Supporting information for

Photothermal catalytic CO_2 oxidation dehydrogenation of propane to propylene over BiOX (X = Cl, Br, I) nanocatalysts

Zhen-Hong He,^{a,*} Bao-Ting Wu,^a Zhong-Yu Wang,^a Shao-Yan Yang,^b Kuan Wang,^a Jiao-Jiao

Shi,^a Meng-Xin He,^a Weitao Wang,^a Zhao-Tie Liu^{a,b,*}

^aShaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China ^bSchool of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China

Corresponding authors: <u>hezhenhong@sust.edu.cn</u> (Z-H. He), <u>ztliu@snnu.edu.cn</u> (Z.-T. Liu)

Entry	Catalyst	Conv.		C ₃ H ₆ Sele. ^c				
		(%)	CH ₄	C_2^a	C3H6	C4 ^b	CO	(%)
1	None	< 0.1	0.4	0.4	5.6	2.4	0.2	60.9
2	TiO_2^d	0.1	0.4	0.7	26.4	14.6	202.4	56.8
3	BN	0.1	0.3	0.7	20.8	12.8	19.8	54.2
4	g-C ₃ N ₄	0.1	0.7	0.3	9.4	13.9	32.2	33.1
5	$\mathrm{Co}_7\mathrm{Cu}_1\mathrm{Mn}_1^e$	0.1	4.6	2.2	22.2	11.5	16.6	54.6
6	GaN	0.1	3.6	0.2	9.6	13.3	18.3	33.4
7	Bi	0.2	0.6	2.8	80.8	8.0	24.9	86.4
8	Bi ₂ O ₃	0.1	0.5	0.2	47.9	9.3	52.6	79.0
9	BiOCl nanosheets	0.1	1.2	0.7	25.0	8.5	10.0	67.2
10	BiOBr nanosheets	0.1	1.6	1.6	38.9	8.8	13.9	74.5
11	BiOI nanosheets	0.7	3.6	11.6	282.6	20.4	525.2	89.0
12	BiOI nanoflowers	0.2	1.8	2.6	75.6	13.1	31.9	79.2
13	BiI ₃	< 0.1	0.3	0.1	1.3	7.4	20.3	11.5
14	Bi_2S_3	0.1	6.9	0.2	21.1	8.2	76.5	61.2
15	Bi ₂ Fe ₄ O ₉	< 0.1	1.0	0.4	10.3	6.7	7.6	51.9
16	Bi ₂ WO ₆	< 0.1	2.2	0.5	2.0	9.5	57.8	12.5
17	BiVO ₄	0.1	1.0	1.1	32.4	12.4	80.9	64.9
18	Bi ₂ MoO ₆	< 0.1	1.2	0.2	2.9	13.8	24.1	13.4
19	Bi ₁₂ TiO ₂₀	0.2	0.8	3.9	65.2	11.3	45.2	78.5
20	BiOI nanosheets ^f	-	-	-	-	-	121.7	-
21	BiOI nanosheets ^g	-	-	-	-	-	11.4	-
22	KI	< 0.1	0.6	0.4	6.3	1.3	0.3	74.1
23	KI+H ₂ O ^h	< 0.1	0.9	-	5.9	-	0.8	95.1
24	I_2	0.5	1.8	28.3	196.3	7.7	105.5	86.9

 Table S1 Photothermal catalytic CO2-ODHP over different photocatalysts

25	BiOI nanosheets (UV,	0.4	2.1	8.0	167 4	10.2	261 7	20 2
	$300 - 420 \text{ nm})^i$	0.4	2.1	0.9	107.4	10.2	301.7	89.2
26	BiOI nanosheets	0.2	0.9	14.8	69.2	9.5	130.1	75.2
	(420-1100 nm) ^j							

^{*a*}Mainly ethane and ethylene. ^{*b*}Including *n*-butane, isobutane, *n*-butene, and isobutylene. ^{*c*}The selectivity of C_3H_6 in the total hydrocarbon products. ^{*d*}Prepared according to ref. 1. ^{*e*}Prepared according to ref. 2. Conditions: catalyst 30 mg, C_3H_8/CO_2 molar ratio 1/5, total volume 180 mL, 270 °C, 1 h, and full irradiation under 300 W Xe lamp, 621 mW·cm⁻². ^{*f*}The reaction gases were 15 ml H₂, 15 ml CO₂, and 150 ml Ar. ^{*g*}The reaction gases were 15 ml CO₂ and 165 ml Ar. ^{*h*}2 mL of water were added. ^{*i*}The light intensity was 412 mW·cm⁻². ^{*f*}The light intensity was 264 mW·cm⁻².

2. GC spectra

Fig. S1 The GC spectrum of the reaction gas.

Fig. S2 The GC spectrum of photothermal catalytic CO₂-ODHP reaction over the BiOI nanosheets catalyst.

Fig. S3 The GC spectrum of the photothermal catalytic CO₂-ODHP reaction over the BiOI nanoflowers catalyst.

Fig. S4 The GC spectrum of photothermal catalytic CO₂-ODHP reaction over the BiOBr nanosheets catalyst.

Fig. S5 The GC spectrum of photothermal catalytic CO₂-ODHP reaction over the BiOCl nanosheets catalyst.

Fig. S6. The GC spectrum of photothermal catalytic DHP reaction over the BiOI nanosheets catalyst.

3. Pictures of the fresh BiOI nanosheets catalysts

Fig. S7. Pictures of the fresh BiOI nanosheets catalyst (a), the used BiOI nanosheets catalyst (b), and the catalyst after calcination at 400 $^{\circ}C(c)$, respectively.

Fig. S8 XRD of the catalyst after 13 runs.

Fig. S9 XPS spectra of the catalyst after 13 runs.

References

- [1] J. Wang, K. Wang, Z.-H. He, S.-S. Li, R.-R. Zhang, P. Guo, W. Wang, Y. Yang, Z.-T. Liu, Solvent-induced synthesis of hierarchical TiO₂ nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance, J. Nanostructure Chem., 2021, <u>https://doi.org/10.1007/s40097-021-00445-2</u>.
- [2] Z.-H. He, Z.-H. Li, Z.-Y. Wang, K. Wang, Y.-C. Sun, S.-W. Wang, W.-T. Wang, Y. Yang, Z.-T. Liu, Photothermal CO₂ hydrogenation to hydrocarbons over trimetallic Co-Cu-Mn catalysts, Green Chem., 2021, 23, 5775-5785.