Supproting Information

for

WEPA: A reusable waste biomass-originated catalyst for external oxidant/metal-free quinoxalines synthesis *via* tandem condensation-cyclization-oxidation of α-hydroxy ketones

Bandameeda Ramesh Naidu, Katta Venkateswarlu*

Laboratory for Synthetic & Natural Products Chemistry, Department of Chemistry, Yogi Vemana University, Kadapa 516005, India

TABLE OF CONTENTS

SI. No.	Content	Page – page
1.	Characterization data of quinoxalines	3 – 7
2.	Copies of ¹ H & ¹³ C NMR Spectra	8 – 21
3.	XPS data of WEPA	22 – 25
4.	XRF data of WEPA	26 – 26

1. Characterization data of quinoxalines

Entry	Quinoxalines (3)	Melting point (°C)		
		Present	Reported	
1	3 aa	122–124	126–1271	_
2	3ab	124–126	120–121 ²	
3	3ac	115–117	116–1171	
4	3ad	177–179	170–172 ³	
5	3ee	120-122	122–123 ²	
6	3af	145–147	140–1421	
7	3ag	138–140	142–1434	
8	3ah	153–155	149–150 ⁵	
9	3ai	152–154	$148 - 150^4$	
10	3aj	161–163	156–1586	
11	3ak	151–153	147–1484	
12	3al	126–128	122–1247	
13	3am	191–193	187–189 ³	
14	3an	141–142	134–136 ¹	
15	3 ao	104–106	_	
16	3ap	122–124	122–1241	
17	3aq	117–119	$115.5 - 116.5^{8}$	
18	3ar	151–153	152–1541	
19	3as	96–98	_	
20	3at	91–93	91-9210	
21	3au	70–72	$71 - 72^{10}$	
22	3av	88–90	89–90 ¹⁰	
23	3aw	185–187	183–184 ¹⁰	
24	3ax	135–137	132–13411	
25	3ay	261–263	258-26012	
26	3az	328-330	32012	
27	3ba	67–69	67–69 ¹³	
28	3bb	109–111	$107 - 112^{14}$	
29	3bc	122–124	120–121 ¹⁵	
30	3bd	138–140	140–141 ¹³	
31	3be	211-213	209-21016	

Melting points of quinoxalines

Physical appearance and ¹H NMR, ¹³C NMR and mass spectral data of quinoxalines

2,3-Diphenylpyrido[**2,3-***b*]**pyrazine** (**3ag**).⁴ Pale pink solid; Yield: 94% (0.8 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.17 (dd, *J* = 2.0, 4.0 Hz, 1H), 8.52 (dd, *J* = 2.0, 8.4 Hz, 1H), 7.71 (dd, *J* = 4.4, 8.4 Hz, 1H), 7.65–7.62 (m, 2H), 7.57–7.54 (m, 2H), 7.41–7.30 (m. 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.3, 154.7, 154.1, 149.9, 138.6, 138.1, 136.2, 130.3. 129.8, 129.5, 129.3, 128.4, 128.2, 125.2; ESMS: *m/z* 284.17 (M+1).

7-Bromo-2,3-diphenylpyrido[**2,3-***b*]**pyrazine** (**3ah**).⁵ Pale yellow solid; Yield: 90% (0.9 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.16 (d, J = 2.4 Hz, 1H), 8.68 (d, J = 2.4 Hz, 1H), 7.63– 7.60 (m, 2H), 7.56–7.52 (m, 2H), 7.43–7.30 (m, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 156.5, 155.5, 155.1, 148.3, 139.4, 138.1, 137.8, 136.4, 130.2, 129.9, 129.7, 129.6, 128.5, 128.3, 121.0; ESMS: *m/z* 362.27 and 364.23 (1:1) (M+1 and M+3).

2,3-Di(2-furanyl)quinoxaline (3an).³ Gold colour solid; Yield: 98% (0.8 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.14 (dd, J =3.2, 6.2 Hz, 2H), 7.5 (dd, J = 3.2, 6.4 Hz, 2H), 7.63 (d, J = 1.6 Hz, 2H), 6.6 (d, J = 3.6 Hz, 2H), 6.57 (dd, J = 2.0, 3.6 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 150.8, 144.2, 142.7, 140.7, 130.4, 129.1, 113.0, 111.9; ESMS: *m/z* 263.43 (M+1).

2,3-Di(2-furanyl)-5-methylquinoxaline (**3ao**).¹ Cream colour solid; Yield: 96% (0.9 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.99–7.96 (m, 2H), 7.66–7.56 (m, 3H), 6.81 (d, *J* = 3.2 Hz, 1H), 6.59–6.53 (m, 3H), 2.82 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 151.7, 151.0, 144.2, 143.8, 142.1, 141.3, 140.8, 139.8, 137.5, 130.2 (2C), 126.9, 112.9, 112.5, 111.9, 111.8, 17.1; ESMS: *m/z* 277.31 (M+1).

2,3-Di(2-furanyl)pyrido[2,3-*b***]pyrazine (3as).** Cream colour solid; Yield: 90% (0.8 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.12 (dd, J = 2.0, 4.4 Hz, 1H), 8.47 (dd, J = 2.0, 8.0 Hz, 1H), 7.70 (dd, J = 1.0, 3.6 Hz, 1H), 6.75 (dd, J = 1.0, 3.6 Hz, 1H), 6.61 (dd, J = 2.0, 3.6 Hz, 1H), 6.59 (dd, J = 1.6, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 154.4, 150.6, 150.4, 149.2, 145.0, 144.8, 148.7, 143.3, 137.8, 135.8, 125.4, 114.7, 114.0, 112.3, 112.1; ESMS: *m/z* 264.36 (M+1).

2,3-Dimethylquinoxaline (3at).² White solid; Yield: 94% (0.9 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.95 (dd, J = 3.5, 6.3 Hz, 2H), 7.63 (dd, J = 3.5, 6.3 Hz, 2H), 2.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 153.5, 141.0, 128.9, 128.3, 23.2; ESMS: m/z 159.08 (M+1).

2,3,5-Trimethylquinoxaline (3au).² Cream colour solid; Yield: 91% (1 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.80 (d, *J* = 8.1 Hz, 1H), 7.53 (t, *J* = 7.4 Hz, 1H), 7.47 (d, *J* = 7.0 Hz, 1H), 2.76 (s, 3H), 2.72 (s, 3H), 2.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.8, 152.2, 141.1, 140.3, 136.7, 128.8, 128.4, 126.1, 23.4, 23.1, 17.1; ESMS: *m/z* 173.02 (M+1).

Me

Me

2,3,6,7-Tetram 92% (0.8 h); ¹H 2.68 (s, 6H), 2.4 **3aw** 152.3, 140.0,

93% (0.8 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.86 (d, J = 8.6 Hz, 1H), 7.75 (m, 1H), 7.49 (d, J = 8.6 Hz, 1H), 2.70 (s, 6H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 153.3, 152.4, 141.1, 139.5, 1392, 131.0, 127.8, 127.3, 23.2, 23.1, 21.7; ESMS: m/z 173.15 (M+1).

2,3,6-Trimethylquinoxaline (3av).² Cream colour solid; Yield:

2,3,6,7-Tetramethylquinoxaline (3aw). White solid; Yield: 92% (0.8 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.70 (s, 2H), 2.68 (s, 6H), 2.44 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.3, 140.0, 139.0, 127.5, 23.1, 20.3; ESMS: *m*/*z* 187.37 (M+1).

2,3-Dimethyl-6-nitroquinoxaline (**3ax**).¹⁷ Cream colour solid; Yield: 86% (1.1 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.9 (d, *J* = 2.5 Hz, 1H), 8.44 (dd, *J* = 2.5, 9.1 Hz, 1H), 8.10 (d, *J* = 9.1 Hz, 1H), 2.80 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 157.3, 156.3, 147.1, 143.7, 139.9, 129.9, 124.9, 122.4, 23.5, 23.3; ESMS: *m/z* 202.11 (M–1).

Yield: 92% (1 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.05 (dd, J = 2.0, 4.4 Hz, 1H), 8.33 (dd, J = 2.0, 8.0 Hz, 1H), 7.63 (dd, J = 4.4, 8.0 Hz, 1H), 2.82 (s, 3H), 2.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 157.3, 155.0, 152.6, 150.2, 137.3, 135.9, 124.3, 23.5, 23.0; ESMS: m/z 160.02 (M+1).

solid;

2,3-Dimethylpyrido[2,3-b]pyrazine (3ay).¹⁸ White

7-Bromo-2,3-dimethylpyrido[**2,3-***b*]**pyrazine** (**3az**).¹² Light pink solid; Yield: 89% (1.1 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.05 (d, *J* = 2.8 Hz, 1H), 8.50 (d, *J* = 2.8 Hz, 1H), 2.80 (s, 3H), 2.78 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 157.7, 156.1, 153.7, 148.6, 138.8, 136.2, 119.9, 23.6, 23.1; ESMS: *m/z* 338.27 and 340.17 (1:1) (M+1 and M+3).

2-Phenylquinoxaline (3ba).¹⁹ Pale red solid; Yield: 94% (1.5 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.32 (s, 1H), 8.23–8.09 (m, 4H), 7.82–7.69 (m, 2H), 7.62–7.49 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 152.0, 143.5, 142.4, 141.7, 136.9, 130.4, 130.3, 129.7 (2C), 129.3, 129.2, 127.7.

6-Nitro-2-phenylquinoxaline (3be).¹⁹ Yellowish solid; Yield: 88% (2.3 h); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.5 (s, 1H), 9.03 (d, *J* = 2.5 Hz, 1H), 8.56 (dd, *J* = 2.5, 9.2 Hz, 1H) 8.32-8.24 (m, 3H), 7.72-7.47 (m, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 154.4, 147.5, 145.6, 145.0, 140.4, 135.7, 131.5, 131.3, 129.5, 128.0, 125.8, 123.9.

References

- A. Kamal, K. S. Babu, S. Faazil, S. M. A. Hussaini, A. B. Shaik, *RSC Adv.*, 2014, 4, 46369–46377.
- 2 A. Go, G. Lee, J. Kim, S. Bae, B. M. Lee, B. H. Kim, *Tetrahedron*, 2015, **71**, 1215–1226.
- 3 A. Kamal, K. S. Babu, S. M. A. Hussaini, R. Mahesh, A. Alarifi, *Tetrahedron Lett.*, 2015, **56**, 2803–2808.
- 4 N. Shah, E. Gravel, D. V. Jawale, E. Doris, I. N. N. Namboothiri, *ChemCatChem*, 2015, 7, 57–61.
- 5 L. Yin, J. Liebscher, *Synthesis*, 2015, **8**, 1345–1349.
- 6 G. Kaupp, M. R. Naimi-Jamal, Eur. J. Org. Chem., 2002, 1368–1373.
- 7 K. B. Harsha, K. S. Rangappa, *RSC Adv.*, 2016, **6**, 57154–57162.
- 8 C. Xie, Z. Zhang, B. Yang, G. Song, H. Geo, L. Wen, C. Ma, *Tetrahedron*, 2015, 71, 1831–1837.
- 9 S. S. Mahadik, D. R. Garud, A. P. Ware, S. S. Pingale, R. M. Kamble, *Dyes Pigm.*, 2021, **184**, 108742.
- 10 Y.-B. Wang, L. Shi, X. Zhang, L.-R. Fu, W. Hu, W. Zhang, X. Zhu, X.-Q. Hao, M.-P. Song, J. Org. Chem., 2021, 86, 947–958.
- 11 K. S. Indalkar, C. K. Khatri, G. U. Chaturbhuj, J. Chem. Sci., 2017, 129, 141–148.
- J. J. Morales-Castellanos, K. Ramírez-Hernández, N. S. Gómez-Flores, O. R. Rodas-Suárez, J. Peralta-Cruz, *Molecules*, 2012, 17, 5164–5176.
- 13 G. Shen, Z. Wang, X. Huang, S. Gong, J. Zhang, Z. Tang, M. Sun, X. Lv, Dalton Trans., 2020, 49, 13993–13998.
- 14 Y. Zhang, M. Luo, Y. Li, H. Wang, X. Ren, C. Qi, *Mol Divers.*, 2018, 22, 183–189.
- 15 K. K. D. R. Viswanadham, M. P. Reddy, P. Sathyanarayana, O. Ravi, R. Kant, S. R. Bathula, *Chem Commun.*, 2014, 50, 13517–13520.
- 16 S. Kano, S. Shibuya, Y. Yuasa, J. Heterocycl. Chem., 1980, 17, 1559–1561.
- 17 R. Nasielski-Hinkens, E. V. Vyver, J. Nasielski, *Bull. Soc. Chim. Belg.*, 1986, 95, 663–670.
- 18 K. Aghapoor, H. R. Darabi, F. Mohsenzadeh, Y. Balavar, H. Daneshyar, *Transition Met. Chem.*, 2010, 35, 49–53.
- 19 J. Pogula, S. Laha, P. R. Likhar, Catal Lett., 2017, 147, 2724–2735.

2. Copies of ¹H NMR and ¹³C NMR spectra of quinoxalines

¹H NMR spectrum of compound **3ag**:

¹³C NMR spectrum of compound **3ag**:

¹H NMR spectrum of compound **3ah**:

¹³C NMR spectrum of compound **3ah**:

¹H NMR spectrum of compound **3an**:

¹³C NMR spectrum of compound **3an**:

¹H NMR spectrum of compound **3ao**:

¹³C NMR spectrum of compound **3ao**:

¹H NMR spectrum of compound **3as**:

¹³C NMR spectrum of compound **3as**:

¹H NMR spectrum of compound **3at**:

¹³C NMR spectrum of compound **3at**:

¹H NMR spectrum of compound **3au**:

¹³C NMR spectrum of compound **3au**:

¹H NMR spectrum of compound **3av**:

¹³C NMR spectrum of compound **3av**:

¹H NMR spectrum of compound **3aw**:

¹³C NMR spectrum of compound **3aw**:

¹H NMR spectrum of compound **3ax**:

¹³C NMR spectrum of compound **3ax**:

¹H NMR spectrum of compound **3ay**:

¹³C NMR spectrum of compound **3ay**:

¹H NMR spectrum of compound **3az**:

¹³C NMR spectrum of compound **3az**:

¹H NMR spectrum of compound **3ba**:

¹³C NMR spectrum of compound **3ba**:

¹H NMR spectrum of compound **3be**:

¹³C NMR spectrum of compound **3be**:

3. XPS Analysis of WEPA

The XPS analysis of WEPA was showed the presence of K, Mg, Ca, C, O, Cl in WEPA.¹

Survey spectrum

Mg 1s

0 1s

Reference

1 J. Lakshmidevi, R. M. Appa, B. R. Naidu, S. S. Prasad, L. S. Sarma, K. Venkateswarlu, *Chem. Commun.*, 2018, **54**, 12333–12336.

4. XRF analysis of WEPA.

The X-ray fluorescence (XRF) data of WEPA is showed in the following table which indicates the presence of large quantity of K_2O and chlorides in WEPA. It also showed the presence of minor quantities of Na₂O, SO₃, MgO, CaO, Al₂O₃ and SiO₂ along with very minor quantities of other metallic/non-metallic species.^{1,2}

Entry	Compound	Reference 1	Reference 2	Unit
1	K ₂ O	66.513	64.309	%
2	Cl	19.393	23.504	%
3	SiO ₂	1.926	1.577	%
4	MgO	1.895	1.599	%
5	Na ₂ O	2.197	2.629	%
6	Fe ₂ O ₃	0.152	936 (ppm)	%
7	ZnO	71.8	35.3 (Zn)	ppm
8	CaO	2.112	1.545	%
9	SrO	0.132	-	%
10	SO_3	3.892	4.331	%
11	P_2O_5	576.4	757.1	ppm
12	Al_2O_3	0.236	0.131	%
13	Cu	193.6	70.8	ppm
14	Br	0.136	0.159	%
15	Cr ₂ O ₃	11.4	-	ppm
16	MnO	51.2	-	ppm
17	TiO ₂	19.2	-	ppm
18	Y	6.5	5.9	ppm
19	Rb	-	251.3	ppm
20	Bi	-	38.4	ppm
21	Ni	-	65.1	ppm

Table XRF data of WEPA^a.

^aThis data is based on semi-quantitative analysis.

References

- R. M. Appa, J. Lakshmidevi, B. R. Naidu, K. Venkateswarlu, *Mol. Catal.*, 2021, 501, 111366.
- B. R. Naidu, J. Lakshmidevi, B. S. S. Naidu, K. Venkateswarlu, *Mol. Catal.*, 2021, 511, 111719.