Electronic Supplementary Information for

Solvent-Free Aerobic Photocatalytic Oxidation of Alcohols to Aldehydes over ZnO/C₃N₄

Xulu Jiang, ^a Weitao Wang, ^{*,a} Huan Wang, ^a Zhen-Hong He, ^a Yang Yang, ^a Kuan Wang, ^a Zhao-Tie Liu ^{*,a, b} and Buxing Han ^{*,c}

^a Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China.

^b School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.

^c Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

*E-mails: wangweitao@sust.edu.cn (W. Wang), ztliu@snnu.edu.cn (Z.-T. Liu), hanbx@iccas.ac.cn (B. Han)

1. TABLES	Page S2
2. FIGURES	Page S5
3. NMR DATA	Page S12

1. TABLES

Table S1 The textural properties of catalysis						
Catalysts	BET surface area	BJH pore cumulative				
	(m^2/g)	average pore	volume ($\times 10^3 \text{cm}^3/\text{g}$)			
		diameter (nm)				
ZnO-C	45	1.01	8.0			
ZnO-A	11	1.0	2.6			
ZnO/C ₃ N ₄ -500	36	1.2	7.8			
ZnO/C ₃ N ₄ -600	41	1.2	8.6			
ZnO/C ₃ N ₄ -700	12	0.51	1.0			
ZnO/C ₃ N ₄ -800	10	0.36	0.6			

Table S1 The textural properties of catalysts

Table S2 The effects of the ZnO loading on the catalytic performance

	Table 52 The effects of the 2no folding on the entrytic performance						
Entry	Catalyst	Catalyst Catalyst Time Conversion		Conversion (%)	Fr ^a		
		loading (mg)	(h)		$(\mu mol \cdot g^{-1} \cdot h^{-1})$		
1	ZnO/C ₃ N ₄ -600-2.6%	100	12	68.7	11450		
2	ZnO/C ₃ N ₄ -600-5.5%	100	12	74.6	12433		
3	ZnO/C ₃ N ₄ -600-7.8%	100	12	73.1	12183		
4	ZnO/C ₃ N ₄ -600-10.4%	100	12	73.3	12216		

Reaction conditions: catalyst 100 mg, benzyl alcohol 20 mmol, 25 °C, 0.1 MPa O₂, light source (λ =400-405 nm) stirred speed 1500 rpm. ^a Formation rate (Fr) = μ mol_{BAD}·g_{catalyst}⁻¹·h_{reaction time}⁻¹.

Catalysts	Benzyl alcohol	Solvent	Oxidant	Catalyst loading	Light source	Tem	Tim e	Conv . (%)	Sel.	Fr (×µmol·g⁻¹·h⁻¹)	Ref.
1%Pd/H ₂ Ti ₃ O ₇	(mmol) 96.2	-	0.1 MPa O ₂	$\frac{(mg)}{100}$	Halogen lamp (150	<u>(°C)</u> 90	<u>(n)</u> 6	89	<u>(%)</u> 69	98318	[1]
2 5 1			- 2		W)						
Ir/TiO ₂ -p	300	-	0.1 MPa O ₂	300	Hg lamp (315 – 420	80	6	11	78	17203	[2]
Pd/TiO ₂ (B)	96.2	-	0.1 MPa O ₂	100	nm) Halogen lamp (150 W)	90	4	82	69.7	2016	[3]
Cu/Nb ₂ O ₅	96.2	-	0.1 MPa O ₂	100	Hg lamp (500 W)	RT	24	36	99	14286	[4]
Pt-TiO ₂	0.05	-	0.5 mL/min O_2	50	λ= 366 nm	RT	1	71	62	440	[5]
50% CAO/CdS	0.57	Benzotrifluoride	0.1 MPa O ₂	100	$\lambda > 420 \text{ nm}$	80	4	52.1	99	735	[6]
mp-CN	0.1	Acetonitrile	0.1 MPa O ₂	20	$\lambda > 420 \text{ nm}$	RT	8	70	99	438	[7]
CsPbCl ₃ /W ₁₈ O ₄₉	1	Hexane	0.1 MPa O ₂	10	Xe lamp (150 W)	RT	7	40	99	5714	[8]
0.5 mol% Zr ₆ -	0.05	Dimethylsulfoxide	0.1 MPa O ₂	10	350-700 nm (13.9 W)	RT	48	80	98	83	[9]
Cu/Fe-1 MOF											
CdS/NiAl-LDH	0.2	H_2O	0.1 MPa Air	1	$\lambda > 400 \text{ nm}$	RT	3	99	99	22000	[10]
W ₁₈ O ₄₉ /HU-CNS	0.1	H_2O	0.1 MPa O ₂	20	Xe lamp (150 W)	RT	1	39.8	99	1990	[11]
TiO ₂ /Ti ₃ C- 550	0.02	Hexane	0.1 MPa O ₂	30	UV–vis light	15	5	97	98	13	[12]
					irradiation						
CNNA (0.9)	1	Acetonitrile	0.1 MPa O ₂	20	Xe lamp (300 W)	RT	9	68.3	100	3794	[13]
CdS-CD	1	H_2O	0.1 MPa Air	1 µM	LED λ =450 nm	RT	180	77.1	98	0.5	[14]
La/NiWO ₄	0.51	Ethanol	Tert-butyl	4.5	Bule LED light (3 W)	RT	12	90	99	833	[15]
			hydroperoxide								
thioxanthene-9-	0.2	Dimethylsulfoxide	0.1 MPa Air	8.5	Bule household lamps	RT	14	82	99	1378	[16]
one					irradiation $(2 \times 80 \text{ W})$						
Agl/BiVO ₄	1	H_2O	0.1 MPa O_2	15	White LED (16 W)	RT	12	48	99	2667	[17]
mpg-CN	0.8	H_2O	0.8 MPa O_2	50	λ>420 nm	60	3	10	99	533	[18]
BiVO ₄ /g-C ₃ N ₄	0.35	Acetonitrile	0.1 MPa O ₂	20	Hg Lamp (250 W)	25	16	68.1	65.5	687	[19]
ZnS-Ni _x S _y	0.5	H_2O	0.1 MP O ₂	50	$\lambda > 200 \text{ nm}$	RT	3	42.1	90.5	2943	[20]
$ZnO/C_{3}N_{4}-600$	20	-	0.1 MPa O ₂	100	10 W, λ=400-405 nm	RT	20	88.3	>99	8883	This work
ZnO/C ₃ N ₄ -600 ^a	20	-	0.1 MPa O ₂	100	10 W, λ=400-405 nm	RT	12	99.8	>99	16633	This work

 Table S3 Photocatalytic oxidation of benzyl alcohol to benzaldehyde over different catalysts.

^a 1 mmol EDTA-2Na.

Table S4 The amount of generated water and benzaldehyde					
Benzvl alcohol	Conversion	Generated water	Water/Benzaldehyde		
	(%)	(mmol)	(mmol/mmol)		
20.027 mmol	98.9	19.389	0.968/1		

Reaction conditions: benzyl alcohol 20.167 g (20.027 mmol), ZnO/C₃N₄-600 100 mg, blue light (10 W, λ =400-405 nm), 1500 rpm, room temperature, 12 h, 2 mmol phenol as hole scavenger.

After the reaction, the catalyst is removed by centrifugation. In the process of centrifugation, dichloromethane is used to wash the catalyst several times, and the washing solution is collected. 2.0227 g of anhydrous sodium sulfate was added in the obtained solution. After it was stirred for 5 minutes, the solution was transferred to the 50 mL volumetric flask and set the volume. The concentration of benzyl alcohol and benzaldehyde can be determined by the HPLC to calculate the amount of the yield benzaldehyde and the conversion of benzyl alcohol. Solid sodium sulfate was weighed to determine the generated water.

2. FIGURES

Figure S1 The MS of benzaldehyde product detected by GC-MS.

- 0.00

Figure S2 NMR spectra of benzaldehyde

Figure S3 SEM images of (a) ZnO/C₃N₄-800, (b) ZnO/C₃N₄-700, (c) ZnO/C₃N₄-600, (d) ZnO/C₃N₄-500, (e) ZnO-C, (f) ZnO-A.

 $\label{eq:Figure S4} \begin{array}{l} \mbox{Figure S4} The \ N_2 \ adsorption/desorption \ isotherms \ of the (a) \ ZnO/C_3N_4-800, (b) \ ZnO/C_3N_4-700, (c) \ ZnO/C_3N_4-600, (d) \ ZnO/C_3N_4-500, (e) \ ZnO-C, (f) \ ZnO-A. \end{array}$

Figure S5 XRD patterns of fresh and used ZnO/C $_3N_4$ -600

Figure S6 FT-IR spectra of fresh and used ZnO/C_3N_4 -600

Figure S7 TEM images and the EDX mapping images of used ZnO/C $_3N_4$ -600 catalyst.

Figure S8 XPS spectra of used ZnO/C₃N₄-600 catalyst.

Figure S9. Scheme of the heterojunction type of ZnO/C₃N₄ photocatalysts.

References

[1] M. Du, G. Zeng, J. Huang, D. Sun, Q. Li, G. Wang, X. Li, ACS Sustainable Chemistry Engineering, 2019, 7(10), 9717-9726.

[2] W. Feng, G. Wu, L. Li, N. Guan, S, Green Chemistry, 2011, 13(11), 3265-3272.

[3] M. Du, G. Zeng, C. Ye, H. Jin, J. Huang, D. Sun, Q. Li, B. Chen, X. Li, *Molecular. Catalysis*, 2020, 483, 110771.

[4] S. Furukawa, A. Tamura, T. Shishido, K. Teramura, T. Tanaka, *Applied Catalysis B: Environmental*, 2011, **110**, 216-220.

[5] K. Imamura, H. Tsukahara, K. Hamamichi, N. Seto, K. Hashimoto, H. Kominami, *Applied Catalysis A: General*, 2013, **450**, 28-33.

[6] S. Meng, S. Chang, S. Chen, ACS Applied Materials Interfaces, 2020, 12(2), 2531-2538.

[7] B. Zhang, T.J. Zhao, H.H. Wang, ACS Applied Materials Interfaces, 2019, 11(38), 34922-34929.

[8] R. Cheng, J.A. Steele, M.B.J. Roeffaers, J. Hofkens, E. Debroye, ACS Applied. Energy Materials, 2021, 4(4), 3460-3468.

[9] X. Feng, Y. Pi, Y. Song, Z. Xu, Z. Li, W. Lin, ACS Catalysis, 2021, 11(3), 1024-1032.

[10] L. Jiao, D. Zhang, Z. Hao, F. Yu, X.-J. Lv, ACS Catalysis, 2021, 11(14), 8727-8735.

[11] C. Xiao, L. Zhang, H. Hao, W. Wang, ACS Sustainable Chemistry Engineering, 2019, 7(7), 7268-7276.

[12] X. Bao, H. Li, Z. Wang, F. Tong, M. Liu, Z. Zheng, P. Wang, H. Cheng, Y. Liu, Y. Dai, Y. Fan, Z. Li, B. Huang, *Applied Catalysis B: Environmental*, 2021, **286**, 119885.

[13] J. Ding, W. Xu, H. Wan, D. Yuan, C. Chen, L. Wang, G. Guan, W. L. Dai, N, *Applied Catalysis B: Environm* ental, 2018, **221**, 626-634.

[14] J. Wang, Y. X. Feng, M. Zhang, C. Zhang, M. Li, S. J. Li, W. Zhang, T. B. Lu, CCS Chemistry, 2020, 2(3), 81-88.

[15] R. Abinaya, K. Mani Rahulan, S. Srinath, A. Rahman, P. Divya, K.K. Balasubramaniam, R. Sridhar, B. Baskar, *Green Chemistry*, 2021, **23(16)**, 5990-6007.

[16] N.F. Nikitas, D.I. Tzaras, I. Triandafillidi, C.G. Kokotos, Green Chemistry, 2020, 22(2),471-477.

[17] L.-Y. Jiang, J. J. Ming, L. Y. Wang, Y. Y. Jiang, L. H. Ren, Z. C. Wang, W. C. Cheng, *Green Chemistry*, 2020, 22(4), 1156-1163

[18] B. Long, Z. Ding, X. Wang, ChemSusChem, 2013, 6(11), 2074-8.

[19] S. Samanta, S. Khilari, D. Pradhan, R. Srivastava, ACS Sustainable Chemistry Engineering, 2017, 5(3), 2562-2577.

[20] H. Hao, L. Zhang, W. Wang, S. Qiao, X. Liu, ACS Sustainable Chemistry Engineering, 2019, 7(12), 10501-1 0508.

3. NMR DATA

2-Methylbenzaldehyde

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

¹³C NMR spectrogram of 2-methylbenzaldehyde

3-Methylbenzaldehyde

¹³C NMR spectrogram of 3-methylbenzaldehyde

4-Methylbenzaldehyde

СНО

¹H NMR (400 MHz, Chloroform-*d*) δ 9.97 (s, 1H), 7.85 – 7.72 (m, 2H), 7.39 – 7.29 (m, 2H), 2.44 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 191.86, 145.48, 134.30, 129.69, 21.82.

¹³C NMR spectrogram of 4-methylbenzaldehyde

2-Methoxybenzaldehyde

S15

3-Methoxybenzaldehyde

¹**H NMR (400 MHz, Chloroform-***d***)** δ 9.98 (s, 1H), 7.45 (d, *J* = 7.4 Hz, 2H), 7.40 (s, 1H), 7.19 (d, *J* = 9.3 Hz, 1H), 3.87 (s, 3H). ¹³**C NMR (100 MHz, Chloroform-***d***)** δ 192.13, 160.17, 137.82, 130.04, 123.51, 121.49, 112.08, 55.45.

¹H NMR spectrogram of 3-methoxybenzaldehyde

192.13	160.17	137.82 130.04 123.51 121.49	112.08
I	I	1 1 1 1	

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 fl (ppm)

¹³C NMR spectrogram of 4-methoxybenzaldehyde

3- Hydroxybenzaldehyde

2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrogram of 3-hydroxybenzaldehyde

¹H NMR spectrogram of 4-tert-butylbenzaldehyde

¹³C NMR spectrogram of 4-tert-nutylbenzaldehyde

¹H NMR spectrogram of 3-methoxy-4-hydroxybenzaldehyde

¹³C NMR spectrogram of 3-methoxy-4-hydroxybenzaldehyde

4-Fluorobenzaldehyde

2-Chlorobenzaldehyde

CHO CI ¹H NMR (400 MHz, Chloroform-*d*) δ 10.49 (s, 1H), 7.93 (dd, J = 7.7, 1.6 Hz, 1H), 7.57 – 7.51 (m, 1H), 7.50 – 7.45 (m, 1H), 7.40 (t, J = 7.5 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.22, 138.33, 135.52, 132.85, 131.00, 129.77, 127.68.

¹³C NMR spectrogram of 2-chlorobenzaldehyde

3-Chlorobenzaldehyde

4-Chlorobenzaldehyde

¹H NMR (400 MHz, Chloroform-*d*) δ 9.98 (s, 1H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 8.2 Hz, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 190.84, 140.90, 134.72, 130.89, 129.43.

L 7.83 L 7.82 T 7.51 T 7.50 T 7.29

- 9.98

¹H NMR spectrogram of 4-chlorobenzaldehyde

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{fl}^{c}$ (ppm)

¹³C NMR spectrogram of 4-chlorobenzaldehyde

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -: fl (ppm)

¹³C NMR spectrogram of 3-bromobenzaldehyde

4-Iodobenzaldehyde

¹**H NMR (400 MHz, Chloroform-***d***)** δ 9.96 (s, 1H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.60 (d, *J* = 8.4 Hz, 2H). ¹³**C NMR (100 MHz, Chloroform-***d***)** δ 191.42, 138.43, 135.58, 130.82, 102.84.

 $\chi^{7.93}_{7.92}$ $\chi^{7.92}_{7.50}$ $\chi^{7.50}_{7.26}$

- 9.96

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ¹³C NMR spectrogram of 4-iodobenzaldehyde

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrogram of 3-trifluoromethyl Benzaldehyde

2-Aminobenzaldehyde

 $^{1}H \ \textbf{NMR} \ \textbf{(400 MHz, Chloroform-d)} \ \delta \ 9.87 \ (s, \ 1H), \ 7.52 - 7.44 \ (m, \ 1H), \ 7.35 - 7.24$ СНО (m, 1H), 6.74 (t, J = 7.4 Hz, 1H), 6.64 (d, J = 8.3 Hz, 1H), 6.09 (s, 2H). ¹³C NMR (100 **MHz, Chloroform-***d***)** δ 194.00, 149.90, 135.68, 135.14, 118.95, 116.40, 116.02. NH_2

¹³C NMR spectrogram of 2-aminobenzaldehyde

2-Nitrobenzaldehyde

¹H NMR (400 MHz, Chloroform-*d*) δ 10.44 (s, 1H), 8.32 – 8.07 (m, 1H), 7.96 (d, J = 7.2 Hz, 1H), 7.89 – 7.62 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 188.00, 149.66, 133.99, 133.63, 131.39, 129.61, 124.45.

¹³C NMR spectrogram of 2-nitrobenzaldehyde

4-Pyridineformaldehyde

¹³C NMR spectrogram of 4-pyridineformaldehyde

3-Indolealdehyde

¹H NMR (400 MHz, Chloroform-*d*) δ 10.08 (s, 1H), 8.74 (s, 1H), 8.33 (d, J = 8.6 Hz, 1H), 7.86 (d, J = 2.9 Hz, 1H), 7.45 (d, J = 8.1 Hz, 1H), 7.40 – 7.28 (m, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 185.42, 138.92, 137.55, 124.61, 123.92, 122.58, 121.30, 118.65, 112.89.

4-Quinolineformaldehyde

¹**H NMR (400 MHz, Chloroform-***d***)** δ 10.53 (s, 1H), 9.22 (d, *J* = 4.2 Hz, 1H), 9.04 (d, *J* = 9.2 Hz, 1H), 8.24 (dt, *J* = 8.4, 0.9 Hz, 1H), 7.90 – 7.79 (m, 2H), 7.75 (ddd, *J* = 8.3, 6.9, 1.2 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-d) δ 192.88, 150.46, 149.28, 136.78, 130.21, 130.05, 129.41, 125.82, 124.44, 123.89.

-10.53
 6
 9.22

 9
 9.21

 7
 9.28

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.84

 7
 7.75

 7
 7.75

 7
 7.75

 7
 7.75

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrogram of 4-quinolineformaldehyde

4-Thiopheneformaldehyde

¹**H NMR (400 MHz, Chloroform-***d***)** δ 9.95 (s, 1H), 7.78 (dd, *J* = 11.8, 4.2 Hz, 2H), 7.22 (t, *J* = 4.3 Hz, 1H).¹³**C NMR (100 MHz, Chloroform-***d***)** δ 183.01, 144.06, 136.33, 135.14, 128.34.

²¹⁰ 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ¹³C NMR spectrogram of 4-thiopheneformaldehyde

2-Furaldehyde

- 7.71 - 7.27 - 6.61

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

¹³C NMR spectrogram of 2-furaldehyde

4-Methylfurfural

¹H NMR (400 MHz, Chloroform-*d*) δ 9.51 (s, 1H), 7.17 (s, 13H), 6.24 (s, 1H), 2.42 (s, 22H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 176.70, 159.61, 151.85, 109.31, 13.86.

¹³C NMR spectrogram of 4-methylfurfural

¹H NMR (400 MHz, Chloroform-*d*) δ 9.87 (s, 2H), 7.34 (s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 179.20, 154.24, 119.20.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ¹³C NMR spectrogram of 2, 5-diformylfuran

0 -10

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 ¹³C NMR spectrogram of 2, 5-diformylfuran Cinnamaldehyde

¹H NMR (400 MHz, Chloroform-*d*) δ 9.72 (d, J = 7.6 Hz, 1H), 7.58 (dd, J = 6.6, 3.0 Hz, 2H), 7.52 – 7.39 (m, 4H), 6.73 (dd, J = 15.9, 7.6 Hz, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 193.55, 152.63, 134.07, 131.23, 129.09, 128.62, 128.48.

¹H NMR spectrogram of cinnamaldehyde

¹³C NMR spectrogram of cinnamaldehyde

1-Propanal

CHO ¹H NMR (400 MHz, Chloroform-*d*) δ 9.80 (s, 1H), 2.48 (q, J = 7.4 Hz, 2H), 1.11 (t, J = 7.4 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 203.00, 37.21, 5.98.

1-Butyraldehyde

.CHO

¹H NMR (400 MHz, Chloroform-*d*) δ 9.77 (s, 1H), 2.42 (d, J = 0.9 Hz, 2H), 1.85 – 1.46 (m, 2H), 0.97 (t, J = 7.9 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 202.89, 45.71, 15.58, 13.64.

1-Pentanecarbaldehyde

CHO ¹H NMR (400 MHz, Chloroform-*d*) δ 9.77 (s, 1H), 2.48 – 2.37 (m, 2H), 1.69 – 1.58 (m, 2H), 1.32 (d, J = 9.1 Hz, 4H), 0.90 (t, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 202.93, 43.85, 31.29, 22.38, 21.74, 13.82.

¹³C NMR spectrogram of 1-pentanecarbaldehyde

¹H NMR spectrogram of all trans retinoic aldehyde

¹³C NMR spectrogram of all trans retinoic aldehyde

Methyltestosterone

¹H NMR (400 MHz, DMSO-*d*₆) δ 5.62 (s, 1H), 4.08 (s, 1H), 2.39 (ddd, J = 14.0, 9.2, 7.8, 4.1 Hz, 0H), 2.23 (ddd, J = 14.4, 3.8, 2.4 Hz, 2H), 2.15 (dt, J = 16.7, 3.5 Hz, 1H), 1.97 (ddd, J = 13.3, 5.0, 3.1 Hz, 1H), 1.76 (ddq, J = 17.8, 9.4, 5.2, 3.9 Hz, 2H), 1.64 – 1.42 (m, 6H), 1.37 (qd, J = 12.9, 3.9 Hz, 1H), 1.32 – 1.10 (m, 7H), 1.07 (s, 3H), 0.99 – 0.82 (m, 2H), 0.79 (s, 3H). ¹³C NMR (100 MHz, DMSO-*d*6) δ 198.44, 171.58, 123.60, 80.15, 53.87, 50.20, 45.55,

38.85 (d, J = 8.3 Hz), 36.46, 35.71, 34.17, 32.60, 32.03, 31.72, 26.60, 23.53.

¹³C NMR spectrogram of Methyltestosterone

¹³C NMR spectrogram of 4-Cholesten-3-one

Estrone

¹³C NMR spectrogram of Estrone

Progesterone

¹**H** NMR (400 MHz, DMSO- d_6) δ 5.63 (s, 1H), 2.57 (t, J = 9.1 Hz, 1H), 2.41 (ddd, J = 19.8, 11.7, 5.1 Hz, 2H), 2.30 – 2.20 (m, 1H), 2.16 (dt, J = 16.2, 3.4 Hz, 1H), 2.08 – 1.93 (m, 6H), 1.79 (dd, J = 10.9, 4.2 Hz, 1H), 1.69 – 1.49 (m, 5H), 1.48 – 1.33 (m, 2H), 1.25 – 1.10 (m, 5H), 1.08 – 0.88 (m, 2H), 0.57 (s, 3H). ¹³C NMR (100 MHz, DMSO- d_6) δ 208.88, 198.38, 171.25, 123.67, 63.01, 55.79, 53.55, 43.79, 38.67, 38.37, 35.65, 35.41, 34.11, 32.47, 32.11, 31.61, 24.41, 22.82, 21.10, 17.43, 13.52.

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

Loxoprofen

¹H NMR (400 MHz, DMSO- d_6) δ 12.27 (s, 1H), 8.18 – 6.73 (m, 4H), 3.62 (q, J = 7.1 Hz, 1H), 2.95 (dd, J = 13.6, 4.0 Hz, 1H), 2.43 (dd, J = 13.6, 9.7 Hz, 1H), 2.40 – 2.31 (m, 1H), 2.30 – 2.18 (m, 1H), 2.07 (dt, J = 18.8, 9.5 Hz, 1H), 1.93 (dt, J = 12.4, 7.4 Hz, 1H), 1.79 – 1.61 (m, 1H), 1.55 – 1.42 (m, 1H), 1.33 (d, J = 7.1 Hz, 3H).

¹³C NMR (100 MHz, DMSO-*d6*) δ 219.55, 175.84, 139.33, 139.02, 129.25, 127.80, 50.39, 44.81, 38.03, 35.07, 29.22, 20.48, 19.01.

