Supporting Information

Sequential chemo-biocatalytic synthesis of aroma compounds

Romina D. Ceccoli,^a Dario A. Bianchi^{*b} and Daniela V. Rial^{*a}

^a Área Biología Molecular, Departamento de Ciencias Biológicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, S2002LRK Rosario, Argentina. Email: rial@inv.rosario-conicet.gov.ar, drial@fbioyf.unr.edu.ar

^b Instituto de Química Rosario (IQUIR, CONICET-UNR), Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, S2002LRK Rosario, Argentina. E-mail: bianchi@iquir-conicet.gov.ar, dbianchi@fbioyf.unr.edu.ar

Contents

List of abbreviations

Supporting figures

- Fig. S1 GC chromatograms of Baker's yeast biotransformation of benzalacetone.
- Fig. S2 GC chromatograms of biotransformations of a mixture of benzylacetone and 4-phenyl-2butanol catalysed by *Escherichia coli* cells expressing *Bd*ADH2.
- Fig. S3 Biotransformation of benzylacetone or 4-phenyl-2-butanol by non-recombinant *E. coli* cells.
- Fig. S4 Purification of recombinant *Bd*ADH2.
- Fig. S5 Representative GC chromatograms of biotransformations of a mixture of benzylacetone and 4-phenyl-2-butanol catalysed by *E. coli* cells expressing individually *Lb*BVMO and *Bd*ADH2.
- Fig. S6 Purification of recombinant *Lb*BVMO.
- Fig. S7 Representative GC chromatograms of biotransformations of a mixture of benzylacetone and 4-phenyl-2-butanol catalysed by *E. coli* cells coexpressing *Lb*BVMO and *Bd*ADH2.
- Fig. S8 Representative GC chromatograms of the biotransformations involved in the proposed route under preparative conditions.

Supporting tables

- Table S1 Environmental impact assessment of the aldol condensation between benzaldehyde andacetone using NaOH as catalyst.
- Table S2
 Bioproduction of 2-phenylethyl acetate and 2-phenylethanol in microbial systems.

List of abbreviations

BdADH2	Alcohol dehydrogenase fr	om Bradvrhizobium	diazoefficiens USDA 110
DUNDINZ	raconor actival ogenase n	on braayniizobiani	

- GC Gas chromatography
- IS Internal standard
- *Lb*BVMO Baeyer-Villiger monooxygenase from *Leptospira biflexa*

Fig. S1 GC chromatograms of Baker's yeast biotransformation of benzalacetone. Baker's yeast-catalysed biotransformation of benzalacetone (**3**) at 0 h (pink) and after 16 h (black) at pH 8.0 (A) and pH 9.0 (B). (C) GC chromatograms of standard compounds are shown: **4**, benzylacetone; **5a**, S-(+)-4-phenyl-2-butanol; **5b**, R-(-)-4-phenyl-2-butanol. The region of the chromatograms between 18.0–27.4 min is shown. Retention time of the internal standard: 4.72 min.

Fig. S2 GC chromatograms of biotransformations of a mixture of benzylacetone and 4-phenyl-2-butanol catalysed by *Escherichia coli* cells expressing *Bd*ADH2. Reactions were stopped after different periods of incubation (0 h, 0.25 h, 0.5 h, 2 h, 5 h, 8 h and 24 h) at either pH 8.0 or 9.0. The starting material was obtained after 16 h of Baker's yeast biotransformation of benzalacetone at the corresponding pH condition. The region of the chromatograms between 14.5–27.0 min is shown. Retention time of the internal standard: 4.72 min. **4**, benzylacetone; **5a**, *S*-(+)-4-phenyl-2-butanol; **5b**, *R*-(-)-4-phenyl-2-butanol.

Fig. S3 Biotransformation of benzylacetone or 4-phenyl-2-butanol by non-recombinant *E. coli* cells. The starting material was benzylacetone (**4**) or 4-phenyl-2-butanol (**5**). The effect of two different pH conditions (8.0 and 9.0) was evaluated.

Fig. S4 Purification of recombinant *Bd***ADH2.** The soluble fraction corresponding to the protein extract of *E. coli* BL21(DE3) transformed with pHBd12 and expressing *Bd*ADH2, and the purified *Bd*ADH2 (yellow asterisk) were subjected to 12% SDS-PAGE followed by Coomassie Brilliant Blue staining. Marker, molecular mass marker.

Fig. S5 Representative GC chromatograms of biotransformations of a mixture of benzylacetone and 4-phenyl-2-butanol catalysed by *E. coli* cells expressing individually *Lb*BVMO and *Bd*ADH2. Chromatograms correspond to 0 h (orange) and 8 h (black) of reaction at either pH 8.0 (A) or pH 9.0 (B). The starting material was obtained after 16 h of Baker's yeast biotransformation of benzalacetone at the corresponding pH condition. The region of the chromatograms between 5.0– 10.2 min is shown. **4**, benzylacetone; **5**, 4-phenyl-2-butanol; **6**, 2-phenylethyl acetate; **7**, 2phenylethanol; **IS**, internal standard.

Fig. S6 Purification of recombinant *Lb***BVMO.** The soluble fraction of protein extracts of *E. coli* BL21(DE3) transformed with pHLb01 and expressing *Lb*BVMO, and the purified *Lb*BVMO (red asterisk) were subjected to 12% SDS-PAGE followed by Coomassie Brilliant Blue staining. Marker, molecular mass marker.

Fig. S7 Representative GC chromatograms of biotransformations of a mixture of benzylacetone and 4-phenyl-2-butanol catalysed by *E. coli* cells coexpressing *Lb*BVMO and *Bd*ADH2. Chromatograms correspond to 0 h (orange) and 8 h (black) of reaction at pH 9.0. The starting material was obtained after 16 h of Baker's yeast biotransformation of benzalacetone. The region of the chromatograms between 5.0–10.2 min is shown. **4**, benzylacetone; **5**, 4-phenyl-2-butanol; **6**, 2-phenylethyl acetate; **7**, 2-phenylethanol; **IS**, internal standard.

Fig. S8 Representative GC chromatograms of the biotransformations involved in the proposed route under preparative conditions. Baker's yeast biotransformation of benzalacetone at pH 9.0, at 0 h (pink) and 16 h (orange) of reaction. Biotransformation catalysed by *E. coli* cells coexpressing *Lb*BVMO and *Bd*ADH2 at pH 9.0 after 8 h of reaction (dark green). GC chromatograms of standards of products are shown. The region of the chromatograms between 4.2–9.6 min is shown. **3**, benzalacetone; **4**, benzylacetone; **5**, 4-phenyl-2-butanol; **6**, 2-phenylethyl acetate; **7**, 2-phenylethanol; **IS**, internal standard.

Supporting tables

	E-factor					Yield (%)
	reaction	reaction	work-up	purification	total	
	solvent					
Kad <i>et al.</i> , 1999	10.4	77.0	593.3	14.0	694.8	85
Tatsuzaki <i>et al.</i> , 2006	15.1	19.9	247.5	30.1	312.6	34
Xiao <i>et al.,</i> 2016	14.0	0	63.4	941.8	1019.1	53
Nam <i>et al.,</i> 2020	3.6	2.2	88.8	811.3	905.8	66
our procedure A	7.8	0	0.5	1174.9	1183.2	51
our procedure B	12.2	0	9.6	531.1	552.8	51
our procedure C	4.1	0	6.1	212.1	222.3	56

 Table S1 Environmental impact assessment of the aldol condensation between benzaldehyde and acetone using NaOH as catalyst

If no information on the amount of auxiliary materials employed was available, we made the following assumptions: 50 mL g⁻¹ of crude product of solvents for extraction; 20% of extract volume of aqueous solutions for washing; 10% of extract volume of brine; 0.02 g mL⁻¹ of extract volume of anhydrous salts for drying extracts; 10 mL g⁻¹ of crude product of solvents for recrystallisation; the amount of catalyst, as well as the amounts of solvents and silica used for flash chromatography were comparable to our procedure A. The *E*-factor values calculated with estimated quantities are indicated in blue.

Biocatalyst	Substrate	Products		Reference	
Submerged fermentation		2-PEA (mgL ⁻¹)	2-PE (mgL ⁻¹)		
Hanseniaspora guilliermondii	2-PE	164	n.a.	Rojas <i>et al.,</i> 2001	
Kluyveromyces marxianus CBS 600					
i) batch at 35 °C	L-phe (molasses	i) 1270	i) 2200	Etschmann <i>et al.,</i> 2005	
ii) in situ product removal at 45°C	medium)	ii) 4000	ii) 1600	Etschmann <i>et al.,</i> 2005	
iii) fed-batch + polypropylene glycol 1200		iii) 6100	iii) 26500	Etschmann <i>et al.,</i> 2006	
Kluyveromyces marxianus KY3					
i) aerobic conditions	Raw milk	i) 1	i) 469	Chang <i>et al.</i> , 2014	
ii) anaerobic conditions		ii) 435	ii) 965	Chang <i>et al.</i> , 2014	
Kluyveromyces marxianus					
i) ITD0211 strain	<i>L</i> -phe	i) 203	i) 630	Adame-Soto <i>et al.</i> , 2019	
ii) ITD0090 strain		ii) 177	ii) 1024	Adame-Soto et al., 2019	
Candida glabrata					
i) DNP medium	i) <i>L</i> -phe	i) 35	n.d.	Rodríguez-Romero et al., 2020	
ii) ECP medium	ii) <i>L</i> -phe	ii) 665		Rodríguez-Romero et al., 2020	
iii) supplemented tequila vinasse	iii) tequila vinasse	iii) 60		Rodríguez-Romero et al., 2020	
Solid-state fermentation		(mg g ⁻¹ TS)	(mg g ⁻¹ TS)		
Kluyveromyces marxianus					
i) batch	Sugarcane bagasse	i) 3.9 ^ª ; 7.0 ^b	i) 12.1 ^ª ; 10.0 ^b	Martínez <i>et al.</i> , 2018;	
	+L-phe			Martínez-Ávila <i>et al.</i> , 2019	
ii) fed-batch		ii) 8.2 ^ª ; 5.7 ^b	ii) 10.2 [°] ; 13.5 ^b	Martínez <i>et al.</i> , 2018;	
				Martínez-Ávila <i>et al.</i> , 2019	
iii) sequential-batch		iii) 8.6	iii) 11.5	Martínez-Ávila <i>et al.</i> , 2019	
I-phe I-phenylalanine: n.a., not applicable: n	d. not determined: TS	initial total solid	content of substrate	e ^a Ref Martínez <i>et al</i> 2018 ^{, b} Ref	

L-phe, L-phenylalanine; n.a., not applicable; n.d., not determined; TS, initial total solid content of substrate. ^aRef. Martínez *et al.*, 2018; ^bRef. Martínez-Ávila *et al.*, 2019.