experiments

7.1

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, [Ni-N₄]Br (0.02 mmol), *t*-BuOK (2 mmol), **1a** (4.0 mmol) and **2a** (2.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 $^{\circ}$ C). After 15 hours the reaction was cooled, a small gas and aliquot of the organic phase was analyzed by GC and GC-MS to monitor products formation.

7.2

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), **1a** (4.0 mmol) and **2a** (2.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours the reaction was cooled, a small gas and aliquot of the organic phase was analyzed by GC and GC-MS to monitor products formation.

7.3

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, *t*-BuOK (2.0 mmol), **1a** (4.0 mmol) and **2a** (2.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from

the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours the reaction was cooled, a small gas and aliquot of the organic phase was analyzed by GC and GC-MS to monitor products formation.

7.4

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2.0 mmol), **1a** (4.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours the reaction was cooled, a small gas and aliquot of the organic phase was analyzed by GC and GC-MS to monitor products formation.

7.5

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2.0 mmol), **6a** (4.0 mmol) and **2a** (2.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 $^{\circ}$ C). After 15 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor products formation.

7.6

Using a nitrogen-filled glove box, an oven-dried pressure tube (25 mL) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2 mmol), **6a** (4.0 mmol) and **2a** (2.0 mmol). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with H₂ (1 atm) and immersed into a pre-heated metal bath (130 °C) for 15 hours. After the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation.

7.7

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2 mmol), **6b** (2.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation.

7.8

with H₂ (1 atm): **3aa**, >99%

Using a nitrogen-filled glove box, an oven-dried pressure tube (25 mL) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2.0 mmol), **6b** (1.0 mmol). Then the glass tube was placed in an autoclave which was closed tightly and removed from the glove box. Then the autoclave was purged and charged with H_2 (1 atm) and immersed into a pre-heated metal bath (130 °C) for 15 hours. After the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation.

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2.0 mmol), **6b** (2.0 mmol) and **2a** (2.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor products formation.

8. Mechanism study experiments

8.1

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2 mmol), **1a** (4.0 mmol), **2a** (2.0 mmol) and mercury (2 drops). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation.

8.2

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, **[Ni-N4]Br** (0.02 mmol), *t*-BuOK (2 mmol), **1a** (4.0 mmol), **2a** (2.0 mmol) and (O)PPh₃ (4.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation.

8.3

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, [Ni-N4]Br (0.02 mmol), *t*-BuOK (2 mmol),

1a (4.0 mmol), **2a** (2.0 mmol) and TEMPO (4.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 $^{\circ}$ C). After 15 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation.

8.4

Using a nitrogen-filled glove box, an oven-dried Schlenk tube (25 mL volume) was charged with a magnetic stirring bar, [Ni-N₄]Br (0.02 mmol), *t*-BuOK (2 mmol), 1a (4.0 mmol), 2a (2.0 mmol) and PhCHCH₂ (4.0 mmol). Then the Schlenk tube was closed tightly with a rubber cap, removed from the glove box. The Schlenk tube was immersed into a pre-heated metal bath (130 °C). After 15 hours the reaction was cooled, a small aliquot of the organic phase was analyzed by GC and GC-MS to monitor product formation.

9. References:

- (*a*) C. Zhang, Z. Li, J. Chen, S. Qi, Y. Fang, S. Zhang, C. Ren, F. Lu, Z. Liang, S. Jiang, X. Jia, S. Yu and G. Zhang, *J. Org. Chem.* 2020, **85**, 7728; (*b*) C. Zhang, Z. Li, Y. Fang, S. Jiang, M. Wang and G. Zhang, *Tetrahedron* 2020, **76**, 130968.
- 2 (a) G. Zhang, T. Irrgang, T. Dietel, F. Kallmeier, R. Kempe, *Angew. Chem. Int. Ed.* 2018, 57, 9131; (b) M. K. Barman, S. Waiba, B. Maji, *Angew. Chem. Int. Ed.* 2018, 57, 9126.
- 3 (a) C. Zhang, Z. Liang, X. Jia, M. Wang, G. Zhang and M.-L. Hu, *Chem. Commun.*2020, 56, 14215; (b) Q. Wei, C. Qiao, Z. Xia, S. Chen, *Synthetic Commun*, 2013, 43, 3181.

10. Copies for NMR of the products

