Supplementary Information

for

Atmospheric-pressure synthesis of glycerol carbonate from CO₂ and glycerol catalyzed by protic ionic liquids

Table of contents

1. Influence of different reaction conditions on the one-pot reaction	S2
2. ¹³ C NMR, ¹ H NMR and FT-IR spectra during the one-pot reaction	S5
3. Recycling and thermal stability of HDBUI	S8
4. Reaction mechanism studies	S11
5. Water tolerance	S 16
6. ¹ H NMR spectra of protic ILs	S18

1. Influence of different reaction conditions on the one-pot reaction

Carbon balance _{S0} (%) =
$$\frac{\text{mol}_{S0, \text{ unreacted}} + \text{mol}_{SG} + \text{mol}_{SC}}{\text{mol}_{S0, \text{ initial}}}$$
 (S1)

Carbon balance _{Gly} (%) =
$$\frac{\text{mol}_{Gly, unreacted} + \text{mol}_{GC}}{\text{mol}_{Gly, initial}}$$
 (S2)

		Conv.			Yield		P	roduc	ts	Carbon	balance	
Entry	Catalyst _	(%	6)		(%)			mmol)	(%)		
		Gly	SO	SC ^a	SG ^a	GC^{b}	SC	SG	GC	SO	Gly	
1	HDBUI	92	84	39	34	86	3.0	2.6	2.2	91	94	
2	HDBUBr	77	49	14	28	68	1.1	2.1	1.7	93	92	
3	HDBUCI	29	18	2	11	24	0.1	0.8	0.6	95	96	
4	HDBNI	92	87	48	33	84	3.6	2.5	2.1	95	93	
5	HDBNBr	83	57	22	29	75	1.6	2.2	1.9	93	92	
6	HDBNCl	36	21	1	11	27	0.1	0.9	0.7	92	91	
7	HMTBDI	92	83	42	37	85	3.2	2.8	2.1	96	93	
8	HTBDI	91	85	41	37	85	3.1	2.8	2.1	93	94	
9	HDMAPI	91	87	41	35	80	3.0	2.6	2.0	89	89	
10	HPyI	90	81	43	33	79	3.2	2.4	2.0	94	89	
11	DBU	28	28	2	12	21	0.2	0.9	0.5	86	94	
12	DBN	8	12	<1	6	8	< 0.1	0.5	0.2	96	>99	
13	TEA	13	20	<1	8	13	< 0.1	0.6	0.4	90	>99	
14	NaOCH ₃	<1	13	<1	3	<1	< 0.1	0.3	< 0.1	91	>99	
15	NaOH	10	16	<1	6	5	< 0.1	0.4	0.1	90	95	
16	КОН	<1	12	<1	4	<1	< 0.1	0.3	< 0.1	92	>99	

Table S1. One-pot synthesis of GC from CO₂, Gly, and SO catalyzed by protic ILs.

Reaction conditions: 0.1 MPa of CO₂ (balloon), Gly (2.5 mmol), SO (7.5 mmol), catalyst loading (5 mol% based on Gly), 100 $^{\circ}$ C, 4 h. ^a Based on SO. ^b Based on Gly.

Entry	Desetion	Conv.			Yield			roduc	ets	Carbon balance		
	time (h)	(9	(%)		(%)		(mmo	l)	(%)		
		Gly	SO	SC ^a	SG ^a	GC ^b	SC	SG	GC	SO	Gly	
1	1	73	42	12	24	70	0.9	1.8	1.8	94	98	
2	2	89	69	36	32	83	2.7	2.4	2.1	99	94	
3	4	92	84	39	34	86	3.0	2.6	2.2	91	94	
4	6	91	89	46	35	88	3.6	2.6	2.2	92	98	
5	8	91	97	55	36	91	4.1	2.6	2.3	94	>99	
6	10	91	96	54	38	90	4.1	2.9	2.2	96	>99	

Table S2. Effect of reaction time on GC synthesis by the one-pot reaction at 0.1 MPa of CO₂.

Reaction conditions: 0.1 MPa of CO₂ (balloon), Gly (2.5 mmol), SO (7.5 mmol), catalyst loading (5 mol% based on Gly), 100 °C. ^a Based on SO. ^b Based on Gly.

Table S3. Effect of reaction temperature on GC synthesis by the one-pot reaction at 0.1 MPa of CO₂.

Reaction		Co	Conv.		Yield			roduc	ts	Carbon balance		
Entry	temperature	(%)		(%)				(mmo	1)	(%)		
(°C)		Gly	SO	SC ^a	SG ^a	GC ^b	SC	SG	GC	SO	Gly	
1	60	85	61	24	33	75	1.9	2.5	1.9	96	90	
2	70	90	83	46	35	87	3.5	2.7	2.2	98	97	
3	80	90	92	52	34	86	3.9	2.6	2.1	94	96	
4	90	90 92		49	34	88	3.7	2.6	2.2	92	98	
5	100	91	97	55	36	91	4.1	2.6	2.3	94	>99	
6	110	90	97	50	34	89	3.8	2.6	2.2	87	99	

Reaction conditions: 0.1 MPa of CO₂ (balloon), Gly (2.5 mmol), SO (7.5 mmol), catalyst loading (5 mol% based on Gly), 8 h. ^a Based on SO. ^b Based on Gly.

Entry	Catalyst loading (%).	Co	nv.		Yield		Р	roduc	ets	Carbon	balance
		'st (%)		(%)			(mmo	l)	(%)	
		Gly	SO	SC ^a	SG ^a	GC ^b	SC	SG	GC	SO	Gly
1	1	77	53	15	29	70	1.2	2.2	1.7	91	93
2	2.5	88	89	42	33	84	3.1	2.4	2.1	86	96
3	5	91	97	55	36	91	4.1	2.6	2.3	94	>99
4	7.5	90	97	51	38	90	3.8	2.8	2.3	92	>99

Table S4. Effect of catalyst loading on GC synthesis by the one-pot reaction at 0.1 MPa of CO₂.

Reaction conditions: 0.1 MPa of CO₂ (balloon), Gly (2.5 mmol), SO (7.5 mmol), 100 °C, 8 h. ^a Based on SO. ^b Based on Gly.

Table S5. Effect of SO/Gly molar ratio on GC synthesis by the one-pot reaction at 0.1

MPa o	f CO ₂ .
-------	---------------------

Entry		Conv. O/Gly (%)		Yield (%)			Р	roduc	ets	Carbon balance		
	so/Gly molar ratio						(mmo	l)	(%)		
		Gly	SO	SC ^a	SG ^a	GC ^b	SC	SG	GC	SO	Gly	
1	1	63	97	21	62	58	0.6	1.7	1.5	86	95	
2	2	83	97	40	52	81	2.0	2.6	2	94	98	
3	3	91	97	55	36	91	4.1	2.6	2.3	94	>99	
4	4	95	92	55	29	95	5.6	3.0	2.4	92	>99	

Reaction conditions: 0.1 MPa of CO_2 (balloon), Gly (2.5 mmol), catalyst loading (5 mol% based on Gly), 100 °C, 8 h. ^a Based on SO. ^b Based on Gly.

2. ¹³C NMR, ¹H NMR and FT-IR spectra during the one-pot reaction

Fig. S1 ¹³C NMR spectra of reaction mixture during the one-pot reaction (100 MHz CD₄O).

Fig. S2 ¹H NMR spectra of the reaction mixture during the one-pot reaction (400 MHz CD_4O).

Fig. S3 FT-IR of the reaction mixture during the one-pot reaction.

Gly Conv. GC Yield 100 - 100 91 88 91 91 91 91 88 86 80 - 80 Conversion (%) 60 60 **40** 40 20 20 0 0 1 2 3 4 Cycles

3. Recycling and thermal stability of HDBUI

Fig. S4 Catalyst recycling for the one-pot reaction. Conditions: 0.1 MPa of CO_2 (balloon), Gly (2.5 mmol), SO (7.5 mmol), catalyst loading (10 mol% based on Gly), 100 °C, 4 h.

Fig. S5 ¹H NMR spectra of (a) the catalyst before and after the cycle, (b) Gly, GC and the catalyst after the cycle (400 MHz, D_2O).

¹H NMR spectra of recycled catalyst demonstrated no significant variation of HDBUI (**Fig. S5a**). A small amount of impurities in the recovered catalyst is Gly and GC that are difficult to be completely separated (**Fig. S5b**).

Fig. S6 The TG and DSC curves of HDBUI.

4. Reaction mechanism studies

	$CO_2 + Protic IL Ph P$													
Entry	Catalyst	SO conv. (%)	SC yield ^a (%)	SC (mmol)	Carbon balance of SO (%)									
1	HDBUI	88	88	6.8	>99									
2	HDBUBr	80	80	6.0	>99									
3	HDBUCI	60	53	4.0	93									
4	HPyI	66	63	4.8	97									

Table S6. Cycloaddition of CO_2 and SO catalyzed by protic ILs.

Reaction conditions: 0.1 MPa of CO₂ (balloon), SO (7.5 mmol), catalyst loading (1.67

mol%), 100 °C, 4 h. ^a Based on SO.

	$HO \longrightarrow OH + OH + Ph \longrightarrow O + HO OH + Ph + P$													
	Carbor	arbon balance												
Entry	Catalyst	lyst (%)		(%)		(m	nol)	(%)						
		Gly	SC	SG ^a	GC ^b	SG	GC	SC	Gly					
1	HDBUI	91	35	31	87	2.4	2.2	97	96					
2	HDBUBr	92	33	31	87	2.4	2.2	99	95					
3	HDBUCI	92	35	34	88	2.7	2.2	>99	96					
4	HPyI	3	1	1	3	< 0.1	< 0.1	>99	>99					

Table S7. Transesterification of Gly and SC catalyzed by protic ILs.

Reaction conditions: Gly (2.5 mmol), SC (7.5 mmol), catalyst loading (5 mol% based on Gly), 100 $^{\circ}$ C, 4 h. ^a Based on SC. ^b Based on Gly.

Fig. S7 The interaction between protic ILs and Gly. (a) HDBUBr-Gly, (b) HDBUCl-Gly.

Protic IL-Gly	O−H (Å) ^a	Binding energy (kcal/mol)
Gly	0.958	-
HDBUI-Gly	0.973	-32.49
HDBUBr-Gly	0.974	-34.21
HDBUCl-Gly	0.977	-36.11
HPyI-Gly	0.970	-23.85

Table S8. Data of optimized structures of protic IL-Gly.

^a Bond length of Gly hydroxyl group activated by the protic ILs.

Fig. S8 FT-IR spectra of Gly, Gly + protic ILs (molar ratio 4:1). (a) 4000 cm⁻¹-450 cm⁻¹, (b) 3700 cm⁻¹-2700 cm⁻¹.

Fig. S9 The optimized geometries of transition states and intermediates involved HDBUI catalyzed cycloaddition.

Fig. S10 The optimized geometries of transition states and intermediates involved HDBUI catalyzed transesterification.

5. Water tolerance

Fig. S11 Effect of water content in Gly. Reaction conditions: 0.1 MPa of CO_2 (balloon), Gly (2.5 mmol), SO (7.5 mmol), catalyst loading (5 mol% based on Gly), 100 °C, 4 h, water content based on Gly.

	Water	D		æ;	GG 17, 11	Pro	oduct	S	Carbon balance (%)	
Entry a	added	Pressure	Temperature	Time	GC rield	(n	nmol)		
	(wt%) ^a	(MPa)	(°C)	(h)	(%)	SC	SG	GC	SO	Gly
1	5	0.1 (CO ₂)	100	8	86	3.7	2.9	2.2	90	97
2	10	0.1 (CO ₂)	100	8	80	3.2	3.7	2.0	92	96
3	20	0.1 (CO ₂)	100	8	80	3.4	3.7	2.0	94	95
4	30	0.1 (CO ₂)	100	8	77	2.9	4.0	2.0	92	97
5	0	2.0° (15% CO ₂ /85% N ₂)	100	8	81	3.0	2.2	2.1	86	94
6	0	2.0° (15% CO ₂ /3% O ₂ /82% N ₂	100	8	80	2.9	2.0	2.0	77	91
7	0	0.1 ^d (50% CO ₂ /50% CH ₄)	100	8	71	0.9	2.0	1.8	80	88
8	0	0.1 (CO ₂)	45	24	75	1.3	1.9	1.9	95	96
9	0	0.1 (CO ₂)	45	48	94	4.2	2.4	2.3	95	99

Table S9. Expansion of reaction conditions for one-pot synthesis of GC catalyzed by

HDBUI.

Reaction conditions: Gly (2.5 mmol), SO (7.5 mmol), HDBUI loading (5 mol% based on Gly). ^a Water content based on Gly. ^b Based on Gly. ^c Simulated flue gas. ^d Simulated biogas.

6. ¹H NMR spectra of protic ILs

1,8-Diazabicyclo[5.4.0]undec-7-enenium iodide (**HDBUI**). ¹H NMR (400 MHz, D₂O): δH (ppm) 3.56-3.50 (m, 4H), 3.31 (t, *J* = 5.8 Hz, 2H), 2.62–2.60 (m, 2H), 2.00–1.97 (m, 2H), 1.72–1.67 (m, 6H).

Fig. S12 ¹HNMR spectrum of HDBUI.

1,8-Diazabicyclo[5.4.0]undec-7-enenium bromide (HDBUBr). ¹H NMR (400 MHz,

D₂O): δH (ppm) 3.56–3.49 (m, 4H), 3.30 (t, *J* = 5.6 Hz, 2H), 2.62–2.60 (m, 2H), 2.02–1.96 (m, 2H), 1.71–1.67 (m, 6H).

Fig. S13 ¹HNMR spectrum of HDBUBr.

1,8-Diazabicyclo[5.4.0]undec-7-enenium chloride (HDBUCl). ¹H NMR (400 MHz,

D₂O): δH (ppm) 3.56–3.50 (m, 4H), 3.31 (t, *J* = 4.8 Hz, 2H), 2.62–2.60 (m, 2H), 2.00–1.99 (m, 2H), 1.72–1.70 (m, 6H).

Fig. S14 ¹HNMR spectrum of HDBUCI.

1,5-Diazabicyclo[4.3.0]non-5-enenium iodide (HDBNI). ¹H NMR (400 MHz, D₂O):

δH (ppm) 3.67 (t, *J* = 7.4 Hz, 2H), 3.43–3.35 (m, 4H), 2.84 (t, *J* = 8.0 Hz, 2H), 2.16–2.09 (m, 2H), 2.03–1.98 (m, 2H).

Fig. S15 ¹HNMR spectrum of HDBNI.

1,5-Diazabicyclo[4.3.0]non-5-enenium bromide (HDBNBr). ¹H NMR (400 MHz,

D₂O): δH (ppm) 3.67 (t, *J* = 7.4 Hz, 2H), 3.40–3.38 (m, 4H), 2.84 (t, *J* = 8.0 Hz, 2H), 2.14–2.08 (m, 2H), 2.03–1.97 (m, 2H).

Fig. S16 ¹HNMR spectrum of HDBNBr.

1,5-Diazabicyclo[4.3.0]non-5-enenium chloride (HDBNCl). ¹H NMR (400 MHz,

D₂O): δH (ppm) 3.67 (t, *J* = 7.2 Hz, 2H), 3.41–3.36 (m, 4H), 2.84 (t, *J* = 8.0 Hz, 2H), 2.16–2.09 (m, 2H), 2.02–1.99 (m, 2H).

Fig. S17 ¹HNMR spectrum of HDBNCl.

7-Methyl-1,5,7-triazabicyclo[4.4.0]dec-5-enenium iodide (HMTBDI). ¹H NMR (400 MHz, D₂O): δH (ppm) 3.36–3.28 (m, 8H), 2.93 (m, 3H), 2.03–1.97 (m, 2H), 1.97–1.92 (m, 2H).

Fig. S18 ¹HNMR spectrum of HMTBDI.

1,5,7-Triazabicyclo[4.4.0]dec-5-enenium iodide (**HTBDI**). ¹H NMR (400 MHz, D₂O): δH (ppm) 3.33 (t, *J* = 6.0 Hz, 4H), 3.25 (t, *J* = 5.8 Hz, 4H), 2.00–1.94 (m, 4H).

Fig. S19 ¹HNMR spectrum of HTBDI.

4-Dimethylaminopyridinium iodide (HDMAPI). $^1\mathrm{H}$ NMR (400 MHz, D2O): $\delta\mathrm{H}$

(ppm) 8.00–7.99 (m, 2H), 6.88–6.86 (m, 2H), 3.20 (m, 6H).

Fig. S20 ¹HNMR spectrum of HDMAPI.

Pyridinium iodide (HPyI). ¹H NMR (400 MHz, D₂O): δH (ppm) 8.81–8.79 (m, 2H),

8.66–8.62 (m, 1H), 8.09 (t, *J* = 7.0 Hz, 2H).

Fig. S21 ¹HNMR spectrum of HPyI.