Supporting information

CO₂ hydrogenation to formic acid in biphasic systems using aqueous solutions of amino acids as product phase

Nils Guntermann^[a], Giancarlo Francio^[a], Walter Leitner^{*[a,b]}

- M. Sc. Nils Guntermann, Dr. Giancarlo Francio, Prof. Dr. Walter Leitner Institut f
 ür Technische und Makromolekulare Chemie (ITMC) RWTH Aachen University Worringerweg 2, 52074 Aachen
- [b] Prof. Dr. Walter Leitner Max Planck Institute for Chemical Energy Conversion Stiftstraße 34-36, 45470 Mülheim a. d. Ruhr E-mail: walter.leitner@cec.mpg.de

List of contents

Supporting information	1
Material and Methods	3
General	3
NMR analytic	3
ICP-MS analytic	3
Calculation of Initial Turnover Frequency (TOF _{ini}) from the pressure drop	3
Quantification from H_2 -flow data	5
Syntheses	6
Synthesis of <i>cis</i> -[RuCl ₂ (dppm) ₂] (Ru-dppm)	6
Synthesis of bis(bis(4-dodecylphenyl)phosphanyl)methane (C ₁₂ -dppm)	6
Synthesis of <i>cis</i> -[RuCl ₂ (C ₁₂ -dppm) ₂] (Ru-C ₁₂ -dppm)	7
Catalytic experiments	9
General procedure for CO_2 hydrogenation in single batch experiments	9
$\rm CO_2$ hydrogenation in presence of basic amino acids and Ru-dppm in MIBC/H ₂ O system	9
$\rm CO_2$ hydrogenation in presence of basic amino acids and Ru-C_{12}-dppm in tetradecane /H_2O	10
$\rm CO_2$ hydrogenation in presence of Arg and Ru-C_{12}-dppm in various apolar solvents /H ₂ O	11
Correlation of TOF_{ini} for the examined solvents with their characteristic parameters	13
$\rm CO_2$ hydrogenation in the presence of Arg at different Ru-C ₁₂ -dppm loadings in tetradecane/H ₂ O and	
2-MTHF/H ₂ O	18
$\rm CO_2$ Hydrogenation in the presence of Ru-C ₁₂ -dppm in dodecanol/H ₂ O at different Arg loadings	18
Semi-continuous setup components	20
Recycling experiments in the semi-continuous setup	23
References	24

Material and Methods

General

All reagents and solvents were purchased by commercial suppliers. Procedures using air sensitive compounds were carried out under an inert argon atmosphere (argon 4.8). For synthesis, the chemicals were degassed, and solvents were additionally dried over 3 Å molecular sieves before use.

For catalytic reactions, the solvents were degassed via a glass frit by bubbling with Argon for 30 minutes before use. Reaction gases hydrogen 5.0 and carbon dioxide 4.6 were used without further purification.

NMR analytic

¹H, ¹³C and ³¹P NMR measurements were conducted at room temperature on a Bruker AS 400 (Bruker Corporation, Billerica, MA, USA) spectrometer. The chemical shift δ is given in ppm, the coupling constant J in Hertz. The multiplicities are denoted as s (singlet), d (doublet), t (triplet) and m (multiplet). The chemical shift was referenced to the solvent residual signal. Quantitative analysis was conducted using maleic acid as internal standard for aqueous solutions and mesitylene for organic solutions.

ICP-MS analytic

ICP-MS was measured on an ICP-MS triple quadrupole (Agilent, model 8800) in an aqueous matrix.

Calculation of Initial Turnover Frequency (TOF $_{ini}$) from the pressure drop

The pressure-time curves for the experiments carried out in 10 mL window autoclaves were recorded using a digital pressure gauge connected to a PC. The data were acquired through the LabViewtm software (National Instruments). The software Origin Pro 9.6 was used for visualization and analysis of the data. The obtained pressure time curves were smoothed using the implemented Savitzky-Golay filter (example see Figure S1). For better comparability, the pressure was converted into the Δp by subtracting the measured pressure before the start of the reaction and setting this time as t = 0 h (see Figure S2).

Figure S1: Exemplary pressure-time curve with original and smoothed date, respective experiment see ESI Tab. S1, entry 1.

Figure S2: Pressure-time curve converted to Δp and reaction start at t = 0 h with linear fit for determination of TOF_{inis} respective experiment ESI Tab. S1, entry 1.

As shown in the following exemplary equations (Tab. S1, entry 1), the slope of the initial pressure drop (92.5 bar h⁻¹), the catalyst loading (1.04 μ mol), the amount of FA (2.376 mmol, determined via ¹H NMR) and the pressure drop $\Delta p = 8.9$ bar were used to calculate the initial turnover frequency TOF_{ini} (eq 1-3):

$$m_{\Delta p} = 92.5 \ bar \ h^{-1}, \ \Delta p = 8.9 \ bar, \ Y = 2.376 \ mmol, \ n_{cat} = 1.00 \ \mu mol$$

$$\frac{Y}{\Delta p} = \frac{2.376 \ mmol}{8.9 \ bar} = 0.267 \ mmol \ bar^{-1} \tag{1}$$

$$m_n = m_{\Delta p} \cdot \frac{Y}{\Delta p} = 92.5 \ bar \ h^{-1} \cdot 0.267 \ mmol \ bar^{-1} = 24.69 \ mmol \ h^{-1}$$
 (2)

$$TOF_{ini} = \frac{m_n}{n_{cat}} = \frac{24.69 \text{ mmol min}^{-1}}{1.04 \,\mu\text{mol}} = 23\,744 \,h^{-1} \tag{3}$$

Quantification from H₂-flow data

The H_2 mass-flow was integrated with the software Origin from OriginLab. This results in the total amount of H_2 consumed in mL, which was converted into mmol considering the density of H_2 under reaction conditions.

$$n_{H2} = \frac{V_{H2} \cdot \rho_{H2}}{M_{H2}} = \frac{2044.88 \, mL_N \cdot 8.3775 \, \cdot 10^{-5} \, g \, mL^{-1}}{2.10588 \, g \, mol^{-1}} = 84.962 \, mmol \tag{4}$$

The curve resulting from the time resolved integration was fitted linearly from 60-120 min for determination of the initial TOF.

Syntheses

Synthesis of *cis*-[RuCl₂(dppm)₂] (Ru-dppm)

The synthesis was performed according to a literature procedure.^[1] In a Schlenk-tube a $[Ru(DMSO)_4Cl_2]$ 0.84 suspension of (0.41 g, mmol, 1 eq.) and bisbis(diphenylphosphanyl)methane (dppm) (0.67 g, 1.68 mmol, 2 eq.) in toluene (30 mL) was stirred at 80 °C for 16 h. The colour changed from dark yellow/gold to a lighter, citrus-like yellow. The progress of the reaction was checked with ³¹P-NMR measurements in CD₂Cl₂. After completion, the solvent was removed via cannula, the residue was washed three times with pentane (10 mL) and two times with Et₂O (10 mL). The resulting yellow solid was then dried in vacuo (0.703 mg, 0.748 mmol, 89 % yield).

¹ H{ ³¹ P}-NMR:	(CD ₂ Cl ₂ , 400,1 MHz): $\delta = 8,20$ (d, ${}^{3}J_{H,H} = 7,4$ Hz, 4H, Ar-H), 7,87 (d, ${}^{3}J_{H,H} =$
	7,4 Hz, 4H, H-Ar), 7,49-7,00 (m, 20H, Ar-H), 6,89 (d, ${}^{3}J_{H,H} = 7,7$ Hz, 4H, Ar-
	H), 6,80 (t, ${}^{3}J_{H,H} = 7,7$ Hz, 4H, Ar-H), 6,64 (d, ${}^{3}J_{H,H} = 7,6$ Hz, 4H, Ar-H), 5,01
	(d, ${}^{2}J_{H,H}$ = 15,3 Hz, 2H, CH), 4,72 (d, ${}^{2}J_{H,H}$ = 15,3 Hz, 2H, CH) ppm.
³¹ P{ ¹ H}-NMR:	(CD ₂ Cl ₂ , 242.1 MHz): $\delta = 0.0$ (t, $J_{P,P} = 35.9$ Hz, 2P, PPh), -26.0 (t, $J_{P,P} = 35.9$
	Hz, 2P, PPh) ppm.

Synthesis of bis(bis(4-dodecylphenyl)phosphanyl)methane (C₁₂-dppm)

The synthesis was performed according to a literature procedure.^[2] In a *Schlenk*-flask THF (15 mL) and magnesium turnings (0.370 g, 15.2 mmol, 6.6 eq.) were added and heated to 40 °C. A solution of 1-bromo-4-dodecylbenzene (4.030 g, 12.4 mmol, 5.4 eq.) in THF (10 mL) was added dropwise in a manner that the solution was refluxing self-sustainingly. After complete addition, the solution was refluxed for additional 12 h. The resulting Grignard-

solution was filtered and separated from residual magnesium. This solution was cooled to -78 °C and a solution of 1,2-bis(dichlorophosphino)methane (0.500 g, 2.3 mmol, 1.0 eq.) in THF (4.5 mL) was added over 45 minutes. The mixture was then allowed to warm to room temperature and stirred for 12 h. Completion of the reaction was confirmed via 31P-NMR. An aqueous, degassed NH₄Cl-solution (20 mL) was then added, the organic phase separated and the aqueous phase extracted with n-pentane (3×10 mL). The combined organic phases were dried over Na₂SO₄ and filtered over Celite®. The solvent was removed in vacuo and excess dodecylbenzene was removed at high vacuum (1×10^{-3} mbar) and 120 °C resulting in a colourless, viscous oil (2.07 g, 1.96 mmol, 85 % yield).

¹H{³¹P}-NMR: (CDCl₃, 400,1 MHz): $\delta = 7,33$ (d, ${}^{3}J_{H,H} = 7,83$ Hz, 8H, Ar-*H*), 7,12 (d, ${}^{3}J_{H,H} = 7,83$ Hz, 8H, *H*-Ar), 2,77z (s, 2H, P-CH₂-P), 2,57 (t, ${}^{3}J_{H,H} = 7,66$ Hz, 8H, Ar-CH₂-CH₂-) 1,59 (m, 6H, Ar-CH₂-CH₂) 1,30 (m, 40H, -CH₂-(CH₂)s-CH₃), 0,88 (t, ${}^{3}J_{H,H} = 6,57$ Hz, 12H, -CH₂-(CH₂)s- CH₃) ppm. ³¹P{¹H}-NMR: (CDCl₃, 242.1 MHz): $\delta = -25.0$ (s, 2P, *P*Ph) ppm.

Synthesis of *cis*-[RuCl₂(C₁₂-dppm)₂] (Ru-C₁₂-dppm)

The synthesis was performed according to a literature procedure.^[2] In a *Schlenk*-tube a suspension of [Ru(DMSO)₄Cl₂] (0.41 g, 0.84 mmol, 1 eq.) and C₁₂-dppm (1.78 g, 1.68 mmol, 2 eq.) in CH₂Cl₂ (20 mL) was stirred at room temperature for 16 h. During this time, the yellow suspension became a clear solution changing the colour from colourless over pale yellow to orange. The progress of the reaction was monitored with ³¹P-NMR. After completion, the solvent was removed *in vacuo*, the residue dissolved in *n*-decane (15 mL) and washed with methanol (3 × 10 mL) to remove DMSO. The emulsion of methanol and *n*-decane was separated *via* centrifugation. After removal of *n*-decane *in vacuo*, a resinous, orange solid was obtained (1.73 g, 0.756 mmol, 90 % yield).

- NMR: 8,03 Hz, 4H, Ar-H), 7,15 (d, ${}^{3}J_{H,H} = 8,03$ Hz, 4H, Ar-H), 6,88 (d, ${}^{3}J_{H,H} = 8,03$ Hz, 4H, Ar-H), 6,75 (d, ${}^{3}J_{H,H} = 8,20$ Hz, 4H, Ar-H), 6,72 (d, ${}^{3}J_{H,H} = 8,20$ Hz, 4H, Ar-H), 6,45 (d, ${}^{3}J_{H,H} = 8,05$ Hz, 4H, Ar-H), 6,25 (d, ${}^{3}J_{H,H} = 8,05$ Hz, 4H, Ar-H), 4,68 (d, ${}^{2}J_{H,H} = 15,27$ Hz, 2H,P-CH₂-P), 4,39 (d, ${}^{2}J_{H,H} = 15,27$ Hz, 2H,P-CH₂-P), 2,56-2,28 (m, 8H, Ar-CH₂-CH₂), 1,59-1,37 (m, 8H, Ar-CH₂-CH₂), 1,29-1,05 (m, 144H, -CH₂-), 0,84-0,75 (m, 24H, -CH₃) ppm.
- ³¹P{¹H}- (CDCl₃, 242,1 MHz): $\delta = -1,7$ (t, 2P, ${}^{3}J_{P,P} = 37,2$ Hz *P*Ph), -28,9 (t, 2P, ${}^{3}J_{P,P} =$
- **NMR:** 37,2 Hz *P*Ph) ppm.

Catalytic experiments

General procedure for CO₂ hydrogenation in single batch experiments

High pressure reactions were carried out in 10 mL stainless steel window autoclaves built and maintained by the mechanical workshop of the Institut für Technische und Makromolekulare Chemie of RWTH Aachen University. The autoclaves were equipped with a magnetic stir bar and a digital pressure gauge. To exclude oxygen from the system, vacuum was applied (< $1 \times$ 10⁻² mbar) in preparation for the experiments followed by flushing with argon. This procedure was repeated at least three times. The respective amounts of aqueous base-solution and catalyst solution were added in argon counterflow. The autoclave was sealed and pressurized with CO₂ (30 bar) and H₂ (60 bar) at r.t. (total pressure 90 bar). CO₂ pressurization took about 2-5 minutes under stirring to saturate the solution verified by closing the valve from time to time and observing whether the pressure remained constant. When the set pressure remained constant, stirring was stopped and H₂ was added rapidly reaching saturation. The autoclave was then heated and the pressure monitored with digital pressure gauges connected to a PC. The pressure increases upon heating and it was waited till constant value before the reaction was started by switching on the stirring. Completion of the reaction was indicated by constant pressure after the pressure drop. The autoclave was then cooled to r.t. and the pressure was released carefully. The aqueous phase and organic phase were removed separately and analyzed by ¹H-NMR as described above.

CO₂ hydrogenation in presence of basic amino acids and Ru-dppm in MIBC/H₂O system

The reactions were carried out as described above using an aqueous solution (3 mL, 0.86 M) of arginine (Arg) or lysine (Lys) or an aqueous solution (3 mL, 0.25 M) histidine (His), respectively, and a solution of Ru-dppm (2 mL, 0.5 mM) dissolved in degassed methyl isobutyl carbinol (MIBC) as the catalyst phase. The obtained amounts of formic acid (n(FA)), the formic acid-base ratio (FA/Base), the turnover number (TON) and the initial turnover frequency (TOF_{ini}) are shown in Table S1.

Entry	Amino Acid	n(FA)	FA/Base	TON	TOF _{ini}
		[mmol]	[-]	[-]	[h ⁻¹]
1	Arginine	2.376	0.895	2286	23744
2	Histidine	0.821	1.108	824	1769
3	Lysine	1.285	0.467	1306	1972

Table S1: CO₂ Hydrogenation in presence of basic amino acids and Ru-dppm in MIBC/H₂O.

In Figure S3 the respective smoothed pressure-time curves are displayed.

Figure S3: Pressure-time curves for the CO_2 Hydrogenation in presence of basic amino acids and Ru-dppm in MIBC/H₂O system

CO_2 hydrogenation in presence of basic amino acids and Ru-C_{12}-dppm in tetradecane /H_2O

The reactions were carried out as described above using $Ru-C_{12}$ -dppm as the catalyst and tetradecane as the catalyst phase. The results are shown in Table S2.

Entry	Amino Acid	n(FA)	FA/Base	TON	TOF _{ini}
		[mmol]	[-]	[-]	[h ⁻¹]
1	Arginine	2.663	1.016	2659	329
2	Histidine	0.766	1.069	749	92
3	Lysine	0.100	0.036	101	-

Table S2: CO₂ Hydrogenation in presence of basic amino acids and Ru-C₁₂-dppm in tetradecane/H₂O

The respective smoothed pressure-time curves are displayed in Figure S4.

Figure S4: Pressure-time curves for the CO_2 Hydrogenation in presence of basic amino acids and Ru- C_{12} -dppm in tetradecane.

CO₂ hydrogenation in presence of Arg and Ru-C₁₂-dppm in various apolar solvents /H₂O

The reactions were carried out as described above using $Ru-C_{12}$ -dppm as the catalyst in the presence of Arg and different organic solvents as the catalyst phase. The obtained parameters are shown in Table S3.

Entry	Solvent	n(FA)	FA/Base	TON	TOF _{ini}	c(solvent) ^a
		[mmol]	[-]	[-]	[h ⁻¹]	[g L ⁻¹]
1	1-Hexanol	2.67	0.96	2516	229	5.35
2	MIBC	2.50	0.91	2530	2827	11.04
3	3-Methylbutanone	1.43	0.52	1402	1718	35.56
4	1-Octanol	2.44	0.89	2423	2505	0.39
5	Isooctanol	2.76	0.99	2790	8346	1.5
6	2-MTHF	2.55	0.79	2475	14163	49.05
7	Ethylacetate	2.21	0.81	1971	26367	40.91
8	1-Dodecanol	2.59	0.94	2600	11824	<0.1
9	Anisole	2.61	0.94	2675	5216	1.33
10	Hexylhexanoate	2.96	1.06	2915	1372	< 0.1
11	<i>n</i> -Octylacetate	3.15	1.13	2761	3614	< 0.1
12	Toluene	2.49	0.91	2404	458	1.39
13	Tetreadecane	2.66	1.02	2659	329	<0.1

Table S3: CO₂ Hydrogenation in presence of arginine and Ru-C₁₂-dppm in different solvents.

^a Concentration of the respective solvent in the aqueous phase after catalysis, determined by quantitative ¹H-NMR.

In Figure S5 the respective smoothed pressure-time curves are displayed.

Figure S5: Pressure-time curves for the CO_2 Hydrogenation in presence of basic amino acids and Ru- C_{12} -dppm in various solvents

Correlation of TOF _{ini} for the examined solvents with their characteristic parameter

Table S4: TOF_{ini} , dielectric constant (ϵ), log(P), $E_t(30)$ -value, Kamlet-Taft solvent parameters β and π , donor number, CO_2 solubility and H_2 solubility for the examined catalyst phases. Sometimes values from similar compounds are given because of missing literature values.

Solvent	TOF _{ini}	ε ^[3]	logP ^[3]	$E_{T}(30)^{[4]}$	β ^[5]	π ^[5]	DN ^[6]	X(CO ₂) ^[3]	X(H ₂) ^[3]
	[h ⁻¹]			[kcal mol ⁻¹]			[kcal mol ⁻¹]		[x 10 ⁴]
Hexanol	229	13.03	2.03	48.8	0.84	0.4	30	0.0108	
MIBC	2827	10.4	1.7						
3-Methylbutanone	1718	10.37	0.56	40.9	0.48 ^d	0.67 ^d	16		
Octanol	2505	10.3	3.07	48.1	0.081	0.4	32	0.00938	3.92
Isooctanol	8346	7.58							
2-Methyl-tetrahydrofuran	14163	6.97	1.85	37.4 ^b	0.55 ^b	0.58 ^b	18	0.027	2.7
(2-MTHF)									
Ethylacetate	26367	6.08	0.73	38.1	0.45	0.55	17.1	0.023	2.46
Dodecanol	11824	5.82	5.13	47.5			31 ^e	0.01664	3.7
Anisole	5216	4.3	2.11	37.1	0.22	0.73	9		
Hexylhexanoate	1372	4.22	4.7						
Octylacetate	3614	4.18	3.4	38.5°	0.45°	0.46°	15°		
Toluene	458	2.38	2.73	33.9	0.11	0.54	0.1	0.0113	3.4
Tetradecane	329	2.03	7.2	31.1ª	0^{a}	-0.08 ^a	0^{a}	0.01361	6.8

^aHexane, ^bTHF, ^cButylacetate, ^d2-Butanone, ^eDecanol

Figure S6: Plot of log(P) vs TOF_{ini}.

Figure S7: Plot of ET(30) vs TOF_{ini}.

Figure S8: Plot of the Kamlet-Taft parameter β vs TOF_{ini}.

Figure S9: Plot of the Kamlet-Taft parameter π vs TOF_{ini}.

Figure S10: Plot of DN vs TOF_{ini}.

Figure S11: Plot of the H₂-solubility vs TOF_{ini}.

Figure S12: Plot of the CO₂-solubility vs TOF_{ini}.

Figure S13: Plot of the detected solvent cross-solubility vs TOF_{ini}.

CO_2 hydrogenation in the presence of Arg at different Ru- C_{12} -dppm loadings in tetradecane/H₂O and 2-MTHF/H₂O

The reactions were carried out as described above in the presence of Arg in tetradecane/ H_2O or 2-MTHF/ H_2O using Ru- C_{12} -dppm at different loading. The obtained initial TOFs are depicted in Figure S14.

Figure S14: TOF_{ini} in correlation to the catalyst concentration for $Ru-C_{12}$ -dppm in tetradecane (left) and 2-MTHF (right).

CO₂ Hydrogenation in the presence of Ru-C₁₂-dppm in dodecanol/H₂O at different Arg loadings

Solid arginine (0.6827 g, 1.4074 g, 2.1041 g, 2.7696 g) was weighed into the autoclave, which was then degassed as described above. Degassed water (2 mL) was added resulting in 2, 4, 6 and 8 M solutions, respectively, when completely dissolved. A solution of Ru-C₁₂-dppm (2 mL, 0.5 mM) dissolved in degassed *n*-dodecanol was introduced in argon counterflow. With increasing amounts of arginine, the saturation with CO₂ took longer (e.g. up to 30 minutes for the 8 M solution). The reaction was carried out as described above. The obtained results are shown in Table S5.

Table S5: CO₂ Hydrogenation in presence different Arg concentrations with Ru-C₁₂-dppm in n-dodecanol/H₂O.

c(Arg)	TOF _{ini} [h ⁻¹]	TON	FA/Base
2 M	9479	3488	0.935
4 M	11107	6314	0.862
6 M	15345	8329	0.769
8 M	6494	9913	0.635

The respective pressure-time curves are shown in Figure S15.

Figure S15: Pressure-time curves of the CO_2 hydrogenation in presence different Arg concentrations with $Ru-C_{12}$ -dppm in n-dodecanol/ H_2O .

Additionally, photographs of the mixtures before reaction (left), after saturation with CO_2 (middle) and after the reaction (right) are shown in Figure S16.

Figure S16: Photographs of the mixtures before reaction (left), after saturation with CO_2 (middle) and after the reaction (right) for each Arg concentration.

Semi-continuous setup components

High pressure reactions were carried out in stainless steel window autoclaves built and maintained by the mechanical workshop of the *Institute für Technische und Makromolekulare Chemie* of RWTH Aachen University. A semi-continuous reaction setup was established previously (Figure S17).^[7]

Figure S17: Picture of the semi-continuous plant.

A 100 mL window autoclave equipped with a gas- and substrate inlet and a digital pressure sensor at the top was used as the reactor (Figure S18). At the bottom there was an integrated heater, a mechanical stirrer, and a fine dosing valve for the product removal. The stirrer drove a magnetic agitator shaft, which drove the magnetic stir bar inside the autoclave. For the controlled H_2 -addition, a commercial mass flow controller (Brooks Smart Mass Flow 5800, 150 mL_N min⁻¹) was used.

Figure S18: Picture of the used 100 mL window autoclave.

The 900 mL high pressure reservoir (Figure S19) was equipped with an outlet *via* a dip tube, a digital pressure sensor and a gas inlet valve standing on a precision scale (KERN FEJ Präzisionswaage).

Figure S19: Picture of the used 900 mL high pressure reservoir.

Recycling experiments in the semi-continuous setup

Entry	t [h]	n(FA) [mmol]	n(H ₂) [mmol]	TON	TOF _{ini} [h ⁻¹]	FA/Base
1	6	77.654	78.389*	7 723	3212	0.893
2	6	88.286	84.962	8 780	3357	0.917
3	6	98.140	97.032	9 760	2881	0.926
4	6	99.793	94.743	9 924	2651	0.943
5	7.5	97.272	94.189	9 674	2395	0.926
6	7.5	109.233	111.156	10 863	2463	0.893
7	9	118.871	114.058	11 822	2873	0.935
8	8.5	110.106	97.107	10 950	2097	0.826
9	14.5	112.448	110.255	11 183	1871	0.909
10	24	116.668	101.005	11 603	1217	0.893
Sum	-	1028.471	983	102 282	-	-

Table S6: Repetitive hydrogenation of CO_2 in the semi-continuous setup. Conditions: see main manuscript.

*Autoclave not completely tight: values corrected by 2.5 mL min⁻¹ leakage

Table S7: Catalyst leaching determined by ICP-MS for the recycling experiments.

Run	Ruthenium leaching in the aqueous phase		
	[ppm]	[%]	
1	0.496	2.132	
2	0.077	0.344	
3	0.020	0.098	
4	0.016	0.080	
5	0.011	0.053	
6	0.022	0.112	
7	0.024	0.120	
8	0.017	0.084	
9	0.020	0.095	
10	0.039	0.095	
Sum		3.326	

References

- M. Scott, B. Blas Molinos, C. Westhues, G. Franciò, W. Leitner, *ChemSusChem* 2017, 10, 1085.
- [2] M. Scott, C. G. Westhues, T. Kaiser, J. C. Baums, A. Jupke, G. Franciò, W. Leitner, Green Chem. 2019, 21, 6307.
- [3] David R. Lide, CRC Handbook of Chemistry and Physics. Internet Version 2005, CRC Press, Boca Raton, FL, 2005.
- [4] C. Reichardt, T. Welton, Solvents and solvent effects in organic chemistry, Wiley-VCH, Weinheim, 2011.
- [5] M. J. Kamlet, J.- L. M. Abboud, M. H. Abraham, R. W. Taft, J. Org. Chem. 1983, 48, 2877.
- [6] F. Cataldo, Eur. Chem. Bull. 2015, 4(2), 92.
- [7] W. Leitner, G. Franciò, M. Scott, C. Westhues, J. Langanke, M. Lansing, C. Hussong, E. Erdkamp, *Chem. Ing. Tech.* 2018, 90, 1504.