Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Eco-friendly urea-free pretreatment to enhance the inkjet printing performance of reactive dye ink on cotton fabric

Lei Wang^{a,b,c*}, Guangyuan Xie^a, Hanchang Hu^d, Qiuyu Zhu^a, Jing Zhou^a, Zhicheng Yu^a

^a Engineering Research Center for Eco-Dyeing and Finishing of Textiles, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China

^b China National Textile and Apparel Council Key Laboratory of Natural Dyes, Soochow University, Suzhou 215123, China

^c Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing 312000, Zhejiang, China

^d College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China

*Corresponding Author: Lei Wang

Email: wanglei90@zstu.edu.cn

Table 1S. Diffusion coefficients of reactive dye through cotton fabrics with different moisture contents.

	5% moisture contetn	15% moisture contetn	30% moisture contetn	65% moisture contetn
D (cm ² s ⁻	1.65×10 ⁻⁶	6.62×10 ⁻⁶	1.66×10 ⁻⁵	2.42×10 ⁻⁵

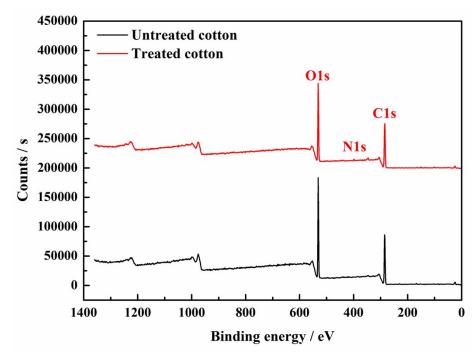


Figure 1S. Survey scan of XPS analysis of cotton fabric (a) untreated and (b) treated by urea-free dye fixation process.

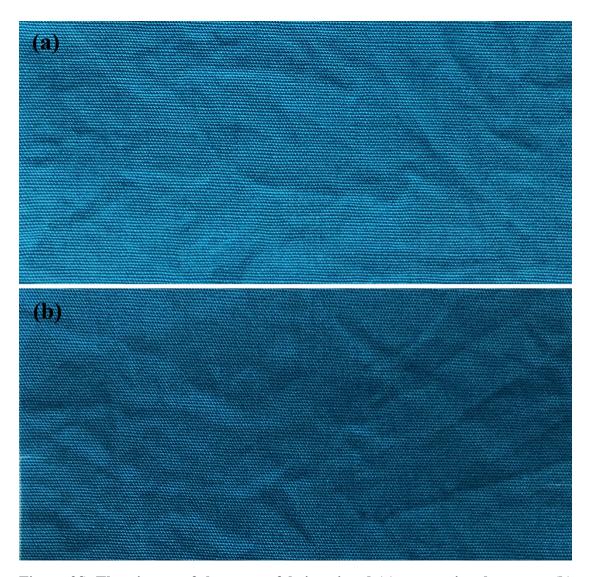


Figure 2S. The picture of the cotton fabric printed (a) conventional process, (b) urea-free dye fixation process.