Supporting Information

An electrolyte free electrochemical C-H trifluoromethylation of 2-pyridones under batch and flow conditions

Elise Leclercq,^a Aurélien Moncomble,^b Céline Debavelaere,^{a,c} Mathieu Beaucamp,^a Maël Penhoat, ^a Laëtitia Chausset-Boissarie^{*a}

a. Univ. Lille, CNRS, USR 3290 - MSAP - Miniaturisation pour la Synthèse l'Analyse et la Protéomique F-59000 Lille, France. E-mail : Laetitia.boissarie@univ-lille.fr

b. Univ. Lille, CNRS, UMR 8516 - LASIRe - Laboratoire Avancé de Spectroscopie pour les Interactions, la Réactivité et l'Environnement F-59000 Lille, France.

c. Institut de Chimie Organique et Analytique, Université d'Orléans, UMR CNRS 7311, F-54067 Orléans, France

Table of Contents

Ι.	MATERIALS AND METHODS
II.	PROCESS GREEN METRICS AND SUSTAINABILITY QUALITATIVE INDICATORS
III. PYR	OPTIMIZATION OF THE ELECTROCHEMICAL TRIFLUOROMETHYLATION OF IDONES UNDER CONTINUOUS FLOW6
IV.	CYCLIC VOLTAMMETRY EXPERIMENTS
V.	EXPERIMENTAL PROCEDURES AND CHARACTERIZATION DATA
Α.	General Procedure A. Electrochemical sulfonylation under batch condition8
А. В.	General Procedure A. Electrochemical sulfonylation under batch condition8 General Procedure B. Electrochemical trifluoromethylation under flow condition.8
A. B. ∨I.	General Procedure A. Electrochemical sulfonylation under batch condition8 General Procedure B. Electrochemical trifluoromethylation under flow condition.8 PSEUDO-HAMMETT PLOT
A. B. VI. VII.	General Procedure A. Electrochemical sulfonylation under batch condition8 General Procedure B. Electrochemical trifluoromethylation under flow condition.8 PSEUDO-HAMMETT PLOT
A. B. ∨I. ∨II. VIII.	General Procedure A. Electrochemical sulfonylation under batch condition 8 General Procedure B. Electrochemical trifluoromethylation under flow condition.8 PSEUDO-HAMMETT PLOT 16 DFT CALCULATIONS 17 COPIES OF NMR SPECTRA 24

I. Materials and methods

Reagents and dry solvents were bought from Sigma Aldrich, Fisher scientific and Fluorochem and are used as received. Substituted 2-pyridones were synthesized using procedure from the literature.¹ Sodium triflinate salts **2** was purchased from ABCR.

The electrodes used in this work were bought from IKA (https://www.ika.com/en/Products-Lab-Eq/Electrochemistry-Kit-csp-516/ElectraSyn-20-Package-Accessories-cpacc-20008980/). For experiments using an ElectraSyn vial (10 mL, for 0.1 - 0.2 mmol scale), the dimensions of the electrodes were approximately W8 × D2 × H40 mm (with the submerged exterior surface of the electrode approximately W8 × D2 × H35 mm), unless otherwise stated.

For experiments using an ElectraSyn flow cell (https://www.ikaprocess.com/en/Products/Electro-Organic-Synthesis-Systems-cph-45/) the dimensions of the electrodes were W20 × H60 mm.

Electrolysis in batch was conducted using a DC power supply (OrigaFlex OGFPWR-OGF01A) in constant current mode. For the ElectraSyn flow cell a power supply Keysight E36104A was applied.

Flow-rate was regulated as a function of internal volume and residence time in the reactor thanks to the formula $Q = V/t_r$ were Q is the flow rate (μ L.min⁻¹), V the internal volume of the reactor and t_r the residence time in the reactor. The different flow rates of the reactions were regulated using a Chemyx Inc Fusion 200-X syringe pump fitted with Disposable syringes (20 mL) from HENKE-JECT[®] luer-lock purchased from VWR Scientific. All capillary tubing and microfluidic fittings were purchased from IDEX Health & Science *via* CIL (Cluzeau Info Lab).

Figure S1: left: Graphite Electrodes and right: experimental set-up for the electrochemical trifluoromethylation in flow

Analytical thin-layer chromatography (TLC) were performed on 0.25 mm E. Merck silica plates (60F-254), using short-wave UV light as the visualizing agent, and KMnO4 and heat as developing agents. Column chromatography was performed using E. Merck silica gel (60, particle size 0.043–0.063 mm).

¹H, ¹⁹F and ¹³C NMR spectra were recorded on a Bruker AVANCEIIIHD 300 spectrometer at 300 MHz for ¹H, 282 MHz for ¹⁹F and 75 MHz for ¹³C and calibrated using residual undeuterated solvent (CDCl₃ at 7.26 ppm ¹H NMR, 77.16 ppm ¹³C NMR). Chemical shifts of ¹H NMR and ¹³C NMR were recorded in parts per million (ppm, δ) relative to solvent signal. The following abbreviations are used for the proton spectra multiplicities: s=singlet; d=doublet; t=triplet; q=quartet; m=multiplet. Coupling constant are reported in hertz (Hz). NMR data was processed using the MestReNova 14.2.1 software packages. Known products were characterized by comparing to the corresponding ¹H NMR and ¹³C NMR from literature. High-resolution mass spectra (HRMS) were recorded with a Maxis Bruker 4G instrument and were performed in positive mode with an ESI source on a Q-TOF mass spectrometer with an accuracy tolerance of 2 ppm. The names of all products were generated using the PerkinElmer ChemDraw Professional v.19.1.1.21 software package

II. Process Green Metrics and Sustainability Qualitative Indicators

Table S1: Qualitative sustainability indicators and green metrics for reported trifluoromethylation processes of 2-pyridones

Entry	Indicator	CF ₃ CO ₂ H/XeF ₂ ²	$CF_3SO_2Na/Mn(OAc)_3^3$	TMSCF ₃ /KF/PIFA/Cu(OAc) ₂ ¹	Togni reagent/FeCl ₂ ⁴	TFFA/Pyridine N-Oxyde /Ru(bpy)₃Cl₂⁵
1	Type of Reaction	Stoichiometric Reagent ^a	Stoichiometric Reagent ^b	Stoichiometric Reagent ^c	Metal Catalysis ^d	Light (photoredox catalysis) ^e
2	T °[C]	35 °C	25 °C	r.t.	35 °C	35 °C
5	Ranking Solvent ^f (CHEM21)	CH ₂ Cl ₂	CH₃CO₂H	CH₃CN	CH ₂ Cl ₂	CH₃CN
		CE_CO_H' H314_H332		TMSCF ₃ : H225, H261	Togni reagent: H315,	TFFA: H314, H332, H412
6	Health and safety Concerns ^g	XeF ₂ : H272, H301, H344, H330	CF₃SO₂Na: H315, H319 Mn(OAc)₃: -	PIFA: H315, H319, H318 Cu(OAc) ₂ : H302, H314, H410	FeCl ₂ : H302, H318	Ru(bpy) ₃ Cl ₂ : -
7	Environmental implications	H412	No	H402	No	H412
8	Flow process	NO	NO	NO	NO	Yes
9	Yield (%)	40	55	50	32	54
10	Atom Economy (%)	51.8	48.0	31.0	53.3	49.8
11	PMI reaction ^g	36.3	124.4	134.7	97.9	32.7
12	PMI (Sans Solvant) ^g	3.8	8.5	9.9	9.5	6.4
13	EcoScale ^h	32	63.5	51	43	51
14	E factor ^g	44.8	7.2	7.2	3.6	3.2
15	Reagents Cost (€ per mol of Product) ⁱ	53 K€	6.7 K€	15 K€	69 K€	2.0 K€

^aProcess described in reference 2 (exemple 9A), ^bProcess described in reference 3 (exemple **5a**), ^cProcess described in reference 1 (exemple **2j**), ^dProcess described in reference 4 (exemple **3j**), ^eProcess described in reference 5 (exemple 18), ^fsee *Green Chem.*, **2016**, *18*, 288–296, ^g see *Green Chem.*, **2015**, *17*, 3111–3121, ^hsee *Beilstein J. Org. Chem.* **2006**, *2*, No. 3. doi:10.1186/1860-5397-2-3, ¹The calculations were performed based on the largest quantity available in the 2022 Aldrich website.

Entry		CF ₃ CO ₂ H/(4-ClPh) ₂ SO /Ru(bpy) ₃ Cl ₂ ⁶	$CF_3SO_2Na/AQN-2-CO_2H/CF_3CO_2H^7$	CF₃I/ Bithiophene derivative/TMEDA ⁸	CF ₃ SO ₂ Na
1	Type of Reaction	Light (photoredox catalysis) ^a	Light (photoredox catalysis) ^b	Light (photoredox catalysis) ^c	Electricity ^d
2	T °[C]	35 °C	r.t.	r.t.	r.t.
5	Ranking Solvent ^e (CHEM21)	DCE	CH₃CN	DMF	CH ₃ CN/H ₂ O
	()	CF₃CO₂H: H314, H332	CF ₃ SO ₂ Na: H315, H319	CF₃I: H280, H341, H420	
6	Health and safety	(4-CIPh) ₂ SO: -	AQN-2-CO ₂ H: -	Bithiophene derivative: home made	CF₃SO₂Na: H315, H319
	concerns	Ru(bpy)₃Cl₂: -	CF ₃ CO ₂ H: H314, H332	TMEDA: H225, H301, H331, H314	
7	Environmental implications	No	No	H420	Νο
8	Flow process	NO	NO	Yes	Yes
9	Yield (%)	54	55	32	55
10	Atom Economy (%)	48.4	66.8	49.8	74.2
11	PMI ^f	163.6	223.3	108.7	302.8
12	PMI ^f (sans solvent)	6.3	7.7	11.4	4.7
13	EcoScale ^g	51	53.5	22	64.5
14	E factor	4.3	5.0	10.6	2.8
15	Reagents Cost (€ per Kg of Product) ^h	4.1 K€	1.2 K€	-	0.5 K€

^aProcess described in reference 6 (exemple 13), ^bProcess described in reference 7 (exemple **5a**), ^cProcess described in reference 8 (exemple **2j**), ^d(exemple **3a**), ^esee *Green Chem.*, **2016**, *18*, 288–296, ^fsee *Green Chem.*, **2015**, *17*, 3111–3121, ^gsee *Beilstein J. Org. Chem.* **2006**, *2*, No. 3. doi:10.1186/1860-5397-2-3, ^h The calculations were performed based on the largest quantity available in the 2022 Aldrich website and ABCR for CF₃SO₂Na.

III. Optimization of the Electrochemical trifluoromethylation of pyridones under Continuous Flow

For this study, we used the commercially available electrochemistry system from IKA (Electrasyn Flow cell). We started the optimization with N-benzyl-2-pyridinone (**1a**) and Langlois' reagent (**2**) in an undivided cell. We kept the same couple of electrode, solvent and concentrations as in batch. The reaction proceeded on 0.2 mmol of substrate (**1a**) in acetonitrile/water (8:2) with graphite plate as anode and cathode. Then, we studied the influence of the residence time, the current and the distance between electrodes. We can see on the Table S2, that when the reaction was performed with a reactor volume of 0.3 mL (spacer: 0.25 mm), no reactivity was observed. When the current was increased to 15 mA with a residence time of 10 min, the desired product was obtained with a better yield unfortunately, reproducibility issues appeared due to the formation of white solid on the surface of electrodes. By increasing the residence time in combination with a spacer of 5 mm the desired product was formed with 51% of yield. After 20 min of residence time the yield dropped dramatically, meaning that degradation was favored.

entry	residence time (min)	current (mA)	solvent	spacer (mm)	yield
1	20	8	CH ₃ CN/H ₂ O (8 :2)	0,25	-
2	5	15	CH ₃ CN/H ₂ O (8 :2)	0,25	35
3	10	15	CH ₃ CN/H ₂ O (8 :2)	0,25	51
4	15	15	CH ₃ CN/H ₂ O (8 :2)	0,25	16
5	2.5	20	CH ₃ CN/H ₂ O (8 :2)	0.25	22
6	5	20	CH ₃ CN/H ₂ O (8 :2)	0.25	32
7	10	8	CH₃CN/H₂O (8 :2)	0.5	35
8	15	8	CH₃CN/H₂O (8 :2)	0.5	34
9	20	8	CH₃CN/H₂O (8 :2)	0.5	45
10	20	8	CH₃CN/H₂O (8 :2)	0.5	51
11	22	8	CH₃CN/H₂O (8 :2)	0.5	40

Tableau S2: Optimization of trifluoromethylation of N-benzyl-2-pyridinone in electrochemical micro-flow cell.

IV. Cyclic voltammetry experiments

Cyclic voltammetry was measured under N_2 atmosphere with conventional three electrode system (Reference electrode: Ag/AgCl, working electrode: Glassy carbon, counter electrode: Pt wire, Supporting electrolyte: 0.1 M NBu₄ClO₄ in MeCN:H₂O v/v 5:2) on a Metrohm PGSTAT128N potentiostat/galvanostat. Conventional concentrations of 1 mM electroactive species were used. Acquisitions were performed with 100 mV/s scan rates.

Figure S2 : Cyclic voltammetry studies with different pyridones 1.

V. Experimental procedures and characterization data

A. General Procedure A. Electrochemical sulfonylation under batch condition

Unless otherwise specified, the reaction was carried out on 0.2 mmol scale. To a 10 mL undivided IKA ElectraSyn 2.0 vials, equipped with a stirrer bar and IKA Graphite electrodes, was added pyridone **1** (0.2 mmol, 1 eq), Langlois reagent **2** (0.6 mmol, 3 eq) and then a mixture of MeCN:H₂O (8:2, 10.0 mL). Note that before use, the electrodes were polished with sandpaper then wiped with a paper. The electrolysis was conducted at constant current conditions at room temperature with 8 mA (J = 2.5 mA.cm⁻²) as current during 6 h (8.9 F, Q = 172.8 C). After electrolysis, the cap was removed, and the electrodes were taken out and rinsed with EtOAc into the reaction mixture. The electrodes were washed successively with acetone, water, acetone and methanol then dried with paper. The mixture was washed with a saturated solution of NH₄Cl. The combined organics were washed with brine, dried over anhydrous Na₂SO₄ and concentrated under reduced pressure [Note: Yield may be determined by analysis of ¹H-NMR spectra of crude reaction product using an internal standard (1,3,5-trimethoxybenzene) at this point]. The crude material was purified by silica gel column chromatography to furnish the desired product.

B. General Procedure B. Electrochemical trifluoromethylation under flow condition

Unless otherwise specified, the reaction was carried out on 0.12 mmol scale. Note that before use, the electrodes were polished with sandpaper then wiped with a paper. A solution of pyridinones (0.12 mmol, 1 eq), Langlois reagent (0.36 mmol, 3 eq) in a mixture of MeCN:H₂O (8:2, 6.0 mL) was pumped through the ElectraSyn flow cell (H = 500 μ m, L = 60 cm, I = 20 cm, V = 0.6 mL) equipped with graphite electrodes and prefilled with the reaction mixture and electrolyzed for 20 min (Q = 0.03 mL.min⁻¹) at a constant current of 8 mA at room temperature. The reaction mixture was collected in a round-bottom flask as the reactor output after 3 dead volumes of the reactor. The collected reaction mixture was then diluted in EtOAc, washed with NH₄Cl saturated, dried over anhydrous MgSO₄ and concentrated under reduced pressure [Note: Yield may be determined by analysis of ¹H-NMR spectra of crude reaction product using an internal standard (1,3,5-trimethoxybenzene) at this point]. The crude material was purified by silica gel column chromatography to furnish the desired product. After collecting the product for specified time, the reactor was washed with CH₃CN (15 mL) and disassembled. First, the gasket was cleaned with acetone on both the sides, then the electrodes were washed successively with acetone, water, acetone and methanol then dried with paper.

N-benzyl-3-trifluoromethyl-2-pyridinone 3a

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 27.3 mg (55%) of the title compound **3a**.

Following General Procedure B on 0.12 mmol scale. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 15.53 mg (44%) of the title compound **3a**.

Spectral data are in agreement with the literature.¹

¹H NMR (300 MHz, CDCl₃) δ 7.76 - 7.69 (m, 1H), 7.48 (dd, J = 6.8, 1.7 Hz, 1H), 7.41 - 7.29 (m, 5H), 6.21 (t, J = 7.0 Hz, 1H), 5.17 (s, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -65.97. ¹³C NMR (75 MHz, CDCl₃) δ 158.62, 141.17, 138.86 (q, J = 5.0 Hz), 135.46, 129.24, 128.72, 128.64, 122.8 (q, J = 271.7 Hz), 121.0 (q, J = 30.9 Hz), 104.33, 52.30. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₃H₁₁F₃NO, 254.0787. found 254.0791.

N-(4-methylbenzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3b

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 24.0 mg (45%) of the title compound **3b**.

¹H NMR (300 MHz, CDCl₃): δ 7.75 (dd, J = 7.1, 1.0 Hz, 1H), 7.51 (dd, J = 6.8, 1.7 Hz, 1H), 7.32 – 7.18 (m, 4H), 6.23 (t, J = 6.9 Hz, 1H), 5.16 (s, 2H), 2.38 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -65.95.¹³C NMR (75 MHz, CDCl₃): δ 158.63, 141.10, 138.76 (q, J = 5.0 Hz), 138.55, 132.41, 129.90, 128.81, 122.9 (q, J = 270.2 Hz), 120.45 (q, J = 30.6 Hz), 104.24, 52.04, 21.26. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₃F₃NO, 268.0943 found 268.0943.

N-(4-methoxybenzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3c

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 17.8 mg (31%) of the title compound **3c**.

CF₃ NO OMe Spectral data are in agreement with the literature.¹

¹H NMR (300 MHz, CDCl₃): δ 7.75 - 7.67 (m, 1H), 7.47 (dd, J = 6.8, 1.7 Hz, 1H), 7.31 - 7.24 (m, 2H), 6.88 (d, J = 8.7 Hz, 2H), 6.19 (t, J = 7.0 Hz, 1H), 5.09 (s, 2H), 3.79 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -65.94. ¹³C NMR (75 MHz, CDCl₃): δ 159.91, 158.65, 140.99, 138.74 (q, J = 5.0 Hz), 134.23, 130.36, 127.42, 122.87 (q, J = 271 Hz), 120.06 (q, J = 30.5 Hz), 114.60, 112.83, 104.23, 55.44, 51.86. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₃F₃NO₂, 284.0892 found 284.0896.

methyl 4-((2-oxo-3-(trifluoromethyl)pyridin-1(2H)-yl)methyl)benzoate 3e

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 32.0 mg (51%) of the title compound **3e**.

¹**H NMR** (300 MHz, CDCl₃): δ 7.99 (d, J = 8.3 Hz, 2H), 7.73 (dd, J = 7.0, 1.0 Hz, 1H), 7.52 (dd, J = 6.8, 1.7 Hz, 1H), 7.35 (d, J = 8.3 Hz, 2H), 6.24 (t, J = 6.9 Hz, 1H), 5.19 (s, 2H), 3.88 (s, 3H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -66.04. ¹³**C NMR** (75 MHz, CDCl₃): δ 167.07, 158.93, 141.57, 140.84, 139.53 (q, J = 5.1 Hz)., 130.91, 128.83, 128.52, 124.9 (q, J = 270.0 Hz), 122.6 (q, J = 31.9Hz), 121.34, 105.01, 52.81, 52.59. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₁₅H₁₃F₃NO₃, 312.0842 found 312.0838.

4-((2-oxo-3-(trifluoromethyl)pyridin-1(2H)-yl)methyl)benzonitrile 3f

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 27.55 mg (50%) of the title compound **3f**.

¹H NMR (300 MHz, CDCl₃): δ 7.76 (dd, J = 7.1, 1.0 Hz, 1H), 7.66 – 7.59 (m, 2H), 7.56 (dd, J = 6.8, 1.7 Hz, 1H), 7.41 (d, J = 8.4 Hz, 2H), 6.28 (t, J = 6.8 Hz, 1H), 5.19 (s, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -65.05. ¹³C NMR (75 MHz, CDCl₃): δ 158.36, 141.38, 140.73, 139.40 (q, J = 5.0 Hz), 132.82 (2), 128.86 (2), 122.60 (q, J = 270.0 Hz), 122.60 (q, J = 30.8 Hz), 118.39, 112.35, 104.84, 52.35. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₀F₃N₂O, 279.0739 found 279.0743.

1-(4-fluorobenzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3g

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 27.14 mg (50%) of the title compound **3**g.

¹**H NMR** (300 MHz, CDCl₃): δ 7.72 (dd, J = 7.1, 1.0 Hz, 1H), 7.51 (dd, J = 6.8, 1.7 Hz, 1H), 7.38 - 7.28 (m, 2H), 7.08 - 6.98 (m, 2H), 6.23 (t, J = 7.0 Hz, 1H), 5.12 (s, 2H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -65.95, -113.07. ¹³**C NMR** (75 MHz, CDCl₃) δ 164.88, 161.60, 158.96, 141.55, 139.43 (q, J = 5.0 Hz), 131.7 (d, J = 3.2 Hz), 130.9 (d, J = 8.3 Hz), 130.88, 123.2 (q, J = 270.0 Hz), 121.4 (q, J = 30.6 Hz), 116.5 (d, J = 21.5 Hz), 104.93, 52.23. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₁₃H₁₀F₄NO, 272.0693 found 272.0696.

3-(trifluoromethyl)-1-(4-(trifluoromethyl)benzyl)pyridin-2(1H)-one 3h

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 40.2 mg (63%) of the title compound **3h**.

¹**H NMR** (300 MHz, CDCl₃): δ 7.76 (ddd, J = 7.1, 1.9, 0.8 Hz, 1H), 7.61 (d, J = 8.1 Hz, 2H), 7.53 (dd, J = 6.8, 1.7 Hz, 1H), 7.43 (d, J = 8.1 Hz, 2H), 6.28 (dd, J = 10.3, 3.6 Hz, 1H), 5.20 (s, 2H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.78, -66.01.¹³**C NMR** (75 MHz, CDCl₃): δ 158.49, 141.25, 139.46, 139.24 (q, J = 5.0 Hz), 130.8 (q, J = 32. Hz), 128.70, 126.14 (q, J = 5 Hz), 123.6 (q, J = 270 Hz), 122.70 (q, J = 270.1 Hz), 122.18, 121.3 (q, J = 30.8 Hz), 105.0, 104.72, 52.17. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₀F₆NO, 322.0661 found 322.0661.

3-(trifluoromethyl)-1-(3-(trifluoromethyl)benzyl)pyridin-2(1H)-one 3i

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 38.1 mg (60%) of the title compound **3i**.

¹H NMR (300 MHz, CDCl₃): δ 7.75 (dd, J = 7.1, 1.0 Hz, 1H), 7.61 - 7.40 (m, 5H), 6.26 (t, J = 6.9 Hz, 1H), 5.20 (s, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.71, -66.00. ¹³C NMR (75 MHz, CDCl₃): δ 158.49, 141.28, 139.25 (q, J = 5.0 Hz), 136.55, 131.92,131.5 (q, J = 32.2 Hz), 129.78, 125.41 (q, J = 5 Hz), 125.01 (q, J = 5 Hz), 123.9 (q, J = 270.2Hz), 122.7 (q, J = 270.2 Hz), 121.1 (q, J = 30.9 Hz), 104.73, 52.15. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₀F₆NO, 322.0661 found 322.0663.

3-(trifluoromethyl)-1-(2-(trifluoromethyl)benzyl)pyridin-2(1H)-one 3j

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 36.7 mg (57%) of the title compound **3***j*.

¹H NMR (300 MHz, CDCl₃): δ 7.77 (ddd, J = 19.2, 10.1, 4.3 Hz, 2H), 7.54 (t, J = 7.3 Hz, 1H), 7.47 - 7.35 (m, 2H), 7.24 (d, J = 9.9 Hz, 1H), 6.25 (t, J = 6.7 Hz, 1H), 5.41 (s, 2H).¹⁹F NMR (282 MHz, CDCl₃) δ -59.35, -66.03.¹³C NMR (75 MHz, CDCl₃): δ 158.76, 141.44, 139.20 (q, J = 5.0 Hz), 134.0, 133.8 (q, J = 35.7 Hz), 132.91, 129.61, 128.47, 126.46 (q, J = 5.6 Hz), 124.6 (q, J = 27 Hz), 122.9 (q, J = 270.2 Hz), 121.3 (q, J = 28.3 Hz), 104.66, 48.36. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₀F₆NO, 322.0661 found 322.0664.

1-(3,5-dimethyl-4-(trifluoromethyl)benzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3k

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 26.5 mg (38%) of the title compound **3k**.

¹H NMR (300 MHz, CDCl₃): δ 7.76 (dd, J = 7.1, 1.1 Hz, 1H), 7.47 (dd, J = 6.7, 1.8 Hz, 1H), 7.02 (s, 2H), 6.25 (t, J = 7.0 Hz, 1H), 5.10 (s, 2H), 2.46 (q, J = 3.3 Hz, 6H). ¹⁹F NMR (282 MHz, CDCl₃) δ -54.31, -66.01. ¹³C NMR (75 MHz, CDCl₃): δ 158.50, 141.15, 139.08 (q, J = 5.0 Hz), 138.68 (d, J = 1.9 Hz), 138.13, 130.01 (2), 128.1 (q, J = 28.6 Hz), 125.9 (q, J = 274.6 Hz), 122.7 (q, J = 270.2 Hz), 120.9 (q, J = 30.9 Hz), 117.35, 104.53, 51.66, 21.63 (q, J = 4.1 Hz, 2). HRMS (ESI): m/z [M+H]⁺ calc. for C₁₆H₁₄F₆NO, 350.0974 found 350.0972.

1-(3,5-bis(trifluoromethyl)benzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3I

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 \bigcirc CE. CE. Cyclohexane/EtOAc) afforded 43.23 mg (56%) of the title compound **3**I.

¹**H** NMR (300 MHz, CDCl₃): 7.84 - 7.73 (m, 4H), 7.62 (dd, J = 6.8, 1.6 Hz, 1H), 6.33 (t, J = 6.9 Hz, 1H), 5.25 (s, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -62.98, -66.09. ¹³C NMR (75 MHz, CDCl₃): δ 158.42, 141.16, 139.60 (q, J = 5.0 Hz), 138.07, 132.55 (q, J = 33.6 Hz, 2), 128.52, 123.0 (q, J = 271.5 Hz), 122.7 (q, J = 270.2 Hz), 122.63 (q, J = 5.0 Hz), 121.5 (q, J = 31.5), 121.29, 105.12 (2), 52.20. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₅H₉F₉NO, 390.0535 found 390.0538.

1-phenyl-3-trifluoromethyl-2-pyridinone 3m

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 28.3 mg (59%) of the title compound **3m**.

Spectral data are in agreement with the literature.¹

¹H NMR (300 MHz, CDCl₃): δ 7.87 - 7.77 (m, 1H), 7.60 - 7.43 (m, 4H), 7.42 - 7.34 (m, 2H), 6.32 (t, J = 7.0 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃) δ -66.01. ¹³C NMR (75 MHz, CDCl₃): δ 158.29, 141.99, 139.90,139.45 (q, J = 5.0 Hz), 129.56 (2), 129.2, 127.28, 126.62 (2), 121.4 (q, J= 31.05 Hz), 120.9 (q, J= 270.2 Hz), 104.13. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₂H₉F₃NO, 240.0630 found 240.0633.

1-(1-phenylethyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3n

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 ______ Cyclohexane/EtOAc) afforded 35.9 mg (67%) of the title compound **3n**.

¹**H NMR** (300 MHz, CDCl₃): 7.68 (ddd, J = 7.0, 1.9, 0.8 Hz, 1H), 7.44 - 7.27 (m, 6H), 6.47 (q, J = 7.1 Hz, 1H), 6.17 (t, J = 7.0 Hz, 1H), 1.74 (d, J = 7.1 Hz, 3H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ - 65.92. ¹³**C NMR** (75 MHz, CDCl₃): δ 158.41, 139.41, 138.60, 138.28 (q, J = 5.1 Hz), 129.17 (2), 128.55, 127.69 (2), 122.9 (q, J = 270.0 Hz), 120.4 (q, J = 30.1 Hz), 104.43, 53.21, 19.13. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₃F₃NO, 268.0944 found 268.0947.

1-butyl-3-(trifluoromethyl)pyridin-2(1H)-one 3p

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 16.6 mg (40%) of the title compound **3p**.

¹**H NMR** (300 MHz, CDCl₃): δ 7.78 - 7.65 (m, 1H), 7.48 (dd, J = 6.7, 1.7 Hz, 1H), 6.21 (t, J = 6.9 Hz, 1H), 3.96 – 3.89 (t, 2H), 1.78 (dd, J = 14.8, 7.4 Hz, 2H), 0.94 (t, J = 7.4 Hz, 3H). ¹⁹**F NMR** (282 MHz, CDCl3) δ -65.95. ¹³**C NMR** (75 MHz, CDCl₃): δ 158.48, 141.72, 138.74 (q, J = 5.0 Hz), 122.9 (q, J = 270.0 Hz), 120.6 (q, J = 30.6 Hz), 103.91, 51.83, 22.45, 11.09. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₉H₁₁F₃NO, 206.0787 found 206.0791.

N-benzyl-4-methyl-3-trifluoromethyl-2-pyridinone 3q

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 28.9 mg (54%) of the title compound **3q**. ¹**H NMR** (300 MHz, CDCl₃): δ 7.39 - 7.22 (m, 6H), 6.00 (d, J = 7.0 Hz, 1H), 5.10 (s, 2H), 2.36 (d, J = 3.3 Hz, 3H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -58.18. ¹³**C NMR** (75 MHz, CDCl₃): δ 159.11, 152.56, 138.71, 135.67, 129.12 (2), 128.57, 128.44 (2), 124.3 (q, J = 272.7 Hz), 118.04 (q, J = 28.5 Hz), 109.86, 52.13, 21.15 (q, J = 3.8 Hz). **HRMS** (ESI): *m*/*z* [M+H]⁺ calc. for C₁₄H₁₃F₃NO, 268.0943 found 268.0947.

1-benzyl-6-methyl-3-trifluoromethyl-2-pyridinone 3r

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 ______ Cyclohexane/EtOAc) afforded 15.7 mg (30%) of the title compound **3r**.

¹H NMR (300 MHz, CDCl₃): δ 7.66 (d, J = 7.4 Hz, 1H), 7.38 - 7.27 (m, 3H), 7.20 - 7.14 (m, 2H), 6.09 (d, J = 7.4 Hz, 1H), 5.37 (s, 2H), 2.35 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -65.82. ¹³C NMR (75 MHz, CDCl₃): δ 159.79, 151.78, 138.32 (q, J = 4.9 Hz), 135.65, 129.09 (2), 127.86, 126.86 (2), 123.2 (q, J = 269.4 Hz), 117.7 (q, J = 30.7 Hz), 105.23, 47.57, 21.21. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₃F₃NO, 268.0943 found 268.0945.

1-benzyl-5-methyl-3-trifluoromethyl-2-pyridinone 3s

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 ______ Cyclohexane/EtOAc) afforded 10.7 mg (20%) of the title compound **3s**.

¹**H NMR** (300 MHz, CDCl₃): δ 7.59 (d, J = 2.2 Hz, 1H), 7.43 - 7.29 (m, 5H), 7.25 (s, 1H), 5.14 (s, 2H), 2.08 (s, 3H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -65.87. ¹³**C NMR** (75 MHz, CDCl₃): δ 157.95, 141.22 (q, J = 4.9 Hz), 138.70, 135.86, 129.19 (2), 128.62 (2), 128.52, 122.5 (q, J = 270.0 Hz), 120.1 (q, J = 30.4 Hz), 113.49, 52.11, 17.21. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₃F₃NO, 268.0943 found 268.0947.

5-methyl-1-phenyl-3-(trifluoromethyl)pyridin-2(1H)-one 3t (Pirfenidone analog)

Following General Procedure A on 0.2 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 83% yield. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 6.05 mg (12%) of the title compound **3t**. Spectral data are in agreement with the literature.⁴ ¹H NMR (300 MHz, CDCl₃): δ 7.70 (d, J = 2.2 Hz, 1H), 7.52 - 7.41 (m, 3H), 7.36 (dd, J = 8.2, 1.5 Hz, 3H), 2.17 (s,

3H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -65.87.¹³**C NMR** (75 MHz, CDCl₃): δ 157.68, 141.90 (q, J = 4.9 Hz), 140.07, 139.50, 129.48 (2), 129.02, 126.65 (2), 122.8 (q, J = 270.2 Hz), 121.1 (q, J = 30.5 Hz), 113.29, 17.08. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₁₃H₁₁F₃NO, 254.0787 found 254.0789.

4-bromo-3-trifluoromethyl-2-pyridinone 3u

Following General Procedure A on 0.2 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 19% yield. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 9.6 mg (14%) of the title compound **3u**.

¹H NMR (300 MHz, CDCl₃): 7.40 - 7.29 (m, 5H), 7.21 (d, J = 7.0 Hz, 1H), 6.43 (d, J = 7.3 Hz, 1H), 5.10 (s, 2H). ¹⁹F NMR (282 MHz, CDCl₃) δ -59.60. ¹³C NMR (75 MHz, CDCl₃): δ 158.06, 141.13, 138.75, 137.11, 136.11, 134.88, 129.36 (2), 128.87, 128.80 (2), 112.02, 52.52. HRMS (ESI): m/z [M+H]⁺ calc. for C₁₃H₁₀BrF₃NO, 331.9892 found 331.9895.

1-benzyl-4-methoxy-3-(trifluoromethyl)pyridin-2(1H)-one 3w

Following General Procedure A on 0.2 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 48% yield. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) followed by recrystallization (cyclohexane/dicholoromethane) afforded 9.6 mg (17%) of the title compound **3w**.

¹H NMR (300 MHz, CDCl₃): δ 7.41 (d, J = 7.9 Hz, 1H), 7.33 (dd, J = 5.1, 2.7 Hz, 5H), 6.04 (d, J = 8.1 Hz, 1H), 5.10 (s, 2H), 3.90 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -57.56. ¹³C NMR (75 MHz, CDCl₃): δ 167.54, 159.74, 141.15, 135.84, 129.19, 128.61, 128.48,125.9 (q, J = 32.8 Hz), 121.9

(q, J = 272.0 Hz), 94.00, 56.77, 51.78. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₁₄H₁₃F₃NO, 284.0893 found 284.0895.

1-(3,5-dimethylbenzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3y

Following General Procedure B on 0.12 mmol scale. Purification by silica gel column chromatography (7:3 cyclohexane/EtOAc) afforded 12.7 mg (38%) of the title compound **3y**.

¹**H** NMR (300 MHz, CDCl₃): δ 7.72 (ddd, J = 7.1, 2.0, 0.9 Hz, 1H), 7.46 (dd, J = 6.8, 1.6 Hz, 1H), 6.95 (d, J = 10.9 Hz, 3H), 6.19 (t, J = 7.0 Hz, 1H), 5.09 (s, 2H), 2.30 (d, J = 0.5 Hz, 6H).¹⁹**F** NMR (282 MHz, CDCl₃) δ -65.96. ¹³**C** NMR (75 MHz, CDCl₃) δ 141.15, 138.97, 138.75 (q, J = 5.1 Hz), 135.30, 130.32, 128.31, 126.60 (2), 121.10, 121.0 (q, J = 270.0 Hz), 120.7 (q, J = 30.7 Hz), 104.20, 52.06, 21.37 (2). HRMS (ESI): *m/z* [M+H]⁺ calc. for C₁₅H₁₅F₃NO, 282.1100 found 282.1106.

3-(trifluoromethyl)pyridin-2(1H)-one 4a

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (7:3 Cyclohexane/EtOAc) afforded 6.26 mg (19%) of the title compound **4a**.

Following General Procedure B on 0.12 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 40% yield.

¹**H NMR** (300 MHz, CDCl₃): δ 7.87 (d, J = 7.0 Hz, 1H), 7.65 (d, J = 6.4 Hz, 1H), 6.39 (t, J = 6.8 Hz, 1H). ¹⁹**F NMR** (282 MHz, CDCl₃) δ -65.74. ¹³**C NMR** (75 MHz, CDCl₃): δ 161.54, 140.85 (q, J = 4.9

Hz), 139.28, 122.8 (q, J = 269.7 Hz), 120.5 (q, J = 31.1 Hz), 105.72. **HRMS** (ESI): m/z [M+H]⁺ calc. for C₆H₅F₃NO, 164.0318 found 164.0319.

6-methyl-3-(trifluoromethyl)pyridin-2(1H)-one 4b

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 8.2 mg (23%) of the title compound 4b.

Following General Procedure B on 0.12 mmol scale. The title Compound 4b was obtained in a pure form without further purification (14.5 mg, 68%).

¹H NMR (300 MHz, CDCl₃): δ 13.34 (s, 1H), 7.73 (d, J = 7.3 Hz, 1H), 6.14 (d, J = 7.3 Hz, 1H), 2.42 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃) δ -65.14. ¹³C NMR (75 MHz, CDCl₃) δ 162.01, 151.33, 140.82 (q, J = 4.6 Hz)., 123.1 (q, J = 269.2 Hz), 116.8 (q, J = 30.8 Hz), 105.03, 19.37. **HRMS** (ESI): *m*/*z* [M+H]⁺ calc. for C₇H₇F₃NO, 178.0474 found 178.0473.

4-methyl-3-(trifluoromethyl)pyridin-2(1H)-one 4d

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 10.5 mg (29%) of the title compound 4d.

Following General Procedure B on 0.12 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude

reaction product: 40% yield. ¹**H NMR** (300 MHz, CDCl₃): δ 7.43 (d, J = 6.7 Hz, 1H), 6.16 (d, J = 6.7 Hz, 1H), 2.43 (q, J = 3.2 Hz,

3H).¹⁹F NMR (282 MHz, CDCl₃) δ -57.83. ¹³C NMR (75 MHz, CDCl₃): δ 162.04, 154.89, 136.74,124.2 (q, J = 272.7 Hz),117.9 (q, J = 36.0 Hz), 111.10, 21.47 (q, J = 3.8 Hz). HRMS (ESI): m/z [M+H]⁺ calc. for C₇H₇F₃NO, 178.0474 found 178.0474.

4-methoxy-3-(trifluoromethyl)pyridin-2(1H)-one 4e

Following General Procedure A on 0.2 mmol scale. Purification by silica gel column chromatography (9:1 Dichloromethane/EtOAc) afforded 10.1 mg (26%) of the title compound 4e.

Following General Procedure B on 0.12 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude

reaction product: 40% yield.

¹**H NMR** (300 MHz, CDCl₃): δ 13.11 (s, 1H), 7.59 (d, J = 7.5 Hz, 1H), 6.16 (d, J = 7.4 Hz, 1H), 3.95 (s, 3H).¹⁹F NMR (282 MHz, CDCl₃) δ -57.29. ¹³C NMR (75 MHz, CDCl₃) δ 169.28, 163.09, 139.66,123.7 (q, J = 271.4 Hz), 103.1 (q, J = 33.8 Hz), 94.71, 57.00. HRMS (ESI): m/z [M+H]⁺ calc. for $C_7H_7F_3NO_2$, 194.0423 found 194.0421.

4-bromo-3-(trifluoromethyl)pyridin-2(1H)-one 4f

Following General Procedure A on 0.2 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 17% yield.

Following General Procedure B on 0.2 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude

reaction product: 38% yield.

¹**H NMR** (300 MHz, CDCl₃): δ 12.90 (s, 1H), 7.37 (d, J = 6.8 Hz, 1H), 6.62 (d, J = 6.9 Hz, 1H). ¹⁹**F** NMR (282 MHz, CDCl₃) δ -59.23.¹³C NMR (75 MHz, CDCl₃) δ 161.04, 138.62, 136.93, 122.4 (q, J = 273.2 Hz),120.3 (q, J = 29.7 Hz), 113.65. HRMS (ESI): m/z [M+H]⁺ calc. for C₆H₄BrF₃NO,

4-fluoro-3-(trifluoromethyl)pyridin-2(1H)-one 4g

Following General Procedure A on 0.2 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 30% yield.

Following General Procedure B on 0.12 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 34% yield.

¹H NMR (300 MHz, CDCl₃): δ 12.84 (s, 1H), 7.62 (t, J = 7.1 Hz, 1H), 6.24 (t, J = 8.0 Hz, 1H).¹⁹F NMR (282 MHz, CDCl₃) δ -59.24, -59.34. ¹³C NMR (75 MHz, CDCl₃) δ 171.96, 168.24, 162.97 (d, J = 10.0 Hz), 139.95, 120.2 (q, J = 271.8 Hz), 99.24 (d, J = 27.3 Hz). HRMS (ESI): m/z [M+H]⁺ calc. 182.0221 for C₆H₄F₄NO found 182.0223.

4-hydroxy-3-(trifluoromethyl)pyridin-2(1H)-one 4h

Following General Procedure A on 0.2 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 26% yield. Purification by recrystallization in dichloromethane.

Following General Procedure B on 0.12 mmol scale. Yield determined by analysis of ¹H-NMR spectra of crude reaction product: 60% yield.

¹H NMR (300 MHz, DMSO) δ 11.65 (s, 1H), 11.38 (s, 1H), 7.40 (d, J = 7.3 Hz, 1H), 5.94 (d, J = 7.3 Hz, 1H). ¹⁹F NMR (282 MHz, DMSO) δ -55.62. ¹³C NMR (75 MHz, DMSO) δ 167.53, 160.41, 138.81, 126.10, 122.49, 98.33. HRMS (ESI): m/z [M+H]⁺ calc. for C₆H₅F₃NO₂, 180.0267 found 180.0266

VI. Pseudo-Hammett Plot

Substituents	Substituent constant σ radicalaire	Yield of 3 (%)	log (rdtx/rdth)
Н	0	55	0
p-CF ₃	0.08	63	0.05897786
p-CO₂Me	0.39	51	-0.03279251
p-F	-0.08	50	-0.04139269
p-CN	0.46	50	-0.04139269
m-CF₃	-0.14	47	-0.06826483
<i>т-СF</i> 3 1	-0.07	61	0.04496715
<i>p</i> -NO ₂	0.57	1	-1.74036269

Figure S3 : Pseudo-Hammett plot of withdrawing substituents log (rdtx/rdth) vs substituent constant σ.

VII. DFT Calculations

All the quantum chemistry computations were carried out using the Gaussian 16 software.⁹ The energies were computed using a DFT-based method, namely the PBEO global hybrid functional.^{10,11} The atoms were described by the 6-311+G(d,p) basis set.¹² The solvent (acetonitrile) was represented by an implicit model (PCM method as implemented in Gaussian).¹³ All the geometries have been fully optimized and the nature of the stationary point was checked by vibrational analyses (no imaginary frequency for the minima, one imaginary frequency for the transition states).

The localization of the transition state between II' and III was a tough task due to the crossing of two potential energy surfaces (triplet for II' + CF_3^{\bullet} and singlet for III). Therefore, the Gibbs free energy of this transition state was estimated using a two-step procedure: (i) a relaxed scan of the departure of CF_3^{\bullet} from III was processed in both spin states; the crossing energy was extrapolated from the obtained data and considered as the transition energy; then (ii) the entropy correction obtained from the transition state located between **1a** and II was added to this value to yield the transition Gibbs free energy. This scheme is justified by the similarities in structure between **1a** and II': no significant geometrical constraint could explain a large difference between the entropy corrections.

The atomic charges were computed using the internal facilities of Gaussian 16 for Mulliken and APT¹⁴ ones, and the AIMAII software¹⁵ for QT-AIM ones.¹⁶

Atomic charges and spin densities

Table S3: Mulliken and QT-AIM charges and spin densities and APT charges computed for all the non-hydrogen atoms in II' and 3a⁺.

		Mull	iken		AF	РΤ		QT-/	AIM	
	II'		3 a	+	II'	3a⁺	II,	,	3a	+
	charges	spin	charges	spin	charges	charges	charges	spin	charges	spin
Ν	0.56	0.13	0.63	0.15	-0.37	-0.26	-1.17	0.10	-1.16	0.12
C_{amide}	-0.12	-0.11	-0.78	-0.11	0.57	0.60	1.30	-0.03	1.34	-0.04
0	-0.20	0.35	-0.16	0.33	-0.55	-0.52	-1.02	0.31	-1.01	0.28
C ₃	0.30	0.45	0.49	0.42	0.09	-0.06	0.02	0.34	0.03	0.32
CF_3	-	_	0.31	-0.02	-	2.22	-	-	1.77	0.00
C ₄	-0.42	-0.23	-0.14	-0.26	-0.12	-0.17	0.05	-0.12	0.07	-0.13
C ₅	-0.07	0.41	-0.07	0.47	0.09	0.21	0.04	0.31	0.06	0.35
C ₆	-0.17	0.04	-0.02	0.01	0.29	0.19	0.59	0.08	0.60	0.05
C _{benz}	-0.99	-0.01	-1.06	-0.02	0.48	0.44	0.28	0.00	0.28	0.00
Cipso	1.11	-0.01	1.21	0.00	-0.06	-0.08	-0.02	0.00	-0.02	0.00
C _{ortho} *	-0.26	0.01	-0.20	0.00	-0.09	-0.11	-0.03	0.00	-0.03	0.00
C_{meta}^*	-0.31	0.00	-0.41	0.00	-0.06	-0.04	-0.03	0.00	-0.03	0.00
C_{para}	-0.14	0.00	-0.11	0.00	-0.02	-0.02	-0.03	0.00	-0.03	0.00

* the values were averaged on the two corresponding atoms

Figure S4 : Cartesian coordinates for the optimized structures

С	-0.033635	0.477083	0.004206
С	0.020561	0.540542	1.438554
С	1.134425	0.174560	2.134289
С	2.288668	-0.279021	1.455139
С	2.249950	-0.339247	0.096551
Ν	1.141728	0.018603	-0.607659
Н	3.186638	-0.570093	1.983012
Н	3.093222	-0.672750	-0.496606
С	1.147041	-0.075579	-2.061962
0	-1.006045	0.791613	-0.687644
С	1.480334	-1.318899	-2.604741
Н	0.645203	0.809806	-2.455081
Н	2.190351	-0.038989	-2.386155
С	0.051078	-1.322672	-3.932756
С	-0.522183	-2.459800	-4.488918
С	-0.680353	-3.609861	-3.720349
С	-0.259381	-3.611253	-2.395484
С	0.319989	-2.472879	-1.841266
Н	0.163919	-0.425868	-4.535792
Н	-0.852621	-2.445584	-5.522573
Н	-1.132794	-4.497001	-4.151185
Н	-0.381622	-4.501249	-1.786502
Н	0.640907	-2.489711	-0.804410
Н	-0.873324	0.895274	1.937631
Н	1.137522	0.234299	3.218245

С	-0.231875	0.422300	0.173570
С	0.244239	0.553569	1.620782
С	1.570301	-0.075607	1.905799
С	2.404449	-0.415956	0.874364
С	1.998125	-0.289928	-0.445729
Ν	0.709372	0.099786	-0.766977
С	0.259621	2.033200	2.012290
Н	1.859581	-0.209715	2.940710
Н	3.395796	-0.808188	1.069351
Н	2.634103	-0.533427	-1.285430
С	0.314943	0.061711	-2.179109
0	-1.403082	0.617204	-0.110211
F	0.691345	2.185605	3.274851
F	1.078026	2.752093	1.225124
F	-0.950285	2.601707	1.943760
С	0.165842	-1.338955	-2.717444
Н	-0.626417	0.606424	-2.255310
Н	1.070641	0.607747	-2.748464
С	0.896448	-1.744368	-3.832565
С	0.747306	-3.028952	-4.349119
С	-0.132145	-3.922203	-3.748929
С	-0.864107	-3.525050	-2.632092
С	-0.717874	-2.241557	-2.121135
Н	1.588199	-1.050584	-4.302062
Н	1.323308	-3.330948	-5.217837
Н	-0.248106	-4.924711	-4.147697
Н	-1.554349	-4.217272	-2.160703
Н	-1.296664	-1.935077	-1.254925
Н	-0.545575	0.113804	2.241556

С	0.108267	0.699158	-0.292810
С	-0.161320	0.872405	1.113809
С	0.684770	0.365069	2.075392
С	1.817975	-0.328932	1.671236
С	2.078694	-0.511833	0.298117
Ν	1.278784	-0.043293	-0.635848
Н	2.520796	-0.740844	2.383589
Н	2.960521	-1.049457	-0.030800
С	1.548115	-0.287382	-2.073553
0	-0.586836	1.153551	-1.182534
С	0.732029	-1.435296	-2.612801
Н	1.321720	0.639683	-2.597739
Н	2.617164	-0.482542	-2.154605
С	-0.430722	-1.193005	-3.342829
С	-1.173057	-2.254230	-3.849120
С	-0.759834	-3.563573	-3.626549
С	0.402527	-3.810622	-2.902486
С	1.147154	-2.750393	-2.399694
Н	-0.754752	-0.172017	-3.514203
Н	-2.074322	-2.056630	-4.419692
Н	-1.339575	-4.391230	-4.021600
Н	0.734964	-4.829548	-2.735145
Н	2.061331	-2.953902	-1.849510
Н	-1.056914	1.429382	1.359943
Н	0.472098	0.506803	3.127977

С	0.408497	0.561016	-0.361476
С	0.086839	0.612190	1.115929
С	1.228843	0.339957	2.028133
С	2.351013	-0.236397	1.568352
С	2.470525	-0.533386	0.183692
Ν	1.568488	-0.218314	-0.712295
С	-0.693556	1.877070	1.488148
Н	1.101445	0.564276	3.081491
Н	3.175907	-0.496435	2.217391
Н	3.357907	-1.038611	-0.185541
С	1.756383	-0.521785	-2.152257
0	-0.234363	1.073258	-1.222898
F	-0.910425	1.903706	2.807083
F	-0.015256	2.981118	1.163470
F	-1.876754	1.922547	0.882894
С	0.760996	-1.539550	-2.644603
Н	1.658744	0.419265	-2.692643
Н	2.782582	-0.874966	-2.256510
С	-0.226316	-1.167885	-3.555183
С	-1.128707	-2.111288	-4.034322
С	-1.053540	-3.430237	-3.600273
С	-0.069360	-3.806724	-2.690671
С	0.836777	-2.866125	-2.217143
Н	-0.289506	-0.137201	-3.888871
Н	-1.892003	-1.813827	-4.745438
Н	-1.758938	-4.166003	-3.972055
Н	-0.002331	-4.836011	-2.354807
Н	1.608348	-3.174125	-1.517476
Н	-0.621070	-0.222881	1.274294

С	-0.010215	0.250568	-0.042680
С	-0.110705	0.236711	1.406685
С	0.962331	-0.096410	2.196038
С	2.166767	-0.436092	1.584591
С	2.267004	-0.449133	0.177955
Ν	1.248655	-0.144476	-0.593989
С	-1.443720	0.628448	2.004110
Н	3.042136	-0.696981	2.164881
Н	3.198767	-0.714890	-0.307991
С	1.350991	-0.207039	-2.071380
0	-0.903902	0.582029	-0.789824
F	-1.407724	0.553305	3.334619
F	-1.765888	1.880879	1.673138
F	-2.415794	-0.178676	1.574657
С	0.648324	-1.418965	-2.629587
Н	0.916228	0.713192	-2.459173
Н	2.416421	-0.213039	-2.301789
С	-0.495918	-1.262529	-3.408759
С	-1.126306	-2.374727	-3.955909
С	-0.621892	-3.649108	-3.718773
С	0.518705	-3.809960	-2.938116
С	1.153683	-2.698549	-2.397105
Н	-0.893413	-0.269190	-3.589457
Н	-2.012557	-2.244114	-4.567626
Н	-1.115535	-4.516779	-4.143577
Н	0.919132	-4.801097	-2.754210
Н	2.049339	-2.837701	-1.798429
Н	0.877419	-0.093741	3.275837

1aTSII

С	-0.253407	0.115712	0.322030
С	0.247348	0.101400	1.683327
С	1.548945	-0.268002	1.961566
С	2.465306	-0.463608	0.915706
С	2.018578	-0.350363	-0.369991
Ν	0.720004	-0.069719	-0.662412
С	0.258517	2.479199	1.912511
Н	1.867661	-0.376526	2.992888
Н	3.502166	-0.708923	1.102604
Н	2.668637	-0.490816	-1.225335
С	0.311328	-0.007851	-2.072403
0	-1.432687	0.295245	0.019012
F	1.134448	2.761814	2.866075
F	0.629044	3.063631	0.780164
F	-0.943430	2.913358	2.266750
С	0.150743	-1.369106	-2.699845
Н	-0.630085	0.541573	-2.093347
Н	1.062663	0.573625	-2.609586
С	0.965313	-1.754668	-3.762943
С	0.815294	-3.007600	-4.352087
С	-0.150014	-3.887972	-3.878168
С	-0.967560	-3.509774	-2.815357
С	-0.820122	-2.258059	-2.231191
Н	1.721640	-1.070139	-4.136557
Н	1.455751	-3.294298	-5.179888
Н	-0.267807	-4.865277	-4.334805
Н	-1.726071	-4.191588	-2.444335
Н	-1.463591	-1.961162	-1.408578
Н	-0.507449	0.122546	2.460614

Scheme S1 : Proposed mechanism

VIII. Copies of NMR spectra

1-benzyl-3-trifluoromethyl-2-pyridinone 3a

SI27

N-(4-methylbenzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3b

¹³C NMR (CDCl₃, 75 MHz)

N-(4-methoxybenzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3c

¹³C NMR (CDCl₃, 75 MHz)

1-(3,5-dimethyl-4-(trifluoromethyl)benzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3e

¹H NMR (CDCl₃, 300 MHz)

¹³C NMR (CDCl₃, 75 MHz)

4-((2-oxo-3-(trifluoromethyl)pyridin-1(2H)-yl)methyl)benzonitrile 3f

1-(3,5-dimethyl-4-(trifluoromethyl)benzyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3g

€.2 6.2 6.2 --- 5.1

164.88 161.60 158.96	141.55 139.53 139.46 139.40 139.33	131.75 131.75 130.89 130.88 131.75 121.20 121.21 121.21 121.22 121.22 121.22 121.22 122.22 12.22 12.22 12.22 12.22 12.22 12.22 12.22 12	52.23
235	$\checkmark \checkmark \checkmark \checkmark$		

~ ~ ...

3-(trifluoromethyl)-1-(4-(trifluoromethyl)benzyl)pyridin-2(1H)-one 3h

¹H NMR (CDCl₃, 300 MHz)

---- 5.2

6.3 6.3 6.2 $\begin{array}{c} & 2.2\\ &$

---- -62.8 ---- -66.0

3-(trifluoromethyl)-1-(3-(trifluoromethyl)benzyl)pyridin-2(1H)-one 3i

---- -62.7 ---- -66.0

3-(trifluoromethyl)-1-(2-(trifluoromethyl)benzyl)pyridin-2(1H)-one 3j

¹H NMR (CDCl₃, 300 MHz)

--- 5.4

1-(3,5-dimethyl-4-(trifluoromethyl)benzyl)-3-(trifluoromethyl)pyridin-2(1H)-one **3k**

		¹ H NMR (CDCl ₃ , 1	300 MHz)
7.8 7.7 7.5 7.0 7.0 7.0	6.3	5.1	2.55 2.55 2.55
	\leq		\checkmark

SI54

1-phenyl-3-(trifluoromethyl)pyridin-2(1H)-one 3I

----- -63.0 ---- -66.1

1-phenyl-3-(trifluoromethyl)pyridin-2(1H)-one 3m

1-(1-phenylethyl)-3-(trifluoromethyl)pyridin-2(1H)-one 3n

¹H NMR (CDCl₃, 300 MHz)

 $\lesssim^{1.7}_{1.7}$

1-propyl-3-(trifluoromethyl)pyridin-2(1H)-one 3p

		¹ H NMR (CDCl ₃ , 300 MHz)		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6.2 6.2 6.2	თ. თ. ო.ო.ო	1.8 1.8 1.7	1.0 0.9 0.9
	$\leq$	$\leq$	$\leq$	$\leq$











1-benzyl-4-methyl-3-trifluoromethyl-2-pyridinone 3q







---- -58.2





1-benzyl-6-methyl-3-trifluoromethyl-2-pyridinone 3r

¹H NMR (CDCl₃, 300 MHz)

---- 2.3

7777333 777733	6.1 6.1	5.4	
	$\mathbb{Y}$		






# 1-benzyl-5-methyl-3-trifluoromethyl-2-pyridinone 3s







---- -65.9





# 4-(3-tosylimidazo[1,2-*a*]pyridin-2-yl)benzonitrile 3t

¹H NMR (CDCl₃, 300 MHz)

 $\overset{2.2}{\underset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}}{\overset{2.2}{\overset{2.2}}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}{\overset{2.2}}{\overset{2.2}{\overset{2.2}}{\overset{2.2}{\overset{$ 



-----65.9





#### 4-(3-tosylimidazo[1,2-*a*]pyridin-2-yl)benzonitrile **3u**

¹H NMR (CDCl₃, 300 MHz)

---- 5.0



----59.6





#### SI81

# 4-(3-tosylimidazo[1,2-*a*]pyridin-2-yl)benzonitrile **3w**





---- -57.6





1-(3,5-dimethylbenzyl)-3-(trifluoromethyl)pyridin-2(1H)-one **3y** 

	¹ H NMR (CDCl ₃ , 300 MHz)		
200 69 69	6.2 6.2 6.2	- 5.1	<23 23





----66.0



3-(trifluoromethyl)pyridin-2(1H)-one 4a

¹H NMR (CDCl₃, 300 MHz)

 $\overbrace{\begin{array}{c} 7,9\\7,7\\7,6\\6,4\\6,4\\6,4\\6,4\end{array}}^{7,9}$ 



---- -65.7





#### 6-methyl-3-(trifluoromethyl)pyridin-2(1H)-one 4b







4-methyl-3-(trifluoromethyl)pyridin-2(1H)-one 4d





---57.8





# 4-methoxy-3-(trifluoromethyl)pyridin-2(1H)-one 4e









4-bromo-2-pyridinone 4f

¹H NMR (CDCl₃, 300 MHz)

 $\underset{7.4}{\overset{7.4}{\scriptstyle >}}$ 

₹ 6.6 6.6

---- 12.9



----59.2







4-fluoro-3-(trifluoromethyl)pyridin-2(1H)-one 4g





-59.2
-59.3





#### SI106

#### ¹⁹F NMR (DMSO, 282 MHz)

---- -55.6



SI107


## IX. <u>References</u>

1. Krishnamurti, V.; Munoz, S. B.; Ispizua-Rodriguez, X.; Vickerman, J.; Mathew, T.; Surya Prakash, G. K., C(sp2)–H Trifluoromethylation of enamides using TMSCF₃: access to trifluoromethylated isoindolinones, isoquinolinones, 2-pyridinones and other heterocycles. *Chem. Comm.* **2018**, *54*, 10574-10577.

2. Tanabe, Y.; Matsuo, N.; Ohno, N., Direct perfluoroalkylation including trifluoromethylation of aromatics with perfluoro carboxylic acids mediated by xenon difluoride. *J. Org. Chem.* **1988**, *53*, 4582-4585.

3. Zhang, P.-Z.; Li, C.-K.; Zhang, G.-Y.; Zhang, L.; Jiang, Y.-J.; Zou, J.-P., Direct regioselective Csp2–H trifluoromethylation of pyrimidinones and pyridinones. *Tetrahedron* **2016**, *72*, 3250-3255.

4. Rey-Rodriguez, R.; Retailleau, P.; Bonnet, P.; Gillaizeau, I., Iron-Catalyzed Trifluoromethylation of Enamide. *Chem. Eur. J.* **2015**, *21*, 3572-3575.

5. a) Beatty, J. W.; Douglas, J. J.; Cole, K. P.; Stephenson, C. R., A scalable and operationally simple radical trifluoromethylation. *Nat. comm.* **2015**, *6*, 7919; b) Beatty, J. W.; Douglas, J. J.; Miller, R.; McAtee, R. C.; Cole, K. P.; Stephenson, C. R. J., Photochemical Perfluoroalkylation with Pyridine N-Oxides: Mechanistic Insights and Performance on a Kilogram Scale. *Chem* **2016**, *1*, 456-472.

6. Yin, D.; Su, D.; Jin, J., Photoredox Catalytic Trifluoromethylation and Perfluoroalkylation of Arenes Using Trifluoroacetic and Related Carboxylic Acids. *Cell Rep. Phys. Sci.* **2020**, *1*, 100141.

7. Cui, L.; Matusaki, Y.; Tada, N.; Miura, T.; Uno, B.; Itoh, A., Metal-Free Direct C-H Perfluoroalkylation of Arenes and Heteroarenes Using a Photoredox Organocatalyst. *Adv. Synth. Catal.* **2013**, *355*, 2203-2207.

8. Bottecchia, C.; Martín, R.; Abdiaj, I.; Crovini, E.; Alcazar, J.; Orduna, J.; Blesa, M. J.; Carrillo, J. R.; Prieto, P.; Noël, T., De novo Design of Organic Photocatalysts: Bithiophene Derivatives for the Visible-light Induced C–H Functionalization of Heteroarenes. *Adv. Synth. Catal.* **2019**, *361*, 945-950.

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, *Gaussian 16 Rev. A.03*, Wallingford, CT, **2016**.

10. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple, *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

11. Adamo, C.; Barone, V., Toward reliable density functional methods without adjustable parameters: The PBE0 model, *J. Chem. Phys.* **1999**, *110*, 6158–6169.

12. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A., Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions, *J. Chem. Phys.* **1980**, *72*, 650–654.

13. Tomasi, J.; Mennucci, B.; Cammi, R., Quantum Mechanical Continuum Solvation Models, *Chem. Rev.* **2005**, *105*, 2999–3094.

14. Cioslowski, J. A new population analysis based on atomic polar tensors, *J. Am. Chem. Soc.* **1989**, *111*, 8333–8336.

15. . A. Keith, AIMAll 19.10.12, TK Gristmill Software, Overland Park, 2019

16. R. F. W. Bader, *Atoms in molecules: a quantum theory*, Clarendon Press; Oxford University Press, Oxford [England] : New York, 1994.