Electronic Supporting Information

Superior bifunctional cobalt/nitrogen-codoped carbon nanosheet arrays on copper foam enable stable energy-saving hydrogen production accompanied with glucose upgrading

Yu Xin,^{ab} Fengliang Wang, ^{ab} Liyu Chen, ^{ab} Yingwei Li^{*ab} and Kui Shen^{*ab}

 ^a State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
 ^b Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China

* Corresponding authors: Y. Li and K. Shen, E-mail: liyw@scut.edu.cn; cekshen@scut.edu.cn

This file includes supplementary Figures S1-S36, and Table S1-S4.

Figure S1. The XRD pattern of copper foam (CF) and the standard line of Cu.

Figure S2. Characterization of NF@ZIF-1T. a-c) Low- and high-magnification SEM images, and d) XRD pattern.

Figure S3. Characterization of NF@CoNC-1T. a-c) Low- and high-magnification SEM images, and d) XRD pattern.

Figure S4. The full XPS survey spectra of CF@ZIF-2T and CF@CoNC-2T.

Figure S5. Characterization of copper foam (CF). (a-c) Low- and high-magnification SEM images of CF after spraying a conductive Au coating. (d) SEM image of CF without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF.

Figure S6. Characterization of CF@ZIF-1T. (a-c) Low- and high-magnification SEM images of CF@ZIF-1T after spraying a conductive Au coating. (d) SEM image of CF@ZIF-1T without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF@ZIF-1T.

Figure S7. Characterization of CF@ZIF-2T. (a-c) Low- and high-magnification SEM images of CF@ZIF-2T after spraying a conductive Au coating. (d) SEM image of CF@ZIF-2T without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF@ZIF-2T.

Figure S8. Characterization of CF@ZIF-3T. (a-c) Low- and high-magnification SEM images of CF@ZIF-3T after spraying a conductive Au coating. (d) SEM image of CF@ZIF-3T without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF@ZIF-3T.

Figure S9. Characterization of CF@ZIF-4T. (a-c) Low- and high-magnification SEM images of CF@ZIF-4T after spraying a conductive Au coating. (d) SEM image of CF@ZIF-4T without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF@ZIF-4T.

Figure S10. Characterization of CF@CoNC-1T. (a-c) Low- and high-magnification SEM images of CF@CoNC-1T after spraying a conductive Au coating. (d) SEM image of CF@CoNC-1T without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF@CoNC-1T.

Figure S11. Characterization of CF@CoNC-2T. (a-c) Low- and high-magnification SEM images of CF@CoNC-2T after spraying a conductive Au coating. (d) SEM image of CF@CoNC-2T without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF@CoNC-2T.

Figure S12. Characterization of CF@CoNC-3T. (a-c) Low- and high-magnification SEM images of CF@CoNC-3T after spraying a conductive Au coating. (d) SEM image of CF@CoNC-3T without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF@CoNC-3T.

Figure S13. Characterization of CF@CoNC-4T. (a-c) Low- and high-magnification SEM images of CF@CoNC-4T after spraying a conductive Au coating. (d) SEM image of CF@CoNC-4T without a conductive coating and its corresponding EDS mapping images and element spectrum. The inset in (a) is the optical photograph of CF@CoNC-4T.

Figure S14. (a) HAADF-STEM and (b) EDS mapping images and (c) the corresponding elemental spectrum of CF@CoNC-1T.

Figure S15. (a) HAADF-STEM and (b) EDS mapping images and (c) the corresponding elemental spectrum of CF@CoNC-2T.

Figure S16. (a) HAADF-STEM and (b) EDS mapping images and (c) the corresponding elemental spectrum of CF@CoNC-3T.

Figure S17. (a) HAADF-STEM and b) EDS mapping images and c) the corresponding elemental spectrum of CF@CoNC-4T.

Figure S18. Single cycle CV curve of Hg/HgO electrode calibration in 1 M KOH at room temperature (~298 K).

Figure S19. 2D HSQC NMR spectrum of pure D-glucose (absolute stereochemistry) in D_2O at 298 K.

Figure S20. ¹H NMR (500 MHz) spectrum of pure D-glucose (absolute stereochemistry) in D_2O at 298 K.

Figure S21. ¹³C NMR (126 MHz) spectrum of pure D-glucose (absolute stereochemistry) in D_2O at 298 K.

Figure S22. LSV curves of the CF@CoNC-1T electrode for glucose oxidation with different concentrations of glucose (0-100 mM).

Fig. S23. LSV curves of the CF@CoNC-1T electrode in 1 M KOH. The oxidation peaks (Cu⁰, $Cu^{1+} \rightarrow Cu^{2+}$) are gradually disappeared with multiple polarization curves scanning.

Figure S24. The copper oxidation potentials at different current densities for various electrocatalysts.

Figure S25. Tafel plots of copper foam (CF), CF@ZIF-1T and CF@CoNC-xT (x = 1-4) in copper oxidation and glucose oxidation reactions.

Figure S26. Optical images of the fresh and used CF and CF@CoNC and the used electrolyte solutions.

Figure S27. LSV curves of various electrocatalysts for HER without iR correction.

Figure S28. Comparison of the overpotential $(j = 10 \text{ mA cm}^2)$ of our CF@CoNC-2T electrode with various previously reported HER electrocatalysts in 1 M KOH electrolyte.

Figure S29. Cyclic voltammetry curves of (a) CF, (b) NF@CoNC-1T, (c) CF@CoNC-1T, (d) CF@CoNC-2T, (e) CF@CoNC-3T and (f) CF@CoNC-4T at different scan rates (20, 40, 60, 80, 100 and 120 mV s⁻¹) in 1.0 M KOH.

Figure S30. The LSV polarization curves of the CF@CoNC-2T electrode with and without100 mM glucose in HER.

Figure S31. Analysis of emission gas by GC instrument.

Figure S32. Long-term durability of the CF@CoNC-1T anode in a two-electrode system.

Figure S33. Low- and high-magnification SEM images of a) the fresh CF@CoNC-2T electrode, and b) the anodic CF@CoNC-2T and c) cathodic CF@CoNC-2T electrodes after the stability test.

Figure S34. XRD patterns of CC@CoNC-600 electrode after used on cathode and anode.

Figure S35. The high-resolution (a) Co 2p XPS spectra and (b) Cu 2p XPS spectra of CC@CoNC-2T electrode after used on cathode and anode.

Figure S36. Comparison of the cell voltages of our system with some previously reported state-of-the-art electrocatalysts in overall water splitting H_2 production system.

Supplementary Tables

Table S1. Comparison of the element contents of	of CF, CF@ZIF-xT and CoNC-xT ($x = 1-4$)
obtained from their SEM-EDS spectra.	

Element /%	С	Ν	Со	Cu
CF@ZIF-1T	61.68	16.82	21.35	0.15
CF@ZIF-2T	58.26	35.54	6.10	0.10
CF@ZIF-3T	60.58	32.09	7.28	0.05
CF@ZIF-4T	58.12	35.13	6.74	0
CF@CoNC-1T	68.23	18.20	11.05	2.53
CF@CoNC-2T	51.39	2.39	45.45	0.78
CF@CoNC-3T	56.46	31.18	12.36	0
CF@CoNC-4T	56.13	33.11	10.75	0
CF	5.53	0.95	0	93.97

Catalysts	η@10 mA cm ⁻² / mV	References
CF@CoNC-2T	64	This work
Pt/C	33	Adv. Energy Mater., 2017, 8, 1701601
$NiCo_2P_x NW$	58	Adv. Mater., 2017, 29, 1605502.
CoP <i>NWs</i> /CoO _x	65	Adv. Mater., 2018, 30, 1703322.
NiCu@C	74	Adv. Energy Mater., 2018, 8, 1701759
CoP/NiCoP/NC	75	Adv. Funct. Mater., 2019, 29, 1807976.
Ni(OH) ₂ -Fe ₂ P	76	Chem. Commun, 2018, 54, 1201- 1204.
CoP/CNTs	76	Adv. Funct. Mater., 2017, 27, 1606635.
Ni ₃ S ₂	77	ACS Appl. Mater. Interfaces, 2017, 9, 40162-40170
Mo-Ni ₂ P NW	78	Nanoscale, 2017, 9, 16674-16679
NiO _x @CNTs	79	ACS Appl. Mater. Interfaces, 2017, 9, 7139-7147.
CoMoO ₄ NW	81	ACS Sustain. Chem. Eng, 2017, 5, 10093-10098.
P-Mo ₂ C@NC	83	Chem. Asian J, 2018, 13, 158-163.
Co _{6.25} Fe _{18.75} Ni ₇₅ O _x NS	84	J. Mater. Chem. A, 2018, 6, 167- 178.
MoP/CNTs	86	Adv. Funct. Mater, 2018, 28, 1706523.
Ni _{0.5} Co _{0.5} P	87	Electrochim. Acta, 2017, 249, 301- 307.
Fe-(NiS ₂ /MoS ₂)/CNT	87	J. Mater. Chem. A, 2020, 8, 17527- 17536.
Mo-S-NiSe	88	J. Mater. Chem. A, 2017, 5, 20588- 20593.
MoP/Mo ₂ N	89	Angew. Chem. Int. Ed., 2021, 133, 2-11.
CoP NS	90	New J. Chem, 2017, 41, 2436-2442.
MoS ₂ /NiS/MoO ₃	91	ACS Appl. Mater. Interfaces, 2017, 9, 7084-7090.
(Mo ₂ C) _{0.34} -(WC) _{0.32} -QDs/NG	93	J. Mater. Chem. A, 2017, 5, 18494- 18501.
Ni ₃ FeN/rGO	94	ACS Nano, 2018, 12, 245-253.
W-CoPNAs/CC	94	Small, 2019, 15, 1902613.

 Table S2. Comparison of the HER performance of CF@CoNC-2T with various previously

 reported electrocatalysts in 1M KOH solution.

NFP/C-3	95	Sci. Adv., 2019, 5, eaav6009.		
Ni ₃ Co-G	95	New J. Chem, 2017, 41, 5916-5923.		
Mo ₂ C-C	96	J. Mater. Chem. A, 2017, 5, 4879- 4885.		
P _{8.6} -Co ₃ O ₄ NW	97	ACS Catal, 2018, 8, 2236-2241.		
β-Mo ₂ C@BCN	98	J. Mater. Chem. A, 2017, 5, 13122- 13129.		
Ni(OH) ₂ -CoS ₂ NW	99	Nanoscale, 2017, 99, 16632-16637.		
Se-(NiCo)S _x /(OH) _x	103	Adv. Mater, 2018, 30, 1705538.		
NC@CuCo ₂ N _x	105	Adv. Funct. Mater, 2017, 27, 1704169.		
CN/CNL/MoS ₂ /CP	106	Chem. Eng. J., 2012, 412, 128556.		
N-Mo ₂ C <i>nb</i>	110	Appl. Catal. B, 2018, 224, 533-540.		
V-NiS ₂	110	ACS Nano, 2017, 11, 11574-11583.		
NC/CuCo/CuCoO _x	112	Adv. Funct. Mater, 2018, 28, 1704447.		
CoP/NCNHP	115	J. Am. Chem. Soc, 2018, 140, 2610- 2618.		
CoP@NPCSs	115	ACS Appl. Mater. Inter., 2018, 10, 51, 44201-44208.		
Cu@NiFe LDH	116	Energy Environ. Sci, 2017, 10, 1820-1827.		
NiFe <i>LDH</i> @NiCoP	120	Adv. Funct. Mater, 2018, 28, 1706847.		
NC-CNT/CoP	120	J. Mater. Chem. A, 2018, 6,9009.		
$Co(S_{0.71}Se_{0.29})_2/C$	122	Adv. Funct. Mater, 2017, 27, 1701008.		
Mo ₂ C/C NS	125	ACS Appl. Mater. Interfaces, 2017, 9, 41314-41322.		
Co ₂ P@NPC	129	Nanoscale, 2018, 10, 2902-2907.		
Co_4Ni_1P NTs	129	Adv. Funct. Mater, 2017, 27, 1703455.		
WN NW	130	J. Mater. Chem. A, 2017, 5, 19072- 19078.		
Ni/MoC ₂ @NC	130	Adv. Energy Mater, 2017, 7, 1700220.		
WP/W	133	Chem. Eng. J, 2017, 327, 705-712.		
Ni _{0.85} Se@NC	135	Small, 2020, 16, 2004231.		
dr-MoN	139	J. Mater. Chem. A, 2017,5, 24193- 24198.		
N@MoPC _x	139	Adv. Energy Mater, 2017, 8, 1701601.		
PCN@MoS2@C	149	Chem. Commun., 2020, 56, 13393- 13396.		

Ni/NiFeOOH	154	ACS Appl. Mater. Interfaces, 2018 10, 8585-8593.		
CoP@NC-NG	155	Small, 2018, 14, 1702895.		
Co ₂ P@Co ₃ O ₄	159	J. Power Sources, 2018, 374, 142- 148.		
NiSe ₂ /Fe ₃ Se ₄ /C	160	J. Power Sources, 2017, 366,193- 199.		
0.02Ni-MoP-800	162	Nano Energy, 2020, 70, 104445.		
CoP/C	163	J. Energy Chem, 2017, 26, 1147- 1152.		
CoP/NCNT-CP	165	ACS Sustainable Chem. Eng., 2019, 7, 10044-10051.		
Co(OH)2@NCNTs	170	Nano Energy, 2018, 47, 96-104.		
NiS ₂ /CoS ₂ -O NW	174	Adv. Mater, 2017, 29, 1704681.		
Zn-Co-S	176	Nanoscale, 2018, 10, 1774-1778.		
Co/CoP-NC	180	Mater. Horiz, 2018, 5, 108-115.		
CoPS@NPS-C	191	J. Mater. Chem. A, 2018, 6, 10433- 10440.		
Co-Ni ₃ N	194	Adv. Mater, 2018, 30, 1705516.		
δ-MnO ₂ NS	196	Adv. Energy Mater, 2017, 7, 1700005.		
NiS ₂ hms	219	J. Mater. Chem. A, 2017, 5, 20985- 20992.		
NP-SS	230	Adv. Mater., 2017, 29, 1702095		
NiSe ₂ @NG	248	ACS Sustainable Chem. Eng., 2019, 7, 4351-4359.		
Co ₉ S ₈ @NOSC	320	Adv. Funct. Mater., 2017, 17, 1606585.		
NS-C	380	ACS Nano, 2017, 11, 7293-7300.		

Table S3. Comparison of the required cell voltage and electricity consumption of our CF@CoNC-2T with several state-of-the-art noble-metal-free electrocatalysts for various organic-assisted electrocatalysis H₂ production systems.

Organic	Catalysts	Voltage / V 100 mA cm ⁻²	Electricity consumption / KWh m ⁻³ H ₂	References
	CF@CoNC-2T	0.90	1.97	This work
Glucose	NiFeO _x -NF	1.39	3.04	Nat. Commun. 2020, 11, 265.
	Fe ₂ P-films	1.58	3.46	Electrochem. Commun. 2017, 83, 11-15.
	NiMoO-Ar	1.55	3.39	Energy Environ. Sci. 2018, 11, 1890-1897.
Urea	ONiMoP/NF	1.68	3.68	Adv. Funct. Mater. 2021, 2104951.
	Ni ₃ N/NF	1.42	3.11	ACS Appl. Mater. Interfaces 2019, 11, 13168-13175.
	Ni ₂ P/NF	1.5	3.28	J. Mater. Chem. A 2017, 5, 3208-3213.
- HMF	Ni ₂ S ₃ /NF	1.64	3.59	J. Am. Chem. Soc. 2016, 138, 13639- 13646.
	Ni ₃ N@C	1.60	3.50	Angew. Chem. Int. Ed. 2019, 131, 16042- 16050.
	Ni ₂ P	1.62	3.54	Angew. Chem. Int. Ed. 2016, 55, 9913-9917.
-	MoO ₂ -FeP	1.66	3.63	Adv. Mater. 2020, 32, 2000455.
- Alcohols -	NC/Ni-Mo-N	1.60	3.50	Appl. Catal. B 2021, 298, 120493.
	3D porous Nickel	1.66	3.63	ACS Catal. 2017, 7, 4564-4570.
	Mo-Ni alloy NPs	1.53	3.35	J. Mater. Chem. A 2019, 7, 16501-16507.
	Ni(OH) ₂ /NF	1.66	3.63	Appl. Catal. B 2021, 281, 119510.

Table S4. Comparison of the required cell voltages of our CF@CoNC-2T at different current densities with various previously reported two-electrode organics-assisted electrocatalysis and overall water splitting H_2 production systems in 1M KOH solution.

Substrata	Electrode materials	Ce	ll voltage /	Defenences	
Substrate		10 mA cm ⁻²	50 mA cm ⁻²	100 mA cm ⁻²	Kelerences
	CF@CoNC-2T (+)	0.66	0.82	0.9	This work
	CF@CoNC-2T(-)	1.56 (H ₂ O)	1.72 (H ₂ O)	1.78 (H ₂ O)	T IIIS WORK
Glucose	$\frac{\text{Fe}_2\text{P/steel mesh (+)}}{\text{Pt/C (-)}}$	1.22	1.50	1.58	Nat. Commun. 2020, 11, 265.
-	NiFeO _x -NF (+) NiFeN _x /NF (-)	1.24	1.32	1.39	Electrochem. Commun. 2017, 83, 11-15.
	Ni ₂ P/NF/CC (+) ∥ Ni ₂ P/NF/CC (-)	1.05	1.35	1.5	Energy Environ. Sci. 2018, 11, 1890-1897.
	Ni₃N/NF (+) Ni₃N/NF (-)	1.34	1.38	1.42	Adv. Funct. Mater. 2021, 2104951.
Urea .	ONiMoP/NF (+) ONiMoP/NF (-)	1.36	1.55	1.68	ACS Appl. Mater. Interfaces 2019, 11, 13168-13175.
	NiMoO-Ar (+) NiMoO-H ₂ (-)	1.38	1.48	1.55	J. Mater. Chem. A 2017, 5, 3208- 3213.
HMF	$Ni_2P NPA/NF (+) \parallel Ni_2P NPA/NF (-)$	1.44	1.58	1.62	J. Am. Chem. Soc. 2016, 138, 13639- 13646.
	Ni ₂ S ₃ /NF (+) ∥ Ni ₂ S ₃ /NF (-)	1.46	1.58	1.64	Angew. Chem. Int. Ed. 2019, 131, 16042-16050.
	Ni ₃ N@C (+) Ni ₃ N@C (-)	1.46	1.55	1.60	Angew. Chem. Int. Ed. 2016, 55, 9913-9917.
	MoO₂-FeP (+) ∥ MoO₂-FeP (-)	1.48	1.59	1.66	Adv. Mater. 2020, 32, 2000455.
Alcohols	NC/Ni-Mo-N (+) NC/Ni-Mo-N (-)	1.38	1.47	1.60	Appl. Catal. B 2021, 298, 120493.
	Mo-Ni alloy NPs (+) Mo-Ni alloy NPs (-)	1.38	1.45	1.53	ACS Catal. 2017, 7, 4564-4570.
	3D porous nickel (+) 3D porous nickel (-)	1.50	1.60	1.66	J. Mater. Chem. A 2019, 7, 16501- 16507.
	Ni(OH) ₂ /NF(+) Ni(OH) ₂ /NF (-)	1.52	1.62	1.66	Appl. Catal. B 2021, 281, 119510.

Ni _{0.82} Co _{0.18} O@C/NF (+) Ni _{0.82} Co _{0.18} O@C/NF (-)	1.42	\	\	Appl. Catal. B 2019, 252, 214-
RuO ₂ /NiO/NF (+) RuO ₂ /NiO/NF (-)	1.50	١	\	Small 2018, 14, 1704073.
N-CDs/Ni ₃ S ₂ /NF (+) N-CDs/Ni ₃ S ₂ /NF (-)	1.50	\	\	Carbon 2018, 129, 335-341.
$\begin{array}{c} \operatorname{CoO}_{x} @\operatorname{CN} (+) \parallel \\ \operatorname{CoO}_{x} @\operatorname{CN} (-) \end{array}$	1.52	١	\	J. Am. Chem. Soc. 2015, 137, 2688- 2694.
$ \begin{array}{c} Ni_{x}Co_{3-x}S_{4}/Ni_{3}S_{2}/NF \ (+) \parallel \\ Ni_{x}Co_{3-x}S_{4}/Ni_{3}S_{2}/NF \ (-) \end{array} $	1.53	1.68	1.80	Nano Energy 2017, 35, 161-170.
FeB ₂ NPs/NF (+) FeB ₂ NPs/NF (-)	1.57	\	\	Adv. Energy Mater. 2017, 7, 1700513.
$\begin{array}{c} Ni_{0.51}Co_{0.49}P(+) \parallel \\ Ni_{0.51}Co_{0.49}P(-) \end{array}$	1.57	١	\	Adv. Funct. Mater. 2016, 26, 7644- 7651.
NiFeSP/NF (+) NiFeSP/NF (-)	1.58	\	\	ACS Nano 2017, 11, 10303-10312.
NiCoP/NF (+) NiCoP/NF (-)	1.58	\	\	Nano Lett. 2016, 16, 7718-7725.
Ni₂P-NF (+) ∥ Ni₂P-NF (-)	1.58	\	\	ACS Catal. 2017, 7, 103-109.
NiCoP-NF (+) NiCoP-NF (-)	1.58	1.82	1.98	Nano Lett. 2016, 16, 7718-7725.
NiCo ₂ O ₄ /Ni ₂ P/NF (+) ∥ NiCo ₂ O ₄ /Ni ₂ P/NF (-)	1.59	١	\	Adv. Mater. Interfaces 2017, 4, 1700481.
VOOH (+) VOOH (-)	1.62	١	١	Angew. Chem. Int. Ed. 2017, 129, 588-592.
Co _{5.47} N NP@N-PC (+) Co _{5.47} N NP@N-PC (-)	1.62	١	١	ACS Appl. Mater. Interfaces 2018, 10, 7134-7144.
CoP-MNA (+) CoP-MNA (-)	1.62	\	١	Adv. Funct. Mater. 2015, 25, 7337- 7347.
Co ₃ O ₄ -MTA (+) Co ₃ O ₄ -MTA (-)	1.63	\	\	Angew. Chem. Int. Ed. 2017, 56, 588- 592.
NC-CNT/CoP/CC (+) NC- CNT/CoP/CC (-)	1.63	\	١	J. Mater. Chem. A 2018, 6, 9009- 9018.
Hollow Co ₃ O ₄ /NF (+) Hollow Co ₃ O ₄ /NF (-)	1.63	\	\	Angew. Chem. Int. Ed. 2016, 56, 1324-1328.
CoSe ₂ -CC (+) CoSe ₂ -CC (-)	1.63	\	\	Adv. Mater. 2016, 28, 7527-7532.
$NiCo_2S_4$ -NF (+)	1.63	\	\	Adv. Funct. Mater.

 H_2O

	$NiCo_2S_4$ -NF (-)				2016, 26, 4661-
	NiSe-NF (+) ∥ NiSe-NF (-)	1.63	\	\	Angew. Chem. Int. Ed. 2015, 54, 9483-9487.
	CP@Ni-P (+) ∥ CP@Ni-P (-)	1.63	\	\	Adv. Funct. Mater. 2016, 26, 4067- 4077.
	$\frac{Ni_{12}P_5/NF(+)}{Ni_{12}P_5/NF(-)}$	1.64	\	\	ACS Catal. 2017, 7, 103-109.
	CoFe/NF (+) CoFe/NF (-)	1.64	\	\	Small 2018, 14, 1702568.
	NiCo₂O₄ (+) NiCo₂O₄ (-)	1.65	\	١	Angew. Chem. Int. Ed. 2016, 55, 1324-1328.
	NiCo/NiCoO _x @FeOOH (+) NiCo/NiCoO _x @FeOOH (-)	1.65	\	\	Electrochim. Acta 2017, 257, 1-8.
H ₂ O	NiCo-LDH/NF (+) NiCo-LDH/NF (-)	1.66	\	١	Dalton Trans. 2017, 46, 8372- 8376.
	NiFe/NiCo₂O₄/Ni (+) NiFe/NiCo₂O₄/Ni (-)	1.67	\	١	Adv. Funct. Mater. 2016, 26, 3515- 3523.
	NiFe-OH-PO ₄ /NF (+) NiFe-OH-PO ₄ /NF (-)	1.68	\	1.91	ACS Appl. Mater. Interfaces 2017, 9, 35837.
	FeCoNi-CC (+) FeCoNi-CC (-)	1.68	\	\	ACS Catal. 2017, 7, 469-479.
	Fe-Co films (+) Fe-Co films (-)	1.68	\	\	Nano Energy 2017, 38, 576-584.
	Co ₁ Mo ₁ CH/NF (+) Co ₁ Mo ₁ CH/NF (-)	1.68	\	١	J. Am. Chem. Soc. 2017, 139, 8320- 8328.
	$Ni_{5}P_{4}(+) \parallel Ni_{5}P_{4}(-)$	1.70	\	١	Angew. Chem. Int. Ed. 2015, 54, 12361-12365.
	NiFe LDH-NF (+) NiFe LDH-NF (-)	1.70	\	١	Science 2014, 345, 1593-1596.
	CP/CTs/Co-S (+) CP/CTs/Co-S (-)	1.73	\	\	ACS Nano 2016, 10, 2342-2348.
	CP-CTs-Co-S (+) CP-CTs-Co-S (-)	1.74	\	\	ACS. Nano 2016, 10, 2342-2348.
	Co ₂ B-500-NG (+) Co ₂ B-500-NG (-)	1.81	\	\	Adv. Energy Mater. 2016, 6, 1502313.