Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Green Chemistry

Electronic Supporting Information

Base-Selective Access to Highly Functionalized Heterocycles from Multicomponent Ugi Adducts

Beatriz González-Saiz, Pablo Pertejo, Pablo Peña-Calleja, Marcin Mielczarek, Tomás Hermosilla, Israel Carreira-Barral, Olivia de Miguel, Francisco Rodríguez-Vidal, Roberto Quesada, María García-Valverde*

*Corresponding author. E-mail: magaval@ubu.es

Contents

General methods:	2
Synthetic procedures and characterization data:	3-47
NMR (¹ H, ¹³ C and DEPT-135) and HRMS spectra:	48-199

X-ray crystallographic data for compounds **6a**, **7d**, **7jdiast₂**, **8m** and **9n**: 200-204

1. General methods

All reagents and solvents were purchased and used without any further purification. Melting points are not corrected. ¹H and ¹³C NMR spectra were recorded in CDCl₃ at 300 and 75 MHz, respectively, on a Varian Mercury 300 system or a Bruker Avance III HD system, and at 500 and 125 MHz on a BRUKER AVANCE NEO 4500; DEPT-135 experiments were conducted to assign carbon-13 signals. Chemical shifts are reported in parts per million with respect to residual solvent protons and coupling constants in hertz. High resolution mass spectra were recorded on a 6545 Q-TOF Agilent LC-MS mass spectrometer (positive electrospray ionization mode, ESI (+)) and Waters Micromass AutoSpec mass spectrometer (positive ion mode by electronic impact at 70 eV). X-ray diffraction studies were performed on a Bruker D8 VENTURE diffractometer.

2. Synthetic procedures and characterization data:

2.1. Synthesis of Ugi adducts 5

When commercial amines are in the form of hydrochlorides (**4a,4c-g**): Initially, to a solution of the corresponding hydrochloride (1.1 mmol) in methanol (5 mL), powdered sodium hydroxide (1.0 mmol) was added, and the mixture was sonicated for 10 min.

Glyoxal **2a-g** (1.0 mmol) was added to a solution of the corresponding amine **4a-g** (1.0 mmol) in methanol and the mixture was stirred for 15 min. Then, chloroacetic acid **1a-b** (1.0 mmol) and isocyanide **3a-c** (1.0 mmol) were added to the preformed imine. The reaction mixture was stirred at room temperature for 24 h. The solid (formed in most cases) was filtered out, washed with methanol and recrystallized from a diisopropyl ether/isopropanol mixture to give the corresponding Ugi adduct.

If a precipitate was not formed, the solvent was evaporated to dryness, the residue was redissolved in dichloromethane and washed successively with a 10% HCl aqueous solution, a saturated NaHCO₃ aqueous solution and a 10% NaHSO₃ aqueous solution. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated to dryness, and the residue was crystallized from a chloroform/diisopropyl ether mixture to give the corresponding Ugi adduct.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-hydroxy-3-phenylacrylamide (5a)

White solid. **M. p.:** 156-157 °C (as a 96:4 rotamers mixture). ¹**H** NMR (300 MHz, **CDCl₃):** δ (major rotamer) 15.46 (s, 1H, OH), 7.83 (dt, J = 8.1, 1.8 Hz, 1H), 7.59-7.44 (m, 7H), 7.29 (dt, J = 7.5, 2.0 Hz, 1H), 5.84 (d, J = 8.2 Hz, 1H, NH), 5.48 (d, J = 13.9 Hz, 1H), 4.33 (d, J = 13.9 Hz, 1H), 4.23 (d, J = 13.9 Hz, 1H), 3.73 (d, J = 13.9 Hz, 1H), 3.57-3.44 (m, 1H), 1.82-0.37 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ (major rotamer) 170.4 (Cq), 169.5 (Cq), 169.1 (Cq), 150.2 (Cq), 133.9 (CH_{Ar}), 133.6 (CH_{Ar}), 133.1 (Cq), 131.4 (CH_{Ar}), 129.8 (CH_{Ar}), 129.6 (Cq), 129.3 (CH_{Ar}), 127.2 (CH₂), 25.2 (CH₂), 24.9 (CH₂), 24.8 (CH₂). MS (EI): m/z (%): 471 ([M]⁺, 0.3), 136 (15), 120 (12), 105 (100), 83 (15), 78 (39), 77 (90). HRMS (EI): m/z calculated for [C₂₄H₂₆ClN₃O₅]⁺ 471.1561, m/z found for [M]⁺ 471.1567.

(*E*)-*N*-Benzyl-2-(2-chloro-*N*-(2-nitrobenzyl)acetamido)-3-hydroxy-3-phenylacrylamide (5b)

Pink solid. **M. p.:** 142-145 °C (as a 95:5 rotamers mixture). ¹**H NMR (300 MHz, CDCl₃):** δ (major rotamer) 15.33 (s, 1H, OH), 7.58-6.95 (m, 14H), 6.39-6.35 (m, 1H, NH), 5.41 (d, J = 13.9 Hz, 1H), 4.37 (dd, J = 14.3, 6.7 Hz, 1H), 4.35 (d, J = 14.3 Hz, 1H), 4.25 (d, J = 14.0 Hz, 1H), 4.01 (dd, J = 14.3, 4.8 Hz, 1H), 3.75 (d, J = 13.9 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (major rotamer) 170.6 (Cq), 170.3 (Cq), 169.0 (Cq), 149.7 (Cq), 136.9 (Cq), 133.5 (CH_{Ar}), 133.2 (CH_{Ar}), 133.0 (Cq), 131.5 (CH_{Ar}), 129.6 (CH_{Ar}), 129.3 (CH_{Ar}), 129.1 (Cq), 129.0 (CH_{Ar}), 128.2 (CH_{Ar}), 127.9 (CH_{Ar}), 127.3 (CH_{Ar}), 124.7 (CH_{Ar}), 105.1 (Cq), 46.9 (CH₂), 43.4 (CH₂), 42.2 (CH₂). **HRMS (+ESI)**: *m/z* calculated for [C₂₅H₂₂ClN₃O₅H]⁺ 480.1321, *m/z* found for [M+H]⁺ 480.1334.

(*E*)-*N*-(*tert*-Butyl)-2-(2-chloro-*N*-(2-nitrobenzyl)acetamido)-3-hydroxy-3-phenylacrylamide (5c)

Pink solid. **M. p.:** 160-162 °C (as a 95:5 rotamers mixture). ¹**H NMR (300 MHz, CDCl₃):** δ (major rotamer) 15.57 (s, 1H, OH), 7.88 (dd, J = 8.0, 1.4 Hz, 1H), 7.61-7.46 (m, 7H), 7.38 (dd, J = 7.5, 1.6 Hz, 1H), 5.65 (bs, 1H, NH), 5.49 (d, J = 13.9 Hz, 1H), 4.30 (d, J = 13.6 Hz, 1H), 4.25 (d, J = 13.6 Hz, 1H), 3.68 (d, J = 13.9 Hz, 1H), 1.03 (s, 9H). ¹³**C NMR (75 MHz, CDCl₃):** δ (major rotamer) 170.5 (Cq), 170.4 (Cq), 169.1 (Cq), 150.2 (Cq), 134.0 (CH_{Ar}), 133.7 (CH_{Ar}), 133.4 (Cq), 131.3 (CH_{Ar}), 130.0 (Cq), 129.8 (CH_{Ar}), 129.2 (CH_{Ar}), 127.2 (CH_{Ar}), 124.7 (CH_{Ar}), 105.7 (Cq), 51.9 (Cq), 46.9 (CH₂), 41.6 (CH₂), 28.3 (CH₃). **HRMS (+ESI):** *m/z* calculated for [C₂₂H₂₄ClN₃O₅H]⁺ 446.1477, *m/z* found for [M+H]⁺446.1499.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-hydroxy-3-(*p*-tolyl)acrylamide (5d)

White solid. M. p.: 159-160 °C (as a 95:5 rotamers mixture). ¹H NMR (300 MHz, CDCl₃): δ (major rotamer) 15.44 (s, 1H, OH), 7.83 (dd, J = 8.0, 1.5 Hz, 1H), 7.58-7.45

(m, 4H), 7.30-7.27 (m, 3H), 5.84 (d, J = 8.3 Hz, 1H), 5.52 (d, J = 13.9 Hz, 1H), 4.31 (d, J = 13.9 Hz, 1H), 4.22 (d, J = 13.9 Hz, 1H), 3.75 (d, J = 13.9 Hz, 1H), 3.56-3.43 (m, 1H), 2.40 (s, 3H), 1.81-1.52 (m, 4H), 1.32-0.85 (m, 5H), 0.43 (qd, J = 13.0, 12.5, 4.3 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (major rotamer) 170.4 (Cq), 169.6 (Cq), 169.1 (Cq), 150.2 (Cq), 142.0 (Cq), 134.0 (CH_{Ar}), 133.5 (CH_{Ar}), 130.2 (Cq), 130.0 (CH_{Ar}), 129.8 (CH_{Ar}), 129.7 (Cq), 127.2 (CH_{Ar}), 124.7 (CH_{Ar}), 104.6 (Cq), 48.3 (CH), 46.7 (CH₂), 42.0 (CH₂), 33.0 (CH₂), 32.2 (CH₂), 25.2 (CH₂), 24.9 (CH₂), 24.8 (CH₂), 21.6 (CH₃). HRMS (+ESI): m/z calculated for [C₂₅H₂₈ClN₃O₅H]⁺, 486.1790, m/z found for [M+H]⁺ 486.1808.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-3-(4-chlorophenyl)-*N*-cyclohexyl-3-hydroxyacrylamide (5e)

White solid. **M. p.:** 163-165 °C (as a 94:6 rotamers mixture). ¹**H** NMR (300 MHz, **CDCl₃):** δ (major rotamer) 15.55 (s, 1H, OH), 7.83 (dd, J = 8.0, 1.3 Hz, 1H), 7.59-7.42 (m, 6H), 7.34-7.30 (m, 1H), 5.77 (d, J = 8.3 Hz, 1H), 5.49 (d, J = 13.8 Hz, 1H), 4.29 (d, J = 13.8 Hz, 1H), 4.20 (d, J = 13.8 Hz, 1H), 3.83 (d, J = 13.9 Hz, 1H), 3.57-3.45 (m, 1H), 1.81-1.54 (m, 4H), 1.29-0.85 (m, 5H), 0.51-0.38 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (major rotamer) 169.2 (Cq), 169.1 (Cq), 150.2 (Cq), 137.7 (Cq), 133.9 (CH_{Ar}), 133.7 (CH_{Ar}), 131.5 (Cq), 129.9 (CH_{Ar}), 129.6 (CH_{Ar}), 128.8 (CH_{Ar}), 124.9 (CH_{Ar}), 105.3 (Cq), 48.5 (CH), 46.8 (CH₂), 41.7 (CH₂), 33.0 (CH₂), 32.3 (CH₂), 25.2 (CH₂), 24.9 (CH₂), 24.8 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₄H₂₅Cl₂N₃O₅H]⁺, 506.1244, *m/z* found for [M+H]⁺ 506.1262.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-(4-fluorophenyl)-3hydroxyacrylamide (5f)

White solid. **M. p.:** 156-157 °C (as a 96:4 rotamers mixture). ¹**H** NMR (300 MHz, **CDCl₃):** δ (major rotamer) 15.57 (s, 1H, OH), 7.84 (dd, J = 7.9, 1.4 Hz, 1H), 7.62-7.46 (m, 4H), 7.31 (dd, J = 7.6, 1.5 Hz, 1H), 7.16 (dd, J = 9.0, 8.3 Hz, 2H), 5.77 (d, J = 8.3 Hz, 1H, NH), 5.50 (d, J = 13.9 Hz, 1H), 4.30 (d, J = 13.8 Hz, 1H), 4.20 (d, J = 13.8 Hz, 1H), 3.82 (d, J = 13.9 Hz, 1H), 3.58-3.45 (m, 1H), 1.81-1.53 (m, 4H), 1.29-0.85 (m, 5H), 0.51-0.37 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (major rotamer) 169.5 (Cq), 169.3 (Cq), 169.1 (Cq), 164.3 (d, ¹J = 253.6 Hz, Cq), 150.2 (Cq), 133.9 (CH_{Ar}), 133.6 (CH_{Ar}), 129.9 (CH_{Ar}), 129.8 (d, ³J = 8.8 Hz, CH_{Ar}), 129.6 (Cq), 124.8 (CH_{Ar}), 116.6 (d, ²J = 21.8 Hz, CH_{Ar}), 104.9 (Cq), 48.5 (CH), 46.7 (CH₂), 41.7 (CH₂), 33.0 (CH₂), 32.2 (CH₂), 25.2 (CH₂), 24.9 (CH₂), 24.8 (CH₂). **HRMS (+ESI):** *m*/*z* calculated for [C₂₄H₂₅ClFN₃O₅H]⁺ 490.1540, *m*/*z* found for [M+H]⁺ 490.1545.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-(4-methoxyphenyl)-3-hydroxyacrylamide (5g)

Pink solid. **M. p.:** 170-171 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 15.52 (s, 1H, OH), 7.88 (d, *J* = 9.0 Hz, 1H), 7.83 (dd, *J* = 8.0, 1.4 Hz, 1H), 7.57 (d, *J* = 9.0 Hz, 2H), 7.53-7.45 (m, 2H), 7.29 (dd, *J* = 7.4, 1.7 Hz, 1H), 6.97 (d, *J* = 9.0 Hz, 2H), 5.80 (d, *J* = 8.7 Hz, 1H, NH), 5.55 (d, *J* = 13.8 Hz, 1H), 4.31 (d, *J* = 13.9 Hz, 1H), 4.22 (d, *J* = 14.0 Hz, 1H), 3.86 (s, 3H), 3.88-3.81 (m, 1H), 3.63-3.43 (m, 1H), 1.82-0.38 (m, 10H). ¹³C NMR (75 MHz, 1H), 3.86 (s, 3H), 3.88-3.81 (m, 1H), 3.63-3.43 (m, 1H), 3.

CDCl₃) (enol form): δ 169.9 (Cq), 169.8 (Cq), 169.3 (Cq), 162.0 (Cq), 134.1 (CH_{Ar}), 133.5 (CH_{Ar}), 129.8 (CH_{Ar}), 129.7 (Cq), 129.3 (CH_{Ar}), 125.2 (Cq), 124.8 (CH_{Ar}), 114.6 (CH_{Ar}), 103.9 (Cq), 55.6 (CH₃), 51.0 (CH), 48.4 (CH), 46.6 (CH₂), 42.0 (CH₂), 33.1 (CH₂), 32.3 (CH₂), 25.3 (CH₂), 25.0 (CH₂), 24.9 (CH₂). **HRMS (+ESI)**: *m/z* calculated for [C₂₅H₂₈ClN₃O₆H]⁺ 502.1739, *m/z* found for [M+H]⁺ 502.1747.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-hydroxybut-2enamide (5h)

Pink solid. **M. p.:** 166-169 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 14.78 (s, 1H, OH), 7.88 (d, J = 8.0 Hz, 1H), 7.65-7.49 (m, 3H), 5.59 (d, J = 7.8 Hz, 1H, NH), 5.46 (d, J = 13.9 Hz, 1H), 4.47 (d, J = 13.9 Hz, 1H), 4.01 (s, 2H), 3.58-3.46 (m, 1H), 1.80 (s, 3H), 1.76-1.50 (m, 4H), 1.42-0.87 (m, 5H), 0.60 (qd, J = 12.0, 3.5 Hz, 1H). ¹³**C NMR (75 MHz, CDCl₃):** δ 174.4 (Cq), 168.9 (Cq), 168.5 (Cq), 134.0 (CH_{Ar}), 133.6 (CH_{Ar}), 129.9 (CH_{Ar}), 129.7 (Cq), 124.9 (CH_{Ar}), 105.6 (Cq), 48.2 (CH), 47.4 (CH₂), 41.6 (CH₂), 33.1 (CH₂), 32.5 (CH₂), 25.3 (CH₂), 24.9 (CH₂), 24.9 (CH₂), 18.2 (CH₃). **HRMS (+ESI):** m/z calculated for [C₁₉H₂₄ClN₃O₅H]⁺, 410.1477, m/z found for [M+H]⁺ 410.1497.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)-2-phenylacetamido)-*N*-cyclohexyl-3-hydroxy-3-phenylacrylamide (5i)

White solid. M. p.: 128-130 °C (as a 94:6 isomers mixture). ¹H NMR (300 MHz, CDCl₃): δ (major isomer) 15.65 (s, 1H, OH), 7.85-7.07 (m, 14H), 6.01 (d, J = 8.8 Hz,

1H, NH), 5.68 (s, 1H), 5.50 (d, J = 13.9 Hz, 1H), 3.64 (d, J = 13.9 Hz, 1H), 3.63-3.51 (m, 1H), 1.96-0.94 (m, 9H), 0.48 (qd, J = 11.9, 3.4 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ (major isomer) 170.3 (Cq), 170.0 (Cq), 169.6 (Cq), 150.2 (Cq), 134.9 (Cq), 133.8 (CH_{Ar}), 133.3 (CH_{Ar}), 132.6 (Cq), 130.9 (CH_{Ar}), 129.6 (CH_{Ar}), 129.5 (CH_{Ar}), 128.9 (CH_{Ar}), 128.8 (CH_{Ar}), 128.6 (CH_{Ar}), 127.2 (CH_{Ar}), 124.6 (CH_{Ar}), 104.6 (Cq), 56.7 (CH), 48.6 (CH), 46.3 (CH₂), 32.7 (CH₂), 32.3 (CH₂), 25.2 (CH₂), 24.9 (CH₂), 24.8 (CH₂). HRMS (+ESI): *m/z* calculated for [C₃₀H₃₀ClN₃O₅H]⁺ 548.1947, *m/z* found for [M+H]⁺ 548.1961.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)-2-phenylacetamido)-*N*-cyclohexyl-3-(4-fluorophenyl)-3-hydroxyacrylamide (5j)

White solid. **M. p.:** 145-147 °C (as a 93:7 isomers mixture). ¹**H NMR (300 MHz, CDCl₃):** δ (major isomer) 15.73 (s, 1H, OH), 7.85-6.77 (m, 13H), 5.93 (d, J = 6.7 Hz, 1H, NH), 5.64 (s, 1H), 5.50 (d, J = 13.5 Hz, 1H), 3.71 (d, J = 13.7 Hz, 1H), 3.65-3.48 (m, 1H), 2.20-0.31 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ (major isomer) 170.5 (Cq), 169.7 (Cq), 169.0 (Cq), 150.4 (Cq), 134.9 (Cq), 133.9 (CH_{Ar}), 133.5 (CH_{Ar}), 129.9 (d, ³J = 3.1 Hz, CH_{Ar}), 129.8 (CH_{Ar}), 129.7 (Cq), 129.0 (CH_{Ar}), 124.9 (CH_{Ar}), 115.8 (d, ²J = 21.8 Hz, CH_{Ar}), 104.5 (Cq), 57.0 (CH), 48.8 (CH), 46.4 (CH₂), 32.8 (CH₂), 32.4 (CH₂), 25.3 (CH₂), 25.0 (CH₂), 24.9 (CH₂). **HRMS (+ESI):** *m*/*z* calculated for [C₃₀H₂₉ClFN₃O₅H]⁺ 566.1853, *m*/*z* found for [M+H]⁺ 566.1865.

(*E*)-2-(*N*-Benzyl-2-chloroacetamido)-*N*-cyclohexyl-3-hydroxy-3-phenylacrylamide (5k)

Pink solid. **M. p.:** 135-137 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 15.48 (s, 1H, OH), 7.61-7.57 (m, 2H), 7.50-7.45 (m, 3H), 7.38-7.31 (m, 5H), 5.48 (d, *J* = 13.7 Hz, 1H), 5.00 (d, *J* = 7.7 Hz, 1H, NH), 4.17 (d, *J* = 14.1 Hz, 1H), 4.11 (d, *J* = 14.1 Hz, 1H), 3.52-3.39 (m, 1H), 3.44 (d, *J* = 13.6 Hz, 1H), 1.71-1.47 (m, 5H), 1.32-0.70 (m, 4H), 0.30 (qd, *J* = 11.9, 3.5 Hz, 1H). ¹³**C NMR (75 MHz, CDCl₃):** δ 169.9 (Cq), 169.6 (Cq), 169.1 (Cq), 137.1 (Cq), 133.0 (Cq), 131.3 (CH_{Ar}), 129.7 (CH_{Ar}), 129.5 (CH_{Ar}), 129.1 (CH_{Ar}), 128.7 (CH_{Ar}), 127.3 (CH_{Ar}), 54.3 (CH₂), 48.5 (CH), 42.3 (CH₂), 32.7 (CH₂), 31.8 (CH₂), 25.4 (CH₂), 24.8 (CH₂), 24.7 (CH₂). **MS (EI):** *m/z* (%): 429 (M⁺, 1.2), 265 (17), 259 (31), 105 (54), 91 (100), 77 (17). **HRMS (EI):** *m/z* calculated for [C₂₄H₂₇ClN₂O₃]⁺ 426.1710, *m/z* found for [M]⁺ 426.1701.

Methyl (*E*)-2-(2-chloro-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1en-2-yl)acetamido)acetate (5l)

Pink solid. **M. p.:** 139-141 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 15.61 (s, 1H, OH), 8.31 (d, J = 7.3 Hz, 1H, NH), 7.47-7.39 (m, 5H), 4.45 (d, J = 16.7 Hz, 1H), 4.12 (d, J = 14.1 Hz, 1H), 4.04 (d, J = 14.1 Hz, 1H), 3.88-3.74 (m, 1H), 3.79 (s, 3H), 3.40 (d, J = 16.7 Hz, 1H), 2.00-1.13 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 171.1 (Cq), 170.5 (Cq), 169.4 (Cq), 168.7 (Cq), 131.0 (CH_{Ar}), 129.0 (CH_{Ar}), 126.9 (CH_{Ar}), 107.7 (Cq), 53.8 (CH₂), 53.0 (CH₃), 48.9 (CH), 41.2 (CH₂), 32.9 (CH₂), 32.4 (CH₂), 25.3 (CH₂), 24.9 (CH₂). **HRMS** (+**ESI):** m/z calculated for [C₂₀H₂₅ClN₂O₅H]⁺ 409.1525, m/z found for [M+H]⁺ 409.1530.

Methyl (*S*,*E*)-2-(2-chloro-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)acetamido)-2-phenylacetate (5m)

Pink solid. **M. p.:** 153-155 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 15.55 (s, 1H, OH), 8.62 (d, J = 7.9 Hz, 1H, NH), 7.40-6.96 (m, 8H), 6.48 (d, J = 7.4 Hz, 2H), 5.26 (s, 1H), 4.35 (d, J = 14.7 Hz, 1H), 4.20 (d, J = 14.7 Hz, 1H), 3.90-3.75 (m, 1H), 3.64 (s, 3H), 2.08-0.96 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 173.1 (Cq), 170.5 (Cq), 170.5 (Cq), 169.6 (Cq), 133.5 (Cq), 130.8 (CH_{Ar}), 129.5 (CH_{Ar}), 129.5 (Cq), 129.3 (CH_{Ar}), 128.4 (CH_{Ar}), 128.3 (CH_{Ar}), 127.5 (CH_A), 103.0 (Cq), 77.4 (Cq), 65.6 (CH), 53.1 (CH₃), 48.7 (CH), 42.3 (CH₂), 32.9 (CH₂), 32.5 (CH₂), 25.3 (CH₂), 24.9 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₆H₂₉ClN₂O₅H]⁺ 485.1838, *m/z* found for [M+H]⁺ 485.1852.

Methyl (*S*,*E*)-2-(2-chloro-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)acetamido)propanoate (5n)

Orange oil. ¹**H NMR (300 MHz, CDCl₃):** δ 16.07 (s, 1H, OH), 8.56 (d, J = 7.6 Hz, 1H, NH), 7.50-7.34 (m, 5H), 4.35 (q, J = 7.6 Hz, 1H), 4.06 (d, J = 14.3 Hz, 1H), 3.97 (d, J = 14.3 Hz, 1H), 3.89-3.67 (m, 1H), 3.81 (s, 3H), 1.98-1.12 (m, 10H), 1.20 (d, J = 7.6 Hz, 3H). ¹³**C NMR (75 MHz, CDCl₃):** δ 175.5 (Cq), 170.8 (Cq), 170.4 (Cq), 168.8 (Cq), 132.9 (Cq), 131.0 (CH_{Ar}), 128.9 (CH_{Ar}), 126.6 (CH_{Ar}), 102.2 (Cq), 56.4 (CH), 52.9 (CH₃), 48.6 (CH), 42.0 (CH₂), 32.5 (CH₂), 32.3 (CH₂), 25.1 (CH₂), 24.7 (CH₂), 13.9 (CH₃). **HRMS (+ESI):** m/z calculated for [C₂₁H₂₇ClN₂O₅H]⁺ 423.1681, m/z found for [M+H]⁺ 423.1691.

Methyl (*S*,*E*)-2-(2-chloro-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)acetamido)-3-phenylpropanoate (50)

Pink solid. **M. p.:** 137-139 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 16.14 (s, 1H, OH), 8.68 (d, J = 7.6 Hz, 1H, NH), 7.51-7.45 (m, 5H), 7.21-7.19 (m, 3H), 6.85-6.83 (m, 2H), 4.41 (dd, J = 11.1, 5.7 Hz, 1H), 4.09 (d, J = 14.4 Hz, 1H), 4.03 (d, J = 14.4 Hz, 1H), 3.93-3.79 (m, 1H), 3.50 (s, 3H), 2.91 (dd, J = 13.2, 5.7 Hz, 1H), 2.62 (dd, J = 13.3, 11.1 Hz, 1H), 1.99-1.59 (m, 5H), 1.48-1.22 (m, 5H). ¹³C **NMR (75 MHz, CDCl₃):** δ 175.1 (Cq), 171.1 (Cq), 170.7 (Cq), 169.3 (Cq), 134.8 (Cq), 131.4 (CH_{Ar}), 129.2 (CH_{Ar}), 128.9 (CH_{Ar}), 128.7 (CH_{Ar}), 127.4 (CH_{Ar}), 127.1 (CH_{Ar}), 102.9 (Cq), 63.0 (CH), 52.6 (CH₃), 49.1 (CH), 42.4 (CH₂), 35.3 (CH₂), 33.0 (CH₂), 32.8 (CH₂), 25.5 (CH₂), 25.2 (CH₂), 25.1 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₇H₃₁ClN₂O₅H]⁺ 499.1994, *m/z* found for [M+H]⁺ 499.2003.

Methyl (S,*E*)-2-(2-chloroacetyl)-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)acetamido)-3-methylbutanoate (5p)

Yellowish-orange oil. ¹H NMR (300 MHz, CDCl₃): δ 16.22 (s, 1H, OH), 8.67 (d, J = 7.8 Hz, 1H, NH), 7.47-7.35 (m, 5H), 4.22 (d, J = 2.4 Hz, 1H), 4.08 (d, J = 14.7 Hz, 1H), 4.03 (d, J = 14.7 Hz, 1H), 3.85-3.69 (m, 1H), 3.77 (s, 3H), 1.95-1.07 (m, 10H), 0.84 (d, J = 7.1 Hz, 3H), 0.68 (d, J = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 173.5 (Cq), 170.7 (Cq), 170.7 (Cq), 169.3 (Cq), 133.0 (Cq), 131.2 (CH_{Ar}), 129.0 (CH_{Ar}), 127.0 (CH_{Ar}), 102.2 (Cq), 66.4 (CH₃), 52.6 (CH), 48.8 (CH), 42.4 (CH₂), 32.8 (CH₂), 32.2 (CH₂), 26.4 (CH),

25.3 (CH₂), 24.9 (CH₂), 24.9 (CH₂), 22.2 (CH₃), 18.4 (CH₃). **HRMS (+ESI):** m/z calculated for [C₂₃H₃₁ClN₂O₅H]⁺ 451.1994, m/z found for [M+H]⁺ 451.2000.

Methyl 2-(2-chloro-*N*-((*E*)-3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1en-2-yl)-2-phenylacetamido)acetate (5q)

Pink solid. **M. p.:** 123-126 °C (as a 95:5 isomers mixture). ¹**H NMR (300 MHz, CDCl₃):** δ (major isomer) 15.73 (s, 1H, OH), 7.61-7.20 (m, 11H), 5.75 (s, 1H), 4.47 (d, J = 16.5 Hz, 1H), 3.77 (s, 3H), 3.39 (d, J = 16.5 Hz, 1H), 3.38-3.25 (m, 1H), 1.81-0.49 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ (major isomer) 171.1 (Cq), 170.9 (Cq), 169.9 (Cq), 169.2 (Cq), 135.8 (Cq), 133.2 (Cq), 131.1 (CH_{Ar}), 129.4 (CH_{Ar}), 129.2 (CH_{Ar}), 129.1 (CH_{Ar}), 128.6 (CH_{Ar}), 127.3 (CH_{Ar}), 108.1 (Cq), 56.9 (CH), 54.2 (CH₂), 53.0 (CH₃), 49.1 (CH), 32.5 (CH₂), 31.7 (CH₂), 25.4 (CH₂), 24.9 (CH₂), 24.9 (CH₂). **HRMS (+ESI):** m/z calculated for [C₂₆H₂₉ClN₂O₅H]⁺ 485.1838, m/z found for [M+H]⁺ 485.1852.

Methyl (2*S*)-2-(2-chloro-*N*-((*E*)-3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)-2-phenylacetamido)-2-phenylacetate (5r)

Orange oil (as a 48:44:5:3 isomers mixture). ¹H NMR (300 MHz, CDCl₃): δ (major isomers) 15.82 (s, 0.48H, OH), 15.69 (s, 0.52H, OH), 8.75 (d, J = 8.1 Hz, 0.48H), 8.05 (d, J = 7.1 Hz, 0.52H), 7.55-6.48 (m, 10H), 6.04 (s, 0.48H), 5.75 (s, 0.52H), 5.38 (s, 0.48H), 5.24 (s, 0.52H), 4.05-3.90 (m, 0.48H), 3.75 (s, 1.56H), 3.71 (s, 1.44H), 3.36-3.23 (m, 0.52H), 2.17-0.54 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ (major isomers) 173.1 (Cq), 173.0 (Cq), 171.2 (Cq), 171.0 (Cq), 170.9 (Cq), 170.7 (Cq), 170.6 (Cq), 170.3 (Cq),

135.8 (Cq), 134.9 (Cq), 133.8 (Cq), 133.1 (Cq), 130.9 (CH_{Ar}), 130.5 (CH_{Ar}), 129.8 (CH_{Ar}), 129.7 (Cq), 129.6 (CH_{Ar}), 129.5 (Cq), 129.5 (CH_{Ar}), 129.3 (CH_{Ar}), 129.1 (CH_{Ar}), 128.8 (CH_{Ar}), 128.7 (CH_{Ar}), 128.6 (CH_{Ar}), 128.3 (CH_{Ar}), 128.3 (CH_{Ar}), 128.1 (CH_{Ar}), 128.0 (CH_{Ar}), 127.6 (CH_{Ar}), 103.4 (Cq), 103.0 (Cq), 66.0 (CH), 65.7 (CH), 57.2 (CH), 53.3 (CH₃), 53.2 (CH₃), 49.3 (CH), 49.1 (CH), 32.9 (CH₂), 32.9 (CH₂), 32.5 (CH₂), 31.3 (CH₂), 25.5 (CH₂), 25.4 (CH₂), 25.1 (CH₂), 25.0 (CH₂), 24.9 (CH₂). **HRMS (+ESI):** m/z calculated for [C₃₂H₃₃ClN₂O₅H]⁺ 561.2151, m/z found for [M+H]⁺ 561.2165.

Methyl (2*S*)-2-(2-chloro-*N*-((*E*)-3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)-2-phenylacetamido)propanoate (5s)

Pink solid. **M. p.:** 181-183 °C (as a 92:8 isomers mixture). ¹**H NMR (300 MHz, CDCl₃)**: δ (major isomer) 16.28 (s, 1H, OH), 8.68 (d, J = 7.9 Hz, 1H, NH), 7.26-7.05 (m, 10H), 5.56 (s, 1H), 4.34 (q, J = 7.6 Hz, 1H), 3.99-3.82 (m, 1H), 3.85 (s, 3H), 2.16-1.14 (m, 10H), 1.18 (d, J = 7.6 Hz, 3H). ¹³**C NMR (75 MHz, CDCl₃)**: δ (major isomer) 175.5 (Cq), 170.7 (Cq), 134.9 (Cq), 132.9 (Cq), 130.9 (CH_{Ar}), 129.1 (CH_{Ar}), 128.7 (CH_{Ar}), 128.5 (CH_{Ar}), 128.5 (CH_{Ar}), 127.1 (CH_{Ar}), 102.5 (Cq), 56.8 (CH), 56.4 (CH), 53.2 (CH₃), 49.2 (CH), 32.8 (CH₂), 25.5 (CH₂), 25.1 (CH₂), 14.4 (CH₃). **HRMS (+ESI)**: m/zcalculated for [C₂₇H₃₁ClN₂O₅H]⁺ 499.1994, m/z found for [M+H]⁺ 499.2004.

Methyl (2*S*)-2-(2-chloro-*N*-((*E*)-3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)-2-phenylacetamido)-3-phenylpropanoate (5t)

Yellow oil (as a 50:42:5:3 isomers mixture). ¹H NMR (300 MHz, CDCl₃): δ (major isomers) 16.34 (s, 1H, OH), 8.79 (d, J = 7.9 Hz, 0.54H), 8.05 (d, J = 7.1 Hz, 0.46H), 7.65-6.76 (m, 15H), 5.78 (s, 0.54H), 5.61 (s, 0.46H), 4.46-4.36 (m, 1H), 4.04-3.90 (m, 0.46H), 3.51 (s, 1.38H), 3.47 (s, 1.62H), 3.42-3.29 (m, 0.54H), 2.86 (td, J = 14.0, 5.7 Hz, 1H), 2.64-2.56 (m, 1H), 2.13-0.61 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ (major isomers) 174.8 (Cq), 174.7 (Cq), 171.3 (Cq), 170.7 (Cq), 170.6 (Cq), 170.6 (Cq), 170.4 (Cq), 170.3 (Cq), 135.5 (Cq), 134.8 (Cq), 134.7 (Cq), 134.7 (Cq), 133.2 (Cq), 132.6 (Cq), 131.1 (CH_{Ar}), 130.8 (CH_{Ar}), 129.2 (CH_{Ar}), 129.0 (CH_{Ar}), 128.7 (CH_{Ar}), 128.5 (CH_{Ar}), 128.5 (CH_{Ar}), 127.2 (CH_{Ar}), 127.1 (CH_{Ar}), 127.0 (CH_{Ar}), 103.0 (Cq), 102.6 (Cq), 63.1 (CH), 62.8 (CH), 58.0 (CH), 56.4 (CH), 52.4 (CH₃), 52.3 (CH₃), 49.1 (CH), 49.0 (CH), 35.2 (CH₂), 35.1 (CH₂), 32.7 (CH₂), 32.6 (CH₂), 31.4 (CH₂), 25.4 (CH₂), 25.0 (CH₂), 24.9 (CH₂), 24.8 (CH₂), 24.7 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₃₃H₃₅ClN₂O₅H]⁺ 575.2307, *m*/*z* found for [M+H]⁺ 575.2313.

2.2. Synthesis of the azetidin-2-ones 6a-u

Method A: To a 0.05 M solution of Ugi adduct **5a-h**, **5m-p** (1 mmol) in acetonitrile, cesium carbonate (1 mmol) and lithium iodide (2 mmol; for the synthesis of **6m** 10 mmol were used) were added, and the reaction mixture was stirred at reflux for 12 h. The solvent was removed under reduced pressure, and the residue was redissolved in dichloromethane and washed successively with a 10% HCl aqueous solution and water. The organic phase was dried over anhydrous Na_2SO_4 , filtered and concentrated to dryness, and the residue was crystallized from a diisopropyl ether/isopropanol mixture to give the corresponding azetidin-2-one **6**.

Method B: To a 0.05 M solution of Ugi adduct **5i-j**, **5q-t** (1 mmol) in methanol thiethylamine (3 mmol) was added, and the reaction mixture was ultrasonicated for 2 h. The solvent was removed under reduced pressure, and the residue was redissolved in chloroform and washed successively with a 10% HCl aqueous solution and water. The

organic phase was dried over anhydrous Na_2SO_4 , filtered and concentrated to dryness, and the residue was purified by column chromatography using a 7:1 hexane:ethyl acetate mixture as eluent and SiO_2 as stationary phase. Diastereomers **6q-t** were separated by column chromatography as well, using the same stationary phase and a 20:1 hexane:ethyl acetate mixture as eluent.

4-Benzoyl-4-cyclohexylcarbamoyl-1-(2-nitrobenzyl)azetidin-2-one (6a)

White solid. **M. p.:** 173-176 °C. ¹**H NMR (400 MHz, CDCl₃):** δ 8.00 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 8.0 Hz, 2H), 7.65-7.57 (m, 3H), 7.47-7.42 (m, 3H), 5.74 (d, J = 7.8 Hz, 1H, NH), 5.15 (d, J = 17.0 Hz, 1H), 5.10 (d, J = 17.0 Hz, 1H), 4.13 (d, J = 14.6 Hz, 1H), 3.58-3.48 (m, 1H), 3.25 (d, J = 14.6 Hz, 1H), 1.66-1.33 (m, 4H), 1.21-1.10 (m, 3H), 1.03-0.91 (m, 1H), 0.81-0.71 (m, 2H). ¹³**C NMR (100 MHz, CDCl₃):** δ 195.9 (Cq), 166.6 (Cq), 164.4 (Cq), 148.1 (Cq), 134.6 (CH_{Ar}), 134.0 (CH_{Ar}), 133.3 (Cq), 132.0 (Cq), 131.2 (CH_{Ar}), 129.1 (CH_{Ar}), 128.8 (CH_{Ar}), 128.6 (CH_{Ar}), 124.9 (CH_{Ar}), 69.5 (Cq), 49.6 (CH), 46.4 (CH₂), 42.3 (CH₂), 32.2 (CH₂), 32.1 (CH₂), 25.2 (CH₂), 24.7 (CH₂), 24.6 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₄H₂₅N₃O₅H]⁺ 436.1872, *m/z* found for [M+H]⁺ 436.1856.

4-Benzoyl-4-benzylcarbamoyl-1-(2-nitrobenzyl)azetidin-2-one (6b)

Brown oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.91 (d, *J* = 8.1 Hz, 1H), 7.79-7.75 (m, 2H), 7.62-7.53 (m, 3H), 7.44-7.38 (m, 3H), 7.15-7.05 (m, 3H), 6.82-6.79 (m, 2H), 6.62 (t, *J* =

5.6 Hz, 1H, NH), 5.13 (d, J = 17.5 Hz, 1H), 5.06 (d, J = 17.5 Hz, 1H), 4.23 (dd, J = 14.7, 6.1 Hz, 1H), 4.09 (d, J = 14.6 Hz, 1H), 3.96 (dd, J = 14.7, 5.3 Hz, 1H), 3.23 (d, J = 14.6 Hz, 1H). ¹³**C NMR (75 MHz, CDCl₃):** δ 195.3 (Cq), 166.5 (Cq), 165.5 (Cq), 147.9 (Cq), 136.7 (Cq), 134.6 (CH_{Ar}), 133.9 (CH_{Ar}), 133.3 (Cq), 131.6 (Cq), 130.7 (CH_{Ar}), 129.1 (CH_{Ar}), 128.8 (CH_{Ar}), 128.7 (CH_{Ar}), 128.6 (CH_{Ar}), 127.7 (CH_{Ar}), 127.5 (CH_{Ar}), 124.9 (CH_{Ar}), 69.1 (Cq), 46.3 (CH₂), 44.2 (CH₂), 42.7 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₅H₂₁N₃O₅H]⁺ 444.1559, *m/z* found for [M+H]⁺ 444.1557.

4-Benzoyl-4-(tert-butylcarbamoyl)-1-(2-nitrobenzyl)azetidin-2-one (6c)

Pale yellowish oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.98 (dd, J = 8.1, 1.1 Hz, 1H), 7.84-7.80 (m, 2H), 7.69-7.57 (m, 3H), 7.48-7.42 (m, 3H), 5.57 (s, 1H, NH), 5.15 (d, J = 17.2 Hz, 1H), 5.09 (d, J = 17.2 Hz, 1H), 4.10 (d, J = 14.5 Hz, 1H), 3.21 (d, J = 14.5 Hz, 1H), 1.00 (s, 9H). ¹³**C NMR (75 MHz, CDCl₃):** δ 196.1 (Cq), 166.6 (Cq), 164.3 (Cq), 134.6 (CH_{Ar}), 134.0 (CH_{Ar}), 133.4 (Cq), 132.0 (Cq), 131.5 (CH_{Ar}), 129.1 (CH_{Ar}), 128.8 (CH_{Ar}), 128.7 (CH_{Ar}), 124.8 (CH_{Ar}), 70.1 (Cq), 52.7 (Cq), 46.3 (CH₂), 41.9 (CH₂), 28.0 (CH₃). **HRMS (+ESI):** *m*/*z* calculated for [C₂₂H₂₃N₃O₅H]⁺ 410.1716, *m*/*z* found for [M+H]⁺ 410.1713.

4-Cyclohexylcarbamoyl-4-(4-methylbenzoyl)-1-(2-nitrobenzyl)azetidin-2-one (6d)

White solid. **M. p.:** 198-200 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.99 (d, *J* = 8.1 Hz, 1H), 7.71-7.61 (m, 4H), 7.47-7.39 (m, 1H), 7.22 (d, *J* = 8.3 Hz, 2H), 5.70 (d, *J* = 7.7 Hz, 1H, NH), 5.16 (d, *J* = 17.6 Hz, 1H), 5.10 (d, *J* = 17.6 Hz, 1H), 4.12 (d, *J* = 14.5 Hz, 1H), 3.59-3.47 (m, 1H), 3.23 (d, *J* = 14.5 Hz, 1H), 2.40 (s, 3H), 1.57-0.67 (m, 10H). ¹³C NMR (75)

MHz, CDCl₃): δ 195.4 (Cq), 166.7 (Cq), 164.5 (Cq), 145.9 (Cq), 134.0 (CH_{Ar}), 132.1 (Cq), 131.1 (CH_{Ar}), 130.8 (Cq), 129.8 (CH_{Ar}), 129.0 (CH_{Ar}), 128.5 (CH_{Ar}), 124.9 (CH_{Ar}), 69.5 (Cq), 49.5 (CH), 46.3 (CH₂), 42.3 (CH₂), 32.2 (CH₂), 32.1 (CH₂), 25.2 (CH₂), 24.7 (CH₂), 24.6 (CH₂), 22.0 (CH₃). **HRMS (+ESI):** *m*/*z* calculated for [C₂₅H₂₇N₃O₅H]⁺ 450.2029, *m*/*z* found for [M+H]⁺ 450.2029.

4-(4-Chlorobenzoyl)-4-cyclohexylcarbamoyl-1-(2-nitrobenzyl)azetidin-2-one (6e)

White solid. **M. p.:** 190-193 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 8.00 (d, J = 7.8 Hz, 1H), 7.79-7.63 (m, 4H), 7.50-7.39 (m, 3H), 5.74 (d, J = 8.0 Hz, 1H, NH), 5.14 (d, J = 16.9 Hz, 1H), 5.08 (d, J = 16.9 Hz, 1H), 4.09 (d, J = 14.5 Hz, 1H), 3.61-3.49 (m, 1H), 3.22 (d, J = 14.5 Hz, 1H), 1.61-0.72 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 194.6 (Cq), 166.3 (Cq), 164.3 (Cq), 148.1 (Cq), 141.2 (Cq), 134.0 (CH_{Ar}), 131.8 (Cq), 131.6 (Cq), 131.2 (CH_{Ar}), 130.2 (CH_{Ar}), 129.4 (CH_{Ar}), 128.7 (CH_{Ar}), 124.9 (CH_{Ar}), 69.3 (Cq), 49.6 (CH), 46.3 (CH₂), 42.4 (CH₂), 32.2 (CH₂), 32.0 (CH₂), 25.2 (CH₂), 24.7 (CH₂), 24.7 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₄H₂₄ClN₃O₅H]⁺ 470.1483, *m/z* found for [M+H]⁺ 470.1484.

4-Cyclohexylcarbamoyl-4-(4-fluorobenzoyl)-1-(2-nitrobenzyl)azetidin-2-one (6f)

White solid. **M. p.:** 197-200 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 8.00 (d, *J* = 8.0 Hz, 1H), 7.88-7.84 (m, 2H), 7.63 (d, *J* = 3.9 Hz, 2H), 7.49-7.42 (m, 1H), 7.14-7.09 (m, 2H), 5.85 (d, *J* = 7.9 Hz, 1H, NH), 5.15 (d, *J* = 17.1 Hz, 1H), 5.09 (d, *J* = 17.1 Hz, 1H), 4.12 (d, *J* = 14.5 Hz, 1H), 3.60-3.46 (m, 1H), 3.22 (d, *J* = 14.5 Hz, 1H), 1.51-0.68 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 194.1 (Cq), 166.2 (Cq), 164.2 (Cq), 148.0 (Cq), 133.9 (CH_{Ar}), 131.8 (Cq), 131.6 (d, ${}^{3}J$ = 9.6 Hz, CH_{Ar}), 131.2 (CH_{Ar}), 129.8 (d, ${}^{4}J$ = 3.1 Hz, Cq), 128.6 (CH_{Ar}), 124.8 (CH_{Ar}), 116.3 (d, ${}^{2}J$ = 22.1 Hz, CH_{Ar}), 69.3 (Cq), 49.5 (CH), 46.2 (CH₂), 42.1 (CH₂), 32.1 (CH₂), 31.9 (CH₂), 25.0 (CH₂), 24.6 (CH₂), 24.5 (CH₂). **HRMS (+ESI)**: *m/z* calculated for [C₂₄H₂₄FN₃O₅H]⁺ 454.1778, *m/z* found for [M+H]⁺ 454.1774.

4-Cyclohexylcarbamoyl-4-(4-methoxybenzoyl)-1-(2-nitrobenzyl)azetidin-2-one (6g)

Dark brown solid. **M. p.:** 198-201 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 8.02-7.98 (m, 1H), 7.79 (d, J = 9.0 Hz, 2H), 7.64-7.62 (m, 2H), 7.46-7.39 (m, 1H), 6.90 (d, J = 9.0 Hz, 2H), 5.60 (d, J = 8.5 Hz, 1H, NH), 5.14 (s, 2H), 4.13 (d, J = 14.5 Hz, 1H), 3.87 (s, 3H), 3.60-3.46 (m, 1H), 3.23 (d, J = 14.4 Hz, 1H), 1.57-0.68 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 194.1 (Cq), 166.8 (Cq), 164.7 (Cq), 164.6 (Cq), 148.1 (Cq), 134.0 (CH_{Ar}), 132.2 (Cq), 131.4 (CH_{Ar}), 131.0 (CH_{Ar}), 128.5 (CH_{Ar}), 126.1 (Cq), 124.9 (CH_{Ar}), 114.3 (CH_{Ar}), 69.4 (Cq), 55.8 (CH₃), 49.5 (CH), 46.3 (CH₂), 42.3 (CH₂), 32.2 (CH₂), 32.1 (CH₂), 29.8 (CH₂), 25.2 (CH₂), 24.7 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₅H₂₇N₃O₆H]⁺ 466.1978, *m/z* found for [M+H]⁺ 466.1975.

4-Acetyl-4-cyclohexylcarbamoyl-1-(2-nitrobenzyl)azetidin-2-one (6h)

Yellow-orange solid. **M. p.:** 175-178 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.98 (dd, J = 8.1, 1.1 Hz, 1H), 7.72-7.63 (m, 2H), 7.49 (ddd, J = 8.1, 7.2, 1.7 Hz, 1H), 6.98 (d, J = 7.4 Hz, 1H, NH), 4.87 (d, J = 15.5 Hz, 1H), 4.81 (d, J = 15.5 Hz, 1H), 3.70-3.57 (m, 1H), 3.38 (d, J = 14.8 Hz, 1H), 3.10 (d, J = 14.8 Hz, 1H), 2.18 (s, 3H), 1.76-1.54 (m, 5H), 1.38-0.92 (m, 5H). ¹³C NMR (75 MHz, CDCl₃): δ 206.3 (Cq), 166.6 (Cq), 165.3 (Cq),

148.7 (Cq), 134.2 (CH_{Ar}), 132.9 (CH_{Ar}), 130.9 (Cq), 129.4 (CH_{Ar}), 124.8 (CH_{Ar}), 67.8 (Cq), 48.9 (CH), 48.4 (CH₂), 43.1 (CH₂), 32.6 (CH₂), 32.5 (CH₂), 27.1 (CH₃), 25.5 (CH₂), 24.8 (CH₂), 24.7 (CH₂). **HRMS (+ESI):** m/z calculated for [C₁₉H₂₃N₃O₅H]⁺ 374.1716, m/z found for [M+H]⁺ 374.1720.

4-Benzoyl-4-cyclohexylcarbamoyl-3-phenyl-1-(2-nitrobenzyl)azetidin-2-one (6i)

Yellow-orange oil (as a 87:13 mixture of diastereomers). ¹H NMR (300 MHz, CDCl₃): δ ((3*R**,4*R**) diastereomer) 7.98 (dd, *J* = 8.2, 1.2 Hz, 1H), 7.75 (dd, *J* = 7.9, 1.4 Hz, 1H), 7.66 (td, *J* = 7.7, 1.4 Hz, 1H), 7.51 (d, *J* = 7.0 Hz, 2H), 7.41 (td, *J* = 7.7, 1.6 Hz, 1H), 7.30 (t, *J* = 7.5 Hz, 1H), 7.13 (t, *J* = 7.7 Hz, 2H), 6.99-6.87 (m, 5H), 5.90 (d, *J* = 7.9 Hz, 1H), 5.64 (s, 1H), 5.31 (d, *J* = 17.6 Hz, 1H), 5.16 (d, *J* = 17.6 Hz, 1H), 3.48-3.33 (m, 1H), 1.46-0.36 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ ((3*R**,4*R**) diastereomer) 168.8 (Cq), 164.4 (Cq), 147.8 (Cq), 134.0 (CH_{Ar}), 133.8 (CH_{Ar}), 133.6 (Cq), 132.3 (Cq), 130.9 (Cq), 130.5 (CH_{Ar}), 129.5 (CH_{Ar}), 128.7 (CH_{Ar}), 128.3 (CH_{Ar}), 128.2 (CH_{Ar}), 128.1 (CH_{Ar}), 124.8 (CH_{Ar}), 77.0 (Cq), 63.1 (CH), 49.5 (CH), 42.2 (CH₂), 31.6 (CH₂), 31.5 (CH₂), 24.9 (CH₂), 24.6 (CH₂), 24.5 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₃₀H₂₉N₃O₅H]⁺ 512.2180, *m*/*z* found for [M+H]⁺ 512.2190.

4-Cyclohexylcarbamoyl-4-fluorobenzoyl-3-phenyl-1-(2-nitrobenzyl)azetidin-2-one (6j)

Yellow-orange oil (as a 86:14 mixture of diastereomers). ¹H NMR (300 MHz, CDCl₃): δ ((3*R**,4*R**) diastereomer) 7.98 (dd, *J* = 8.2, 1.3 Hz, 1H), 7.74 (dd, *J* = 7.9, 1.6 Hz, 1H),

7.66 (td, J = 7.6, 1.4 Hz, 1H), 7.58-7.54 (m, 2H), 7.41 (td, J = 8.5, 1.5 Hz, 1H), 6.94 (m, 5H), 6.81 (t, J = 8.6 Hz, 2H), 6.07 (d, J = 7.9 Hz, 1H), 5.62 (s, 1H), 5.32 (d, J = 17.6 Hz, 1H), 5.17 (d, J = 17.6 Hz, 1H), 3.47-3.34 (m, 1H), 1.47-0.38 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ ((3 R^* ,4 R^*) diastereomer) 192.7 (Cq), 168.6 (Cq), 165.7 (d, ¹J = 257.3 Hz, Cq), 164.3 (Cq), 147.8 (Cq), 134.0 (CH_{Ar}), 132.2 (Cq), 131.5 (d, ³J = 9.4 Hz, CH_{Ar}), 130.8 (Cq), 130.4 (CH_{Ar}), 130.1 (d, ⁴J = 2.9 Hz, Cq), 129.4 (CH_{Ar}), 128.4 (CH_{Ar}), 128.3 (CH_{Ar}), 124.9 (CH_{Ar}), 115.4 (d, ²J = 22.0 Hz, CH_{Ar}), 76.8 (Cq), 63.0 (CH), 49.6 (CH), 42.2 (CH₂), 31.6 (CH₂), 31.4 (CH₂), 24.9 (CH₂), 24.6 (CH₂), 24.5 (CH₂). HRMS (+ESI): m/z calculated for [C₃₀H₂₈FN₃O₅H]⁺, 530.2086 m/z found for [M+H]⁺ 530.2102.

1-Benzyl-4-benzoyl-4-cyclohexylcarbamoylazetidin-2-one (6k)

White solid. **M. p.:** 163-164 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.87 (d, J = 7.6 Hz, 2H), 7.61 (t, J = 7.4 Hz, 1H), 7.47 (d, J = 7.7 Hz, 2H), 7.40-7.24 (m, 5H), 5.36 (d, J = 7.5 Hz, 1H), 5.02 (d, J = 16.0 Hz, 1H), 4.55 (d, J = 16.0 Hz, 1H), 3.80 (d, J = 14.6 Hz, 1H), 3.44 (d, J = 14.6 Hz, 1H), 3.39-3.29 (m, 1H), 1.56-0.83 (m, 8H), 0.60-0.48 (m, 2H). ¹³**C NMR (75 MHz, CDCl₃):** δ 196.1 (Cq), 166.7 (Cq), 165.7 (Cq), 136.6 (Cq), 134.4 (CH_{Ar}), 134.1 (Cq), 129.2 (CH_{Ar}), 129.1 (CH_{Ar}), 128.9 (CH_{Ar}), 128.2 (CH_{Ar}), 128.0 (CH_{Ar}), 68.6 (Cq), 49.1 (CH), 47.0 (CH₂), 46.0 (CH₂), 31.9 (CH₂), 31.8 (CH₂), 25.3 (CH₂), 24.7 (CH₂), 24.6 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₄H₂₆N₂O₃H]⁺ 391.2016, *m/z* found for [M+H]⁺ 391.2016.

4-Benzoyl-4-cyclohexylcarbamoyl-1-(methoxycarbonylmethyl)azetidin-2-one (6l)

Yellow oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.95-7.90 (m, 2H), 7.87 (d, J = 7.9 Hz, 1H, NH), 7.63-7.56 (m, 1H), 7.50-7.43 (m, 2H), 4.39 (d, J = 18.3 Hz, 1H), 4.32 (d, J = 18.3 Hz, 1H), 3.81 (s, 3H), 3.82-3.67 (m, 1H), 3.63 (d, J = 15.0 Hz, 1H), 3.55 (d, J = 15.0 Hz, 1H), 1.96-1.09 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 170.5, 166.8, 166.5, 134.8, 134.1, 129.9, 128.7, 68.0, 53.1, 49.3, 48.4, 43.8, 32.7, 32.6, 25.5, 25.0. **HRMS (+ESI):** m/z calculated for $[C_{20}H_{24}N_2O_5H]^+$ 373.1758, m/z found for $[M+H]^+$ 373.1762.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-1'-phenylmethyl)azetidin-2-one (6m)

Pale yellowish oil. ¹H NMR (300 MHz, CDCl₃): δ 7.86-7.80 (m, 2H), 7.60-7.29 (m, 8H), 6.13 (d, J = 7.8 Hz, 1H, NH), 5.56 (s, 1H), 3.76 (s, 3H), 3.65-3.51 (m, 1H), 3.60 (d, J =14.9 Hz, 1H), 3.51 (d, J = 14.8 Hz, 1H), 1.75-0.71 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 196.2 (Cq), 169.1 (Cq), 166.3 (Cq), 165.3 (Cq), 134.8 (Cq), 134.4 (Cq), 133.9 (CH_{Ar}), 129.3 (CH_{Ar}), 129.0 (CH_{Ar}), 128.9 (CH_{Ar}), 128.9 (CH_{Ar}), 128.6 (CH_{Ar}), 67.6 (Cq), 62.2 (CH), 53.1 (CH₃), 49.1 (CH), 47.3 (CH₂), 32.2 (CH₂), 32.1 (CH₂), 25.2 (CH₂), 24.7 (CH₂), 24.7 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₂₆H₂₈N₂O₅H]⁺ 449.2076, *m*/*z* found for [M+H]⁺ 449.2070.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonylethyl)-azetidin-2one (6n)

Yellow oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.84 (d, J = 8.3 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.8 Hz, 2H), 6.86 (d, J = 7.8 Hz, 1H), 4.40 (q, J = 7.4 Hz, 1H), 3.81-3.72 (m, 1H), 3.77 (s, 3H), 3.67 (d, J = 14.6 Hz, 1H), 3.34 (d, J = 14.6 Hz, 1H), 1.63 (d, J = 7.5 Hz, 3H), 1.92-1.01 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 195.8 (Cq), 172.4 (Cq), 166.6 (Cq), 165.3 (Cq), 134.4 (Cq), 134.0 (CH_{Ar}), 129.4 (CH_{Ar}), 128.7 (CH_{Ar}), 68.8 (Cq), 53.6 (CH), 52.9 (CH₃), 49.3 (CH), 47.6 (CH₂), 32.7 (CH₂), 32.5 (CH₂), 25.4 (CH₂), 24.9 (CH₂), 24.8 (CH₂), 16.0 (CH₃). **HRMS (+ESI):** *m*/*z* calculated for [C₂₁H₂₆N₂O₅H]⁺ 387.1914, *m*/*z* found for [M+H]⁺ 387.1918.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-2'-phenylethyl)azetidin-2-one (60)

Orange oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.82-7.79 (m, 2H), 7.59-7.53 (m, 1H), 7.46-7.31 (m, 7H), 5.42 (d, J = 8.3 Hz, 1H, NH), 4.30 (dd, J = 11.6, 4.5 Hz, 1H), 3.82-3.71 (m, 1H), 3.75 (s, 3H), 3.55 (d, J = 15.0 Hz, 1H), 3.50 (d, J = 15.0 Hz, 1H), 3.48-3.33 (m, 1H), 3.21 (dd, J = 13.6, 4.5 Hz, 1H), 1.66-0.54 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 196.3 (Cq), 170.8 (Cq), 167.6 (Cq), 166.3 (Cq), 137.5 (Cq), 134.7 (Cq), 133.9 (CH_{Ar}), 129.5 (CH_{Ar}), 129.4 (CH_{Ar}), 129.3 (CH_{Ar}), 128.7 (CH_{Ar}), 127.6 (CH_{Ar}), 67.3 (Cq), 62.3 (CH), 52.8 (CH₃), 48.8 (CH), 47.2 (CH₂), 36.4 (CH₂), 32.1 (CH₂), 32.1 (CH₂), 25.2 (CH₂), 25.1 (CH₂), 24.9 (CH₂). **HRMS (+ESI):** m/z calculated for [C₂₇H₃₀N₂O₅H]⁺ 463.2227, m/z found for [M+H]⁺ 463.2230.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-2'-methylpropyl)azetidin-2-one (6p)

Yellow oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.80 (d, J = 8.1 Hz, 2H), 7.59 (t, J = 7.0 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 5.67 (d, J = 7.1 Hz, 1H), 4.00 (d, J = 14.5 Hz, 1H), 3.81 (s, 3H), 3.86-3.69 (m, 1H), 3.52 (d, J = 10.3 Hz, 1H), 3.13 (d, J = 14.4 Hz, 1H), 2.87-2.75 (m, 1H), 1.88-0.82 (m, 10H), 1.02 (d, J = 6.4 Hz, 3H), 0.94 (d, J = 6.7 Hz, 3H). ¹³**C NMR** (75 MHz, CDCl₃): δ 196.0 (Cq), 170.9 (Cq), 164.8 (Cq), 164.5 (Cq), 134.6 (CH_{Ar}), 133.0 (Cq), 129.0 (CH_{Ar}), 128.8 (CH_{Ar}), 69.0 (Cq), 67.1 (CH), 52.2 (CH₃), 49.6 (CH), 45.1 (CH₂), 32.8 (CH₂), 32.3 (CH₂), 28.8 (CH), 25.2 (CH₂), 24.9 (CH₂), 24.7 (CH₂), 20.8 (CH₃), 19.7 (CH₃). **HRMS (+ESI)**: *m*/*z* calculated for [C₂₃H₃₀N₂O₅H]⁺ 415.2227, *m*/*z* found for [M+H]⁺ 415.2232.

(3*R**,4*S**)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(methoxycarbonylmethyl)-3-phenylazetidin-2-one (6q_{diast1})

Orange oil. ¹H NMR (300 MHz, CDCl₃): δ 8.03 (d, J = 8.5 Hz, 2H), 7.82 (d, J = 7.9 Hz, 1H), 7.63-7.57 (m, 1H), 7.54-7.43 (m, 2H), 7.44-7.32 (m, 5H), 5.11 (s, 1H), 4.46 (d, J = 18.5 Hz, 1H), 4.34 (d, J = 18.5 Hz, 1H), 3.77 (s, 3H), 3.51-3.35 (m, 1H), 1.81-0.81 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 196.2 (Cq), 171.0 (Cq), 168.5 (Cq), 164.6 (Cq), 135.5 (Cq), 133.8 (CH_{Ar}), 130.9 (Cq), 130.1 (CH_{Ar}), 129.6 (CH_{Ar}), 128.9 (CH_{Ar}), 128.9 (CH_{Ar}), 128.6 (CH_{Ar}), 75.6 (Cq), 64.0 (CH), 53.1 (CH₃), 48.9 (CH), 43.7 (CH₂), 32.4 (CH₂), 32.3 (CH₂), 25.4 (CH₂), 24.9 (CH₂), 24.9 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₂₆H₂₈N₂O₅Na]⁺ 471.1890, *m*/*z* found for [M+Na]⁺ 471.1900.

(3*R**,4*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(methoxycarbonylmethyl)-3-phenylazetidin-2-one (6q_{diast2})

Orange oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.60-7.51 (m, 2H), 7.35-7.30 (m, 1H), 7.18-7.12 (m, 2H), 7.09-6.95 (m, 5H), 6.39 (d, J = 7.3 Hz, 1H), 5.41 (s, 1H), 4.46 (d, J = 16.1 Hz, 1H), 4.40 (d, J = 16.1 Hz, 1H), 3.82 (s, 3H), 3.78-3.66 (m, 1H), 1.84-0.77 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 195.3 (Cq), 169.0 (Cq), 167.8 (Cq), 164.6 (Cq), 134.0 (Cq), 133.7 (CH_{Ar}), 131.3 (Cq), 129.5 (CH_{Ar}), 129.2 (CH_{Ar}), 128.6 (CH_{Ar}), 128.4 (CH_{Ar}), 127.9 (CH_{Ar}), 64.3 (CH), 52.8 (CH₃), 49.6 (CH), 43.6 (CH₂), 32.5 (CH₂), 32.2 (CH₂), 25.3 (CH₂), 24.9 (CH₂), 24.7 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₂₆H₂₈N₂O₅H]⁺ 449.2077, *m/z* found for [M+H]⁺ 449.2071.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-1'-phenylmethyl)-3-phenylazetidin-2-one (6r)

Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.60-7.00 (m, 15H), 6.08 (s, 1H), 5.78 (s, 1H), 3.94 (s, 3H), 3.56-3.42 (m, 1H), 1.96-0.64 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 194.4 (Cq), 171.5 (Cq), 168.1 (Cq), 165.2 (Cq), 135.2 (Cq), 134.6 (Cq), 133.4 (CH_{Ar}), 130.8 (Cq), 130.0 (CH_{Ar}), 128.8 (CH_{Ar}), 128.8 (CH_{Ar}), 128.4 (CH_{Ar}), 128.4 (CH_{Ar}), 127.9 (CH_{Ar}), 127.0 (CH_{Ar}), 78.3 (Cq), 63.6 (CH), 59.4 (CH), 53.5 (CH₃), 49.1 (CH), 31.7 (CH₂), 31.2 (CH₂), 25.3 (CH₂), 24.4 (CH₂), 24.2 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₃₂H₃₂N₂O₅H]⁺ 525.2393, *m*/*z* found for [M+H]⁺ 525.2384.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonylethyl)-3-phenylazetidin-2-one (6s)

Pale yellowish oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.92 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.8 Hz, 2H), 7.35 (s, 5H), 6.50 (d, J = 8.0 Hz, 1H, NH), 5.00 (s, 1H), 4.54 (q, J = 7.4 Hz, 1H), 3.59 (s, 3H), 3.48-3.37 (m, 1H), 1.76 (d, J = 7.5 Hz, 3H), 1.64-0.66 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 196.8 (Cq), 172.5 (Cq), 167.6 (Cq), 164.8 (Cq), 136.2 (Cq), 133.5 (CH_{Ar}), 131.3 (Cq), 129.7 (CH_{Ar}), 129.5 (CH_{Ar}), 129.0 (CH_{Ar}), 128.9 (CH_{Ar}), 128.6 (CH_{Ar}), 76.6 (Cq), 63.9 (CH), 53.7 (CH), 52.7 (CH₃), 48.9 (CH), 32.3 (CH₂), 32.1 (CH₂), 25.3 (CH₂), 24.7 (CH₂), 16.5 (CH₃). **HRMS (+ESI):** m/z calculated for [C₂₇H₃₀N₂O₅H]⁺ 463.2227, m/z found for [M+H]⁺ 463.2238.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-2'-phenylethyl)-3-phenylazetidin-2-one (6t)

White solid. ¹**H NMR (300 MHz, CDCl₃):** δ 7.48-7.42 (m, 2H), 7.36-7.24 (m, 6H), 7.17-7.07 (m, 4H), 7.04-6.93 (m, 3H), 5.35 (s, 1H), 5.07 (d, J = 7.5 Hz, 1H), 4.20 (dd, J = 10.6, 4.8 Hz, 1H), 3.97 (s, 3H), 3.82 (dd, J = 13.5, 10.7 Hz, 1H), 3.28 (dd, J = 13.6, 4.8 Hz, 1H), 3.22-3.12 (m, 1H), 1.60-0.49 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 196.0 (Cq), 170.9 (Cq), 168.0 (Cq), 163.8 (Cq), 137.2 (Cq), 133.9 (CH_{Ar}), 133.6 (Cq), 132.0 (Cq), 129.7 (CH_{Ar}), 129.4 (CH_{Ar}), 128.9 (CH_{Ar}), 128.8 (CH_{Ar}), 128.6 (CH_{Ar}), 128.2 (CH_{Ar}), 128.0 (CH_{Ar}), 127.2 (CH_{Ar}), 76.5 (Cq), 62.8 (CH), 62.2 (CH), 52.9 (CH₃), 49.6 (CH),

36.5 (CH₂), 32.1 (CH₂), 31.8 (CH₂), 25.3 (CH₂), 24.8 (CH₂), 24.4 (CH₂). **HRMS (+ESI):** *m*/*z* calculated for [C₃₃H₃₄N₂O₅H]⁺ 539.2540, *m*/*z* found for [M+H]⁺ 539.2550.

2.3. Synthesis of pyrrolidin-2-ones 7a-j derived from 2nitrobenzylamine

To a 0.05 M solution of azetidin-2-one **6a-j** (1 mmol) in acetone potassium carbonate (1 eq) was added, and the reaction mixture was stirred at reflux for 12 h. The solvent was evaporated under reduced pressure, and the residue was redissolved in dichloromethane and washed with a 10% HCl aqueous solution. The organic phase was dried over anhydrous Na_2SO_4 , filtered and concentrated to dryness, and the residue (crude mixture of diastereoisomers) was crystallized from methanol to give pyrrolidin-2-one **7a-h** as a single diastereoisomer. For derivatives **7i-j**, diastereomers were isolated by column chromatography using SiO₂ as stationary phase and hexane/ethyl acetate mixtures as eluent.

(4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-(2-nitrophenyl)pyrrolidin-2-one (7a)

Pale brown solid. **M. p.:** 162-164 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.91 (dd, J = 7.2, 1.3 Hz, 2H), 7.81 (dd, J = 8.1, 1.3 Hz, 1H), 7.69 (td, J = 8.1, 1.0 Hz, 1H), 7.57 (td, J = 7.4, 1.2 Hz, 2H), 7.51-7.38 (m, 3H), 6.55 (s, 1H), 6.31 (s, 1H), 5.77 (d, J = 8.1 Hz, 1H, NH), 4.29 (d, J = 18.3 Hz, 1H), 3.23-3.11 (m, 1H), 2.76 (d, J = 18.2 Hz, 1H), 1.42-0.25 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 194.3 (Cq), 174.3 (Cq), 165.2 (Cq), 149.7 (Cq), 134.0 (CH_{Ar}), 134.0 (Cq), 133.9 (CH_{Ar}), 133.2 (Cq), 130.7 (CH_{Ar}), 129.7 (CH_{Ar}), 129.5 (CH_{Ar}), 129.0 (CH_{Ar}), 124.3 (CH_{Ar}), 65.8 (Cq), 54.2 (CH), 49.1 (CH), 37.5 (CH₂), 31.9

(CH₂), 31.5 (CH₂), 25.1 (CH₂), 24.5 (CH₂). **HRMS (+ESI):** m/z calculated for $[C_{24}H_{25}N_3O_5Na]^+$ 458.1692, m/z found for $[M+Na]^+$ 458.1683.

(4R*,5R*)-4-Benzoyl-4-benzylcarbamoyl-5-(2-nitrophenyl)pyrrolidin-2-one (7b)

Dark brown oil. ¹H NMR (300 MHz, CDCl₃): δ 7.92 (d, J = 7.5 Hz, 2H), 7.66-7.31 (m, 6H), 7.23-7.02 (m, 3H), 6.62 (d, J = 7.3 Hz, 2H), 6.58 (s, 1H), 6.32 (t, J = 5.6 Hz, 1H, NH), 6.00 (s, 1H, NH), 4.29 (d, J = 18.2 Hz, 1H), 3.87 (dd, J = 12.5, 3.4 Hz, 1H), 3.80 (dd, J = 12.5, 5.9 Hz, 1H), 2.84 (d, J = 18.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 194.0 (Cq), 174.4 (Cq), 166.2 (Cq), 149.0 (Cq), 136.5 (Cq), 134.1 (CH_{Ar}), 133.6 (CH_{Ar}), 133.4 (Cq), 133.1 (Cq), 130.2 (CH_{Ar}), 129.6 (CH_{Ar}), 129.0 (CH_{Ar}), 128.7 (CH_{Ar}), 127.9 (CH_{Ar}), 127.5 (CH_{Ar}), 124.6 (CH_{Ar}), 65.7 (Cq), 54.2 (CH), 44.2 (CH₂), 37.6 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₂₅H₂₁N₃O₅H]⁺ 444.1559, *m*/*z* found for [M+H]⁺ 444.1561.

(4*R**,5*R**)-4-Benzoyl-4-(*tert*-butylcarbamoyl)-5-(2-nitrophenyl)pyrrolidin-2-one (7c)

Pale brown solid. **M. p.:** 173-175 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.95-7.91 (m, 2H), 7.82 (dt, J = 8.1, 1.1 Hz, 1H), 7.71-7.65 (m, 1H), 7.61-7.41 (m, 5H), 6.54 (s, 1H), 6.29 (s, 1H, NH), 5.78 (s, 1H, NH), 4.25 (d, J = 18.3 Hz, 1H), 2.74 (d, J = 18.3 Hz, 1H), 0.68 (s, 9H). ¹³**C NMR (75 MHz, CDCl₃):** δ 194.4 (Cq), 174.4 (Cq), 164.8 (Cq), 149.7 (Cq), 134.1 (Cq), 134.0 (CH_{Ar}), 133.8 (CH_{Ar}), 133.3 (Cq), 131.0 (CH_{Ar}), 129.7 (CH_{Ar}), 129.5 (CH_{Ar}), 128.9 (CH_{Ar}), 124.2 (CH_{Ar}), 66.4 (Cq), 54.1 (CH), 51.9 (Cq), 37.3 (CH₂), 27.5

(CH₃). **HRMS (+ESI):** m/z calculated for $[C_{22}H_{23}N_3O_5H]^+$ 410.1716, m/z found for $[M+H]^+$ 410.1713.

(4*R**,5*R**)-4-Cyclohexylcarbamoyl-4-(4-methylbenzoyl)-5-(2nitrophenyl)pyrrolidin-2-one (7d)

Pale brown solid. **Decomposition** > 250 °C (as a 89:11 diastereomers mixture). ¹H NMR (300 MHz, CDCl₃): δ (major diastereomer) 7.81 (d, J = 8.3 Hz, 2H), 7.68 (td, J = 7.9, 1.2 Hz, 1H), 7.56 (dd, J = 7.9, 1.2 Hz, 1H), 7.48 (td, J = 8.1, 1.3 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 7.23 (d, J = 8.1 Hz, 2H), 6.57 (s, 1H), 6.11 (s, 1H, NH), 5.75 (d, J = 7.9 Hz, 1H), 4.28 (d, J = 18.2 Hz, 1H), 3.24-3.11 (m, 1H), 2.76 (d, J = 18.2 Hz, 1H), 2.40 (s, 3H), 1.82-0.26 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 193.8 (Cq), 165.4 (Cq), 149.6 (Cq), 145.0 (Cq), 134.0 (Cq), 133.8 (CH_{Ar}), 130.7 (CH_{Ar}), 130.5 (Cq), 129.6 (CH_{Ar}), 129.6 (CH_{Ar}), 124.2 (CH_{Ar}), 65.6 (Cq), 54.4 (CH), 49.1 (CH), 37.8 (CH₂), 31.9 (CH₂), 31.5 (CH₂), 25.1 (CH₂), 24.5 (CH₂), 24.4 (CH₂), 21.8 (CH₃). HRMS (+ESI): *m/z* calculated for [C₂₅H₂₇N₃O₅H]⁺ 450.2029, *m/z* found for [M+H]⁺ 450.2027.

(4*R**,5*R**)-4-(4-Chlorobenzoyl)-4-cyclohexylcarbamoyl-5-(2nitrophenyl)pyrrolidin-2-one (7e)

Pale brown solid. **M. p.:** 235-237 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.90 (d, J = 8.8 Hz, 2H), 7.83 (dd, J = 8.0, 1.1 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.56 (d, J = 8.1 Hz, 1H), 7.51 (t, J = 8.1 Hz, 1H), 7.44 (d, J = 8.6 Hz, 2H), 6.54 (s, 1H), 5.83 (d, J = 7.7 Hz, 1H), 5.69 (s, 1H, NH), 4.32 (d, J = 18.1 Hz, 1H), 3.25-3.12 (m, 1H), 2.74 (d, J = 18.1 Hz, 1H), 1.41-0.27 (m, 10H). ¹³C NMR (75 MHz, DMSO- d_6): δ 193.2, 173.7, 166.2, 149.7, 138.9, 133.6, 133.4, 132.3, 130.9, 130.3, 129.8, 129.2, 124.9, 65.5, 54.5, 48.6, 37.1, 31.2, 25.2,

24.8. **HRMS (+ESI):** m/z calculated for $[C_{24}H_{24}ClN_3O_5H]^+$ 470.1483, m/z found for $[M+H]^+$ 470.1475.

(4*R**,5*R**)-4-Cyclohexylcarbamoyl-4-(4-fluorobenzoyl)-5-(2nitrophenyl)pyrrolidin-2-one (7f)

Pale brown solid. **Decomposition** at 235 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.99 (dd, J = 9.0, 5.3 Hz, 2H), 7.83 (dd, J = 8.2, 1.0 Hz, 1H), 7.70 (t, J = 7.9 Hz, 1H), 7.56 (d, J = 7.1 Hz, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.13 (t, J = 8.6 Hz, 2H), 6.55 (s, 1H), 5.84 (s, 1H, NH), 5.82 (d, J = 8.3 Hz, 1H, NH), 4.32 (d, J = 18.3 Hz, 1H), 3.25-3.13 (m, 1H), 2.76 (d, J = 18.3 Hz, 1H), 1.44-0.26 (m, 10H). ¹³C **NMR (75 MHz, CDCl₃):** δ 192.5, 173.9, 165.1, 164.3, 162.8 (d, ¹J = 244.8 Hz), 149.7, 134.0, 133.9, 132.4 (d, ³J = 9.4 Hz), 130.7, 129.9, 124.3, 116.3 (d, ²J = 21.9 Hz), 65.8, 54.0, 49.2, 37.4, 32.0, 31.6, 25.1, 24.5, 24.5. **HRMS (+ESI):** m/z calculated for [C₂₄H₂₄FN₃O₅H]⁺ 454.1778, m/z found for [M+H]⁺ 454.1776.

(4*R**,5*R**)-4-Cyclohexylcarbamoyl-4-(4-methoxybenzoyl)-5-(2nitrophenyl)pyrrolidin-2-one (7g)

Pale brown solid. **M. p.:** 232-235 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.91 (d, J = 9.0 Hz, 2H), 7.80 (dd, J = 8.1, 1.0 Hz, 1H), 7.70-7.65 (m, 1H), 7.56 (dd, J = 7.9, 1.2 Hz, 1H), 7.50-7.45 (m, 1H), 6.91 (d, J = 9.0 Hz, 2H), 6.58 (s, 1H), 6.11 (s, 1H), 5.76 (d, J = 8.0 Hz, 1H), 4.28 (d, J = 18.2 Hz, 1H), 3.87 (s, 3H), 3.24-3.11 (m, 1H), 2.76 (d, J = 18.2 Hz, 1H), 1.44-0.27 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 192.6 (Cq), 174.4 (Cq), 165.6 (Cq), 164.1 (Cq), 149.7 (Cq), 134.1 (CH_{Ar}), 133.8 (Cq), 132.0 (CH_{Ar}), 130.7 (CH_{Ar}), 129.6 (CH_{Ar}), 125.8 (Cq), 124.2 (CH_{Ar}), 114.1 (CH_{Ar}), 65.6 (Cq), 55.7 (CH), 54.1 (CH₃),

49.1 (CH), 37.8 (CH₂), 32.0 (CH₂), 31.6 (CH₂), 25.1 (CH₂), 24.6 (CH₂), 24.5 (CH₂). **HRMS (+ESI):** m/z calculated for $[C_{25}H_{27}N_3O_6H]^+$ 466.1978, m/z found for $[M+H]^+$ 466.1975.

(4R*,5R*)-4-Acetyl-4-cyclohexylcarbamoyl-5-(2-nitrophenyl)pyrrolidin-2-one (7h)

Pale brown solid. **M. p.:** 199-202 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.81 (d, J = 8.1 Hz, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.52-7.44 (m, 2H), 6.38 (s, 1H, NH), 6.14 (s, 1H), 6.08 (d, J = 8.0 Hz, 1H, NH), 3.97 (d, J = 18.5 Hz, 1H), 3.36-3.23 (m, 1H), 2.52 (d, J = 18.5 Hz, 1H), 2.28 (s, 3H), 1.69-0.77 (m, 9H), 0.31 (qd, J = 12.0, 3.7 Hz, 1H). ¹³**C NMR (75 MHz, CDCl₃):** δ 201.3 (Cq), 174.0 (Cq), 164.0 (Cq), 149.5 (Cq), 134.2 (Cq), 134.1 (CH_{Ar}), 130.0 (CH_{Ar}), 129.7 (CH_{Ar}), 124.4 (CH_{Ar}), 68.2 (Cq), 53.1 (CH), 49.2 (CH), 35.4 (CH₂), 32.5 (CH₂), 31.8 (CH₂), 25.3 (CH₃), 25.2 (CH₂), 24.8 (CH₂), 24.7 (CH₂). **HRMS** (+ESI): m/z calculated for [C₁₉H₂₃N₃O₅H]⁺ 374.1716, m/z found for [M+H]⁺ 374.1715.

(3*R**,4*R**,5*S**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-(2-nitrophenyl)-3-phenylpyrrolidin-2-one (7i_{diast1})

Brown oil. ¹H NMR (300 MHz, CDCl₃): δ 7.48-7.15 (m, 15H), 6.70 (s, 1H), 6.48 (s, 1H), 5.35 (s, 1H), 4.12-4.09 (m, 1H), 3.26-3.15 (m, 1H), 1.77-0.09 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 195.7 (Cq), 174.5 (Cq), 165.5 (Cq), 149.5 (Cq), 135.5 (Cq), 135.1 (Cq), 133.6 (Cq), 133.5 (CH_{Ar}), 133.1 (CH_{Ar}), 130.6 (CH_{Ar}), 129.6 (CH_{Ar}), 129.2 (CH_{Ar}), 128.7 (CH_{Ar}), 128.6 (CH_{Ar}), 128.0 (CH_{Ar}), 127.8 (CH_{Ar}), 124.4 (CH_{Ar}), 72.6 (Cq), 54.5 (CH), 52.7 (CH), 49.1 (CH), 31.4 (CH₂), 30.8 (CH₂), 25.1 (CH₂), 24.3 (CH₂), 24.0 (CH₂).

HRMS (+ESI): m/z calculated for $[C_{30}H_{29}N_3O_5H]^+$ 512.2180, m/z found for $[M+H]^+$ 512.2190.

(3*R**,4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-(2-nitrophenyl)-3-phenylpyrrolidin-2-one (7i_{diast2})

Pale brown oil. ¹H NMR (300 MHz, CDCl₃): δ 7.81-7.63 (m, 2H), 7.52-7.28 (m, 6H), 7.13-6.97 (m, 6H), 6.91 (s, 1H), 6.45 (s, 1H), 5.48 (s, 1H), 5.34 (d, *J* = 7.8 Hz, 1H), 3.23-3.10 (m, 1H), 1.89-0.11 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 196.2 (Cq), 176.3 (Cq), 166.5 (Cq), 150.0 (Cq), 135.9 (Cq), 134.4 (Cq), 133.8 (Cq), 133.7 (CH_{Ar}), 132.8 (CH_{Ar}), 130.9 (CH_{Ar}), 130.1 (CH_{Ar}), 129.6 (CH_{Ar}), 129.0 (CH_{Ar}), 128.5 (CH_{Ar}), 127.9 (CH_{Ar}), 127.7 (CH_{Ar}), 124.4 (CH_{Ar}), 71.5 (Cq), 55.8 (CH), 54.2 (CH), 49.0 (CH), 31.5 (CH₂), 31.3 (CH₂), 25.0 (CH₂), 24.4 (CH₂), 24.3 (CH₂). HRMS (+ESI): *m/z* calculated for [C₃₀H₂₉N₃O₅H]⁺ 512.2180, *m/z* found for [M+H]⁺ 512.2195.

(3*R**,4*R**,5*S**)-4-Cyclohexylcarbamoyl-4-(4-fluorobenzoyl)-5-(2-nitrophenyl)-3-phenylpyrrolidin-2-one (7j_{diast1})

Pale brown solid. **M. p.:** 157-160 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.46-7.17 (m, 11H), 7.15-7.08 (m, 1H), 6.83 (t, *J* = 8.5 Hz, 2H), 6.70 (s, 1H), 5.29 (s, 1H), 4.19 (d, *J* = 6.9 Hz, 1H), 3.22-3.10 (m, 1H), 1.43-0.08 (m, 10H). ¹³C **NMR (75 MHz, CDCl₃):** δ 194.0 (Cq), 174.3 (Cq), 165.6 (d, ${}^{1}J = 257.7$ Hz, Cq), 165.5 (Cq), 149.8 (Cq), 135.4 (Cq), 133.5 (Cq), 133.1 (CH_{Ar}), 131.6 (d, ${}^{4}J = 3.2$ Hz, Cq), 130.8 (d, ${}^{3}J = 9.5$ Hz, CH_{Ar}), 130.6 (CH_{Ar}), 129.7 (CH_{Ar}), 129.4 (CH_{Ar}), 128.9 (CH_{Ar}), 128.2 (CH_{Ar}), 124.5 (CH_{Ar}), 116.0 (d, ${}^{2}J =$ 22.0 Hz, CH_{Ar}), 72.5 (Cq), 54.4 (CH), 52.7 (CH), 49.2 (CH), 31.5 (CH₂), 30.9 (CH₂), 25.1 (CH₂), 24.3 (CH₂), 24.1 (CH₂). **HRMS (+ESI):** *m*/*z* calculated for $[C_{30}H_{28}FN_{3}O_{5}H]^{+}$ 530.2086, *m*/*z* found for $[M+H]^{+}$ 530.2090.

(3*R**,4*R**,5*R**)-4-Cyclohexylcarbamoyl-4-(4-fluorobenzoyl)-5-(2-nitrophenyl)-3-phenylpyrrolidin-2-one (7j_{diast2})

Brown solid. **M. p.:** 145-148 °C ¹**H NMR (300 MHz, CDCl₃):** δ 7.80 (d, *J* = 8.0 Hz, 1H), 7.71 (d, *J* = 4.1 Hz, 2H), 7.52-7.44 (m, 3H), 7.16 (s, 1H), 7.09-6.97 (m, 5H), 6.75 (t, *J* = 8.6 Hz, 2H), 6.43 (s, 1H), 5.50 (d, *J* = 8.0 Hz, 1H), 5.49 (s, 1H), 3.22-3.10 (m, 1H), 1.48-0.09 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 194.1 (Cq), 176.0 (Cq), 166.5 (Cq), 166.3 (d, ¹*J* = 257.5 Hz, Cq), 150.0 (Cq), 134.3 (Cq), 134.0 (Cq), 133.9 (CH_{Ar}), 133.1 (Cq), 131.9 (d, ³*J* = 9.5 Hz, CH_{Ar}), 131.0 (CH_{Ar}), 130.2 (CH_{Ar}), 129.7 (CH_{Ar}), 128.6 (CH_{Ar}), 128.1 (CH_{Ar}), 124.5 (CH_{Ar}), 114.9 (d, ²*J* = 22.0 Hz, CH_{Ar}), 71.3 (Cq), 55.4 (CH), 53.9 (CH), 49.1 (CH), 31.5 (CH₂), 29.8 (CH₂), 25.1 (CH₂), 24.5 (CH₂), 24.4 (CH₂). **HRMS** (+**ESI**): *m/z* calculated for [C₃₀H₂₈FN₃O₅H]⁺ 530.2086, *m/z* found for [M+H]⁺ 530.2096.

2.4. Synthesis of pyrrolidin-2-ones 7, 8 and 9, derived from αaminoesters

Method A. To a 0.05 M solution of azetidin-2-one **6m-t** (1 mmol) in acetonitrile cesium carbonate (1.2 eq) was added, and the reaction mixture was stirred at reflux for 1 h. The solvent was evaporated under reduced pressure, and the residue was redissolved in dichloromethane and washed with a 10% HCl aqueous solution. The organic phase was dried over anhydrous Na_2SO_4 , filtered and concentrated to dryness. Pyrrolidinones were purified by column chromatography column, using hexane/ethyl acetate mixtures as eluent and SiO₂ as stationary phase.

Method B. To a 0.05 M solution of azetidin-2-one **6m-t** (1 mmol) in acetonitrile potassium carbonate (1.2 eq) was added, and the reaction mixture was stirred at reflux for 12 h. The solvent was evaporated under reduced pressure, and the residue was redissolved in dichloromethane and washed with a 10% HCl aqueous solution. The organic phase was dried over anhydrous Na_2SO_4 , filtered and concentrated to dryness. The different expansion compounds were purified by column chromatography, using hexane/ethyl acetate mixtures as eluent and SiO₂ as stationary phase.

2.4.1. Chloroacetic acid (R¹: H) and glycine (R⁴: H) derivatives

(4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-(methoxycarbonyl)pyrrolidin-2-one (7l)

White solid. **M. p.:** 175-177 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.89 (d, J = 7.4 Hz, 2H), 7.59-7.54 (m, 1H), 7.41 (t, J = 7.7 Hz, 2H), 7.23 (d, J = 7.7 Hz, 1H, NH), 6.66 (s, 1H, NH), 4.49 (s, 1H), 3.87 (s, 3H), 3.86 (d, J = 17.7 Hz, 1H), 3.79-3.67 (m, 1H), 2.84 (d, J = 17.7 Hz, 1H), 1.80-0.77 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 194.4, 173.0, 172.0, 166.7, 134.1, 133.2, 129.2, 128.9, 65.5, 60.6, 53.4, 49.2, 38.6, 32.1, 32.0, 25.4, 24.4, 24.2. **HRMS (+ESI):** *m/z* calculated for [C₂₀H₂₄N₂O₅H]⁺ 373.1763, *m/z* found for [M+H]⁺ 373.1760.

(3aR*,6aS*)-5-Cyclohexyltetrahydropyrrolo[3,4-b]pyrrole-2,4,6(5H)-trione (9l)

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 6.50 (s, 1H), 4.36 (d, J = 8.0 Hz, 1H), 3.95 (tt, J = 12.2, 3.9 Hz, 1H), 3.49 (ddd, J = 12.0, 8.1, 4.0 Hz, 1H), 2.81 (dd, J = 18.3, 11.6 Hz, 1H), 2.64 (dd, J = 18.3, 4.0 Hz, 1H), 2.14-1.11 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 176.7 (Cq), 174.7 (Cq), 174.7 (Cq), 55.4 (CH), 52.4 (CH), 38.8 (CH), 31.9 (CH₂), 28.8 (CH₂), 28.7 (CH₂), 25.8 (CH₂), 25.8 (CH₂), 25.0 (CH₂). HRMS (+ESI): m/zcalculated for [C₁₂H₁₆N₂O₃H]⁺ 237.1234, m/z found for [M+H]⁺ 237.1237.

2.4.2. Chloroacetic acid (R¹: H) and phenylglycine (R⁴: C₆H₅) derivatives

(3a*R**,6a*S**)-3a-Benzoyl-5-cyclohexyl-6a-phenyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (8m)

Crystalline white solid. **M. p.:** 166-168 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.43-7.37 (m, 1H), 7.24-7.08 (m, 9H), 6.43 (s, 1H), 4.24 (tt, *J* = 12.4, 3.9 Hz, 1H), 3.82 (d, *J* = 18.5 Hz, 1H), 3.00 (d, *J* = 18.5 Hz, 1H), 2.34-2.21 (m, 1H), 1.96-1.72 (m, 4H), 1.49-1.23 (m,
5H). ¹³C NMR (75 MHz, CDCl₃): δ 193.6 (Cq), 175.3 (Cq), 175.2 (Cq), 173.0 (Cq), 136.0 (Cq), 133.2 (Cq), 132.9 (CH_{Ar}), 129.4 (CH_{Ar}), 128.6 (CH_{Ar}), 128.3 (CH_{Ar}), 128.1 (CH_{Ar}), 127.8 (CH_{Ar}), 70.9 (Cq), 66.2 (Cq), 53.5 (CH), 37.5 (CH₂), 29.8 (CH₂), 28.7 (CH₂), 28.6 (CH₂), 25.9 (CH₂), 25.0 (CH₂). **HRMS (+ESI)**: *m/z* calculated for [C₂₅H₂₄N₂O₄H]⁺ 417.1814, *m/z* found for [M+H]⁺ 417.1809.

(3a*R**,6a*S**)-5-Cyclohexyl-6a-phenyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (9m)

Crystalline white solid. **M. p.:** 156-159 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.44-7.22 (m, 6H, NH), 4.06 (tt, J = 12.3, 3.7 Hz, 1H), 3.30 (ddd, J = 11.3, 3.4, 0.7 Hz, 1H), 2.90 (ddd, J = 18.2, 11.3, 0.7 Hz, 1H), 2.71 (ddd, J = 18.3, 3.5, 0.8 Hz, 1H), 2.23-2.11 (m, 2H), 1.89-1.84 (m, 2H), 1.70-1.67 (m, 2H), 1.42-1.20 (m, 3H), 0.91-0.82 (m, 1H). ¹³**C NMR (75 MHz, CDCl₃):** δ 176.0 (Cq), 175.9 (Cq), 174.4 (Cq), 137.7 (Cq), 129.3 (CH_{Ar}), 129.0 (CH_{Ar}), 124.8 (CH_{Ar}), 67.4 (Cq), 52.7 (CH), 48.4 (CH), 32.1 (CH₂), 29.7 (CH₂), 28.9 (CH₂), 28.6 (CH₂), 25.7 (CH₂), 24.9 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₁₈H₂₀N₂O₃H]⁺ 313.1547, *m/z* found for [M+H]⁺ 313.1545.

2.4.3. Chloroacetic acid (R¹: H) and alanine (R⁴: CH₃) derivatives

(4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-5methylpyrrolidin-2-one (7n)

White solid. **M. p.:** 139-141 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.91 (d, *J* = 8.3 Hz, 2H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.47 (d, *J* = 7.8 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 2H), 6.66 (s, 1H), 3.97 (d, *J* = 18.0 Hz, 1H), 3.93 (s, 3H), 3.82-3.68 (m, 1H), 2.73 (d, *J* = 18.0 Hz, 1H), 2.18-0.68 (m, 10H), 1.52 (s, 3H). ¹³**C NMR (75 MHz, CDCl₃):** δ 194.3 (Cq), 175.4 (Cq), 171.4 (Cq), 165.5 (Cq), 134.0 (CH_{Ar}), 133.1 (Cq), 129.2 (CH_{Ar}), 128.8 (CH_{Ar}), 69.1 (Cq), 64.7 (Cq), 53.6 (CH₃), 49.0 (CH), 38.0 (CH₂), 32.1 (CH₂), 31.9 (CH₂), 25.8 (CH₂), 25.4 (CH₂), 24.5 (CH₃), 24.2 (CH₂). **HRMS (+ESI):** *m*/*z* calculated for [C₂₁H₂₆N₂O₅H]⁺ 387.1914, *m*/*z* found for [M+H]⁺ 387.1913.

(3a*R**,6a*S**)-3a-Benzoyl-5-cyclohexyl-6a-methyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (8n)

Yellow oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.70-7.64 (m, 2H), 7.63-7.57 (m, 1H), 7.49-7.43 (m, 2H), 6.49 (s, 1H), 4.06 (tt, *J* = 12.0, 3.8 Hz, 1H), 3.57 (d, *J* = 18.3 Hz, 1H), 2.98 (d, *J* = 18.3 Hz, 1H), 2.20-2.06 (m, 2H), 1.98-1.64 (m, 6H), 1.46 (s, 3H), 1.44-1.17 (m, 2H). ¹³**C NMR (75 MHz, CDCl₃):** δ 194.2 (Cq), 176.2 (Cq), 175.3 (Cq), 172.4 (Cq), 136.1 (Cq), 133.8 (CH_{Ar}), 129.0 (CH_{Ar}), 128.5 (CH_{Ar}), 64.7 (Cq), 63.7 (Cq), 53.1 (CH), 38.0 (CH₂), 28.7 (CH₂), 28.3 (CH₂), 25.8 (CH₂), 25.8 (CH₂), 25.0 (CH₂), 18.7 (CH₃). **HRMS (+ESI):** *m/z* calculated for [C₂₀H₂₂N₂O₄H]⁺ 355.1652, *m/z* found for [M+H]⁺ 355.1667.

(3a*R**,6a*S**)-5-Cyclohexyl-6a-methyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (9n)

White solid. **M. p.:** 209-212 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.00 (s, 1H), 3.93 (tt, *J* = 12.3, 3.8 Hz, 1H), 3.06 (dd, *J* = 11.4, 3.3 Hz, 1H), 2.87 (dd, *J* = 18.0, 11.3 Hz, 1H), 2.66 (dd, *J* = 18.1, 3.3 Hz, 1H), 2.13-1.12 (m, 10H), 1.55 (s, 3H). ¹³**C NMR (75 MHz, CDCl₃):** δ 177.1 (Cq), 176.1 (Cq), 174.1 (Cq), 61.6 (Cq), 52.3 (CH), 45.4 (CH), 32.6 (CH₂), 28.8 (CH₂), 28.7 (CH₂), 25.8 (CH₂), 25.0 (CH₂), 21.7 (CH₃). **HRMS (+ESI):** *m/z* calculated for [C₁₃H₁₈N₂O₃H]⁺ 251.1390, *m/z* found for [M+H]⁺ 251.1394.

2.4.4. Chloroacetic acid (R¹: H) and phenylalanine (R⁴: C₆H₅CH₂) derivatives

(4*R**,5*R**)-4-Benzoyl-5-benzyl-4-cyclohexylcarbamoyl-5-(methoxycarbonyl)pyrrolidin-2-one (70)

Yellowish oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.95 (d, J = 8.3 Hz, 2H), 7.64 (d, J = 7.8 Hz, 1H), 7.56 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.9 Hz, 2H), 7.33-7.28 (m, 3H), 7.06-7.03 (m, 2H), 5.91 (s, 1H), 4.08 (d, J = 18.0 Hz, 1H), 3.90-3.77 (m, 1H), 3.68 (s, 3H), 3.17 (d, J = 12.9 Hz, 1H), 2.97 (d, J = 12.9 Hz, 1H), 2.83 (d, J = 18.0 Hz, 1H), 1.97-0.80 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 193.9, 174.5, 171.1, 165.4, 134.1, 133.2, 132.9, 130.1, 129.2, 128.8, 128.0, 69.6, 68.3, 52.9, 49.2, 42.7, 38.1, 32.1, 31.9, 25.5, 24.5, 24.2. **HRMS (+ESI):** m/z calculated for $[C_{27}H_{30}N_2O_5H]^+$ 463.2233, m/z found for $[M+H]^+$ 463.2232.

(3a*R**,6a*S**)-3a-Benzoyl-6a-benzyl-5-cyclohexyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (80)

Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.83 (d, J = 7.2 Hz, 2H), 7.58-7.52 (m, 1H), 7.48-7.40 (m, 3H), 7.11 (s, 5H), 4.01 (tt, J = 12.2, 3.7 Hz, 1H), 3.51 (d, J = 14.7 Hz, 1H), 3.37 (d, J = 14.7 Hz, 1H), 3.12 (d, J = 17.3 Hz, 1H), 2.18-2.00 (m, 2H), 1.94 (d, J = 17.3 Hz, 1H), 1.88-1.57 (m, 5H), 1.40-1.15 (m, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 195.5 (Cq), 175.7 (Cq), 173.7 (Cq), 173.5 (Cq), 136.0 (Cq), 133.4 (Cq), 133.4 (CH_{Ar}), 130.9 (CH_{Ar}), 129.1 (CH_{Ar}), 128.8 (CH_{Ar}), 128.6 (CH_{Ar}), 127.7 (CH_A), 70.1 (Cq), 65.5 (Cq), 53.1 (CH), 36.9 (CH₂), 35.5 (CH₂), 28.9 (CH₂), 28.1 (CH₂), 25.8 (CH₂), 25.7 (CH₂), 25.0

(CH₂). **HRMS (+ESI):** m/z calculated for [C₂₆H₂₆N₂O₄H]+ 431.1965, m/z found for [M+H]⁺431.1977.

(3a*R**,6a*S**)-6a-Benzyl-5-cyclohexyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (90)

Pale yellowish solid. **M. p.:** 95-97 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.34-7.14 (m, 5H), 7.08 (s, 1H), 3.86 (tt, J = 12.3, 3.7 Hz, 1H), 3.23 (d, J = 13.7 Hz, 1H), 3.19 (dd, J = 11.2,3.8 Hz, 1H), 3.06 (d, J = 13.7 Hz, 1H), 2.53 (dd, J = 18.2, 3.8 Hz, 1H), 2.41 (dd, J = 18.2,11.2 Hz, 1H), 2.08-1-15 (m, 10H). ¹³**C NMR (75 MHz, CDCl₃):** δ 176.8 (Cq), 176.1 (Cq), 174.3 (Cq), 133.2 (Cq), 130.1 (CH_{Ar}), 129.1 (CH_{Ar}), 128.0 (CH_{Ar}), 65.4 (Cq), 52.3 (CH), 42.2 (CH), 40.1 (CH₂), 32.4 (CH₂), 28.7 (CH₂), 28.6 (CH₂), 25.8 (CH₂), 25.8 (CH₂), 25.0 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₁₉H₂₂N₂O₃H]⁺ 327.1703, *m/z* found for [M+H]⁺ 327.1700.

2.4.5. Chloroacetic acid (R¹: H) and valine (R⁴: CH(CH₃)₂) derivatives

(3a*R**,6a*S**)-3a-Benzoyl-6a-isopropyl-5-cyclohexyltetrahydropyrrolo[3,4*b*]pyrrole-2,4,6(5*H*)-trione (8p)

Yellow oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.82 (d, J = 7.5 Hz, 2H), 7.60 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.3 Hz, 2H), 6.67 (s, 1H), 3.98 (tt, J = 12.6, 4.5 Hz, 1H), 3.34 (d, J = 17.6 Hz, 1H), 2.93 (d, J = 17.5 Hz, 1H), 2.62 (h, J = 6.7 Hz, 1H), 2.15-1.04 (m, 10H), 1.28 (d, J = 6.7 Hz, 3H), 0.70 (d, J = 6.7 Hz, 3H). ¹³**C NMR (75 MHz, CDCl₃):** δ 195.7 (Cq), 175.4 (Cq), 173.7 (Cq), 173.4 (Cq), 136.1 (Cq), 133.4 (CH_{Ar}), 128.9 (CH_{Ar}), 128.7 (CH_{Ar}), 71.3 (Cq), 66.2 (Cq), 52.9 (CH), 37.4 (CH₂), 29.6 (CH), 28.8 (CH₂), 28.1 (CH₂),

25.9 (CH₂), 25.7 (CH₂), 25.1 (CH₂), 18.2 (CH₃), 17.0 (CH₃). **HRMS (+ESI):** m/z calculated for [C₂₂H₂₆N₂O₄H]⁺ 383.1965, m/z found for [M+H]⁺ 383.1983.

(3a*R**,6a*S**)-5-Cyclohexyl-6a-isopropyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (9p)

Pale yellowish solid. **M. p.:** 170-173 °C ¹**H NMR (300 MHz, CDCl₃):** δ 6.14 (s, 1H), 3.96 (tt, J = 12.4, 4.0 Hz, 1H), 3.10 (dd, J = 11.3, 3.8 Hz, 1H), 2.77 (dd, J = 18.3, 11.3 Hz, 1H), 2.63 (dd, J = 18.3, 3.8 Hz, 1H), 2.31 (h, J = 6.7 Hz, 1H), 2.17-1.18 (m, 10H), 0.99 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H). ¹³**C NMR (75 MHz, CDCl₃):** δ 177.1 (Cq), 176.6 (Cq), 173.8 (Cq), 68.3 (Cq), 52.4 (CH), 39.7 (CH), 33.0 (CH₂), 31.4 (CH), 29.0 (CH₂), 28.7 (CH₂), 25.8 (CH₂), 25.0 (CH₂), 16.7 (CH₃), 15.8 (CH₃). **HRMS (+ESI):** *m/z* calculated for [C₁₅H₂₂N₂O₃H]⁺ 279.1703, *m/z* found for [M+H]⁺ 279.1709.

2.4.6. **2-Chloro-2-phenylacetic acid (R¹: C₆H₅) and glycine (R⁴: H) derivatives**

(3*R**,4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-3-phenylpyrrolidin-2-one (7q_{diast1})

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.63 (d, J = 8.0 Hz, 1H), 7.32-7.26 (m, 5H), 7.11-6.99 (m, 5H), 6.78 (s, 1H), 5.29 (s, 1H), 4.49 (s, 1H), 3.96 (s, 3H), 3.77-3.63 (m, 1H), 1.78-0.55 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 197.5 (Cq), 174.0 (Cq), 172.7 (Cq), 168.4 (Cq), 136.4 (Cq), 133.3 (Cq), 132.8 (CH_{Ar}), 132.0 (CH_{Ar}), 128.7 (CH_{Ar}), 128.4 (CH_{Ar}), 128.1 (CH_{Ar}), 127.7 (CH_{Ar}), 70.9 (Cq), 60.7 (CH), 54.4 (CH₃), 53.9

(CH), 48.8 (CH), 32.2 (CH₂), 31.4 (CH₂), 25.4 (CH₂), 24.3 (CH₂), 24.0 (CH₂). **HRMS** (+ESI): m/z calculated for $[C_{26}H_{28}N_2O_5H]^+$ 449.2071, m/z found for $[M+H]^+$ 449.2072.

(3*R**,4*S**,5*S**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-3-phenylpyrrolidin-2-one (7q_{diast2})

Pale yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.79 (d, J = 8.4 Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.45 (t, J = 8.0 Hz, 2H), 7.40-7.25 (m, 5H), 6.49 (s, 1H), 5.40 (s, 1H), 5.10 (s, 1H), 4.25 (d, J = 6.4 Hz, 1H), 3.29 (s, 3H), 3.34-3.16 (m, 1H), 2.16-0.14 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 195.7, 175.3, 170.3, 164.7, 135.3, 135.3, 134.0, 131.1, 128.9, 128.8, 128.7, 128.2, 70.4, 59.8, 52.7, 52.0, 49.1, 31.7, 30.9, 25.2, 24.3, 24.1. HRMS (+ESI): m/z calculated for $[C_{26}H_{28}N_2O_5H]^+$ 449.2071, m/z found for $[M+H]^+$ 449.2085.

2.4.7. 2-Chloro-2-phenylacetic acid (R¹: C₆H₅) and phenylglycine (R⁴: C₆H₅) derivatives

(3a*R**,6a*S**)-3a-Benzoyl-5-cyclohexyl-3,6a-diphenyltetrahydropyrrolo[3,4*b*]pyrrole-2,4,6(5*H*)-trione (8r)

White solid. **M. p.:** 118-120 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.34-7.07 (m, 16H), 5.60 (s, 1H), 4.13-4.03 (m, 1H), 2.24-1.11 (m, 10H). ¹³C **NMR (75 MHz, CDCl₃):** δ 192.3 (Cq), 175.6 (Cq), 174.6 (Cq), 171.8 (Cq), 135.9 (Cq), 134.0 (Cq), 133.3 (Cq), 132.9 (CH_{Ar}), 130.1 (CH_{Ar}), 129.4 (CH_{Ar}), 128.8 (CH_{Ar}), 128.7 (CH_{Ar}), 128.7 (CH_{Ar}), 128.5

(CH_{Ar}), 127.9 (CH_{Ar}), 127.8 (CH_{Ar}), 70.4 (Cq), 70.3 (Cq), 53.5 (CH), 53.2 (CH), 28.6 (CH₂), 28.2 (CH₂), 25.8 (CH₂), 25.8 (CH₂), 24.8 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₃₁H₂₈N₂O₄H]⁺ 493.2122, *m/z* found for [M+H]⁺ 493.2132.

2.4.8. **2-Chloro-2-phenylacetic acid (R¹: C₆H₅) and valine (R⁴: CH₃)** derivatives

(*3R**,*4R**,*5R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-5-methyl-3phenylpyrrolidin-2-one (7s)

Yellow oil. ¹H NMR (300 MHz, CDCl₃): δ 7.39 (d, J = 7.7 Hz, 1H), 7.33-6.96 (m, 10H), 5.23 (s, 1H), 3.89 (s, 3H), 3.71-3.60 (m, 1H), 1.92-0.45 (m, 10H), 1.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 198.6 (Cq), 176.0 (Cq), 172.8 (Cq), 166.7 (Cq), 137.0 (Cq), 133.2 (Cq), 132.3 (CH_{Ar}), 132.0 (CH_{Ar}), 128.5 (CH_{Ar}), 128.2 (CH_{Ar}), 127.9 (CH_{Ar}), 127.5 (CH_{Ar}), 73.9 (Cq), 65.1 (Cq), 53.7 (CH₃), 53.3 (CH), 48.6 (CH), 32.1 (CH₂), 31.3 (CH₂), 25.3 (CH₂), 24.5 (CH₃), 24.3 (CH₂), 24.1 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₂₇H₃₀N₂O₅H]⁺ 463.2227, *m*/*z* found for [M+H]⁺ 463.2236.

2.4.9. 2-Chloro-2-phenylacetic acid (R¹: C₆H₅) and phenylalanine (R⁴: CH₂C₆H₅) derivatives

(3*R**,4*R**,5*R**)-5-Benzyl-4-benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-3-phenylpyrrolidin-2-one (7t)

Pale yellow solid. **M. p.:** 100-102 °C. ¹H NMR (**300** MHz, CDCl₃): δ 7.38-6.98 (m, 16H), 6.34 (s, 1H), 5.35 (s, 1H), 3.82-3.69 (m, 1H), 3.64 (s, 3H), 3.29 (d, J = 13.0 Hz, 1H), 3.13 (d, J = 12.9 Hz, 1H), 1.95-0.52 (m, 10H). ¹³C NMR (75 MHz, CDCl₃): δ 198.2 (Cq), 172.4 (Cq), 166.6 (Cq), 136.9 (Cq), 133.4 (Cq), 133.0 (Cq), 132.5 (CH_{Ar}), 132.0 (CH_{Ar}), 130.1 (CH_{Ar}), 128.8 (CH_{Ar}), 128.6 (CH_{Ar}), 128.3 (CH_{Ar}), 128.1 (CH_{Ar}), 128.0 (CH_{Ar}), 127.5 (CH_{Ar}), 74.7 (Cq), 68.5 (Cq), 53.7 (CH), 53.0 (CH₃), 48.8 (CH), 42.8 (CH₂), 32.2 (CH₂), 31.4 (CH₂), 25.4 (CH₂), 24.4 (CH₂), 24.1 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₃₃H₃₄N₂O₅H]⁺ 539.2540, *m*/*z* found for [M+H]⁺ 539.2553.

2.5. Deacylation of pyrrolidin-2-ones 7a-c

To a 0.05 M solution of pyrrolidin-2-one **7a-c** (1 mmol) in ethanol potassium hydroxide was added (catalytic amount) and the mixture was ultrasonicated at room temperature for 30 min. The solvent was removed under reduced pressure, and the residue was redissolved in dichloromethane and washed with a 10% HCl aqueous solution. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated to dryness, and the residue was purified by column chromatography (dichloromethane/ethyl acetate, 90:10, v/v) to give the corresponding pyrrolidin-2-one **10a-c**.

(4*R**,5*S**)-4-Cyclohexylcarbamoyl-5-(2-nitrophenyl)pyrrolidin-2-one (10a)

Dark brown solid. **Decomposition** > 184 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 7.93 (d, J = 8.0 Hz, 1H), 7.74-7.66 (m, 2H), 7.50-7.45 (m, 1H), 6.90 (s, 1H), 5.47 (d, J = 8.8 Hz,

2H), 3.70 (td, J = 9.3, 4.2 Hz, 1H), 3.33-3.20 (m, 1H), 3.04 (dd, J = 17.3, 3.9 Hz, 1H), 2.58 (dd, J = 17.4, 9.6 Hz, 1H), 1.70-1.33 (m, 4H), 1.24-0.77 (m, 5H), 0.34-0.22 (m, 1H). ¹³C NMR (75 MHz, CDCl₃): δ 177.8 (Cq), 168.7 (Cq), 148.9 (Cq), 134.4 (Cq), 134.2 (CH_{Ar}), 129.7 (CH_{Ar}), 129.2 (CH_{Ar}), 124.5 (CH_{Ar}), 56.2 (CH), 47.9 (CH), 45.5 (CH), 33.0 (CH₂), 32.9 (CH₂), 32.4 (CH₂), 25.3 (CH₂), 24.8 (CH₂), 24.6 (CH₂). HRMS (+ESI): *m*/*z* calculated for [C₁₇H₂₁N₃O₄H]⁺ 332.1610, *m*/*z* found for [M+H]⁺ 332.1608.

(4*R**,5*S**)-4-Benzylcarbamoyl-5-(2-nitrophenyl)pyrrolidin-2-one (10b)

Dark brown oil. ¹**H NMR (300 MHz, CDCl₃):** δ 8.03 (d, J = 8.0 Hz, 1H, NH), 7.77-6.79 (m, 9H), 5.96 (t, J = 5.4 Hz, 1H, NH), 5.47 (d, J = 8.8 Hz, 1H), 3.96 (d, J = 12.6 Hz, 1H), 3.90 (d, J = 12.6 Hz, 1H), 3.78 (td, J = 9.6, 4.6 Hz, 1H), 3.07 (dd, J = 17.3, 4.3 Hz, 1H), 2.62 (dd, J = 17.1, 9.0 Hz, 1H). ¹³**C NMR (75 MHz, CDCl₃):** δ 177.9 (Cq), 169.6 (Cq), 137.4 (Cq), 134.1 (CH_{Ar}), 133.9 (Cq), 133.4 (Cq), 130.1 (CH_{Ar}), 129.3 (CH_{Ar}), 128.8 (CH_{Ar}), 127.9 (CH_{Ar}), 127.6 (CH_{Ar}), 124.6 (CH_{Ar}), 56.1 (CH), 45.4 (CH), 43.7 (CH₂), 33.1 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₁₈H₁₇N₃O₄H]⁺ 340.1297, *m/z* found for [M+H]⁺ 340.1292.

(4*R**,5*S**)-4-(*tert*-Butylcarbamoyl)-5-(2-nitrophenyl)pyrrolidin-2-one (10c)

Dark brown oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.98-7.95 (m, 1H), 7.74-7.68 (m, 2H), 7.54-7.46 (m, 1H), 6.16 (s, 1H), 5.47 (d, *J* = 9.4 Hz, 2H), 3.66 (td, *J* = 9.5, 4.6 Hz, 1H), 3.09 (dd, *J* = 17.2, 4.5 Hz, 1H), 2.57 (dd, *J* = 17.7, 9.9 Hz, 1H), 0.86 (s, 9H). ¹³**C NMR**

(75 MHz, CDCl₃): δ 177.8 (Cq), 168.7 (Cq), 148.9 (Cq), 134.4 (Cq), 134.3 (CH_{Ar}), 129.9 (CH_{Ar}), 129.3 (CH_{Ar}), 124.4 (CH_{Ar}), 56.0 (CH), 51.0 (Cq), 45.6 (CH), 32.8 (CH₂), 28.2 (CH₃). HRMS (+ESI): *m*/*z* calculated for [C₁₅H₁₉N₃O₄H]⁺ 306.1454, *m*/*z* found for [M+H]⁺ 306.1447.

2.6. Treatment of azetidine-2-one 6k with KOH

To a 0.05 M solution of azetidindin-2-one **6k** (1 mmol) in ethanol potassium hydroxide was added (0.4 mmol) and the mixture was ultrasonicated at room temperature for 30 min. The solvent was removed under reduced pressure, and the residue was redissolved in dichloromethane and washed with a 10% HCl aqueous solution. The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated to dryness, and the residue was purified by column chromatography (hexane/ethyl acetate 90:10, v/v) to give the corresponding azetidine-2-one **11**.

1-Benzyl-4-cyclohexylcarbamoyl-2-azetidinone (11)

Orange oil. ¹**H NMR (300 MHz, CDCl₃):** δ 7.39-7.24 (m, 5H), 5.56 (d, *J* = 7.8 Hz, 1H), 4.43 (d, *J* = 14.9 Hz, 1H), 4.35 (d, *J* = 14.9 Hz, 1H), 3.85 (dd, *J* = 5.8, 2.7 Hz, 1H), 3.69-

3.56 (m, 1H), 3.25 (dd, J = 14.8, 5.8 Hz, 1H), 2.93 (dd, J = 14.8, 2.7 Hz, 1H), 1.82-1.51 (m, 4H), 1.36-1.19 (m, 4H), 1.12-0.72 (m, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 168.6 (Cq), 167.6 (Cq), 135.5 (Cq), 129.3 (CH_{Ar}), 128.8 (CH_{Ar}), 128.4 (CH_{Ar}), 110.1 (?), 53.2 (CH), 48.3 (CH), 46.7 (CH₂), 43.4 (CH₂), 32.8 (CH₂), 32.7 (CH₂), 25.4 (CH₂), 24.8 (CH₂). HRMS (+ESI): m/z calculated for [C₁₇H₂₂N₂O₂H]⁺ 287.1754, m/z found for [M+H]+ 287.1766.

2.7. Treatment of azetidine-2-one 6k with LDA

To compound **6k** (215 mg, 0.551 mmol) placed in a 10 mL Schlenk flask, anhydrous tetrahydrofuran (3.0 mL) was added through a septum *via* a disposable syringe under a nitrogen atmosphere, and to the formed solution a 2.0 M lithium diisopropylamide (LDA) solution in tetrahydrofuran/*n*-heptane/ethylbenzene (0.82 mL, 1.64 mmol, 2.98 equiv.) was added in a similar manner over the period of 1 min. The reaction mixture was stirred under a nitrogen atmosphere at room temperature for 5 h, quenched with a 1.0 M HCl aqueous solution (3 mL) and stirring was continued for a further 5 min. The content of the flask was extracted with ethyl acetate (3 x 3 mL) and the combined organic phases were dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure and the residue was purified by column chromatography (EtOAc/CH₂Cl₂).

4-Benzoyl-4-cyclohexylcarbamoyl-5-phenylpyrrolidin-2-one (7k)

Yellow oil (as a 62:38 diastereoisomers mixture). ¹H NMR (500 MHz, CDCl₃): δ (diastereoisomers mixture) 7.83-6.88 (m, 10H), 6.00 (s, 0.62H), 5.87 (s, 0.38H), 5.84 (s. 0.38H), 5.82 (s, 0.62H), 5.24 (d, J = 7.8 Hz, 0.62H), 4.57 (d, J = 7.3 Hz, 0.38H), 3.95 (d, J = 17.5 Hz, 0.38H), 3.89 (d, J = 17.7 Hz, 0.62H), 3.82-3.74 (m, 0.62H), 3.24-3.17 (m, 0.38H), 2.71 (d, J = 17.5 Hz, 0.38H), 2.64 (d, J = 17.7 Hz, 0.62H), 1.88-0.32 (m, 10H). ¹³C NMR (125 MHz, CDCl₃): δ (diastereoisomers mixture) 198.2 (Cq), 195.2 (Cq), 174.0 (Cq), 173.7 (Cq), 169.4 (Cq), 165.2 (Cq), 138.1 (Cq), 137.4 (Cq), 136.0 (Cq), 134.3 (Cq), 134.0 (CH_{Ar}), 128.4 (CH_{Ar}), 129.3 (CH_{Ar}), 129.0 (CH_{Ar}), 128.9 (CH_{Ar}), 128.6 (CH_{Ar}), 128.5 (CH_{Ar}), 128.4 (CH_{Ar}), 128.4 (CH_{Ar}), 128.3 (CH_{Ar}), 128.1 (CH_{Ar}), 66.9 (Cq), 66.7 (Cq), 61.6 (CH), 61.1 (CH), 49.5 (CH), 49.1 (CH), 38.9 (CH₂), 38.4 (CH₂), 32.7 (CH₂), 32.3 (CH₂), 32.1 (CH₂), 31.5 (CH₂), 29.8 (CH₂), 25.4 (CH₂), 25.3 (CH₂), 24.8 (CH₂), 24.7 (CH₂), 24.5 (CH₂), 24.3 (CH₂).

3-Benzoyl-1-cyclohexylpyrrolidin-2,5-dione (12)

Light brown solid. **M. p.:** 165-167 °C. ¹**H NMR (300 MHz, CDCl₃):** δ 8.13-8.09 (m, 2H), 7.72-7.62 (m, 1H), 7.57-7.45 (m, 2H), 4.78 (dd, J = 9.0, 4.1 Hz, 1H), 3.96 (tt, J = 12.3, 3.8 Hz, 1H), 3.32 (dd, J = 18.0, 4.1, 1H), 2.80 (dd, J = 18.0, 9.0 Hz, 1H), 2.22-2.00 (m, 2H), 1.90-1.53 (m, 3H), 1.43-1.08 (m, 4H), 0.91-0.82 (m, 1H). ¹³**C NMR (75 MHz, CDCl₃):** δ 192.9 (Cq), 175.9 (Cq), 173.0 (Cq), 135.6 (Cq), 134.3 (CH_{Ar}), 129.9 (CH_{Ar}), 128.9 (CH_{Ar}), 52.5 (CH), 48.3 (CH), 31.7 (CH₂), 28.9 (CH₂), 28.7 (CH₂), 26.0 (CH₂), 25.9 (CH₂), 25.1 (CH₂). **HRMS (+ESI):** *m/z* calculated for [C₁₇H₁₉NO₃H]⁺286.1438, *m/z* found for [M+H]⁺ 286.1448.

3. NMR (¹H, ¹³C and DEPT-135) and HRMS spectra

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-hydroxy-3-phenylacrylamide (5a)

Figure S2. ¹³C and DEPT-135 NMR spectra of 5a (75 MHz, CDCl₃).

Figure S3. HRMS (EI) spectrum of 5a.

(*E*)-*N*-Benzyl-2-(2-chloro-*N*-(2-nitrobenzyl)acetamido)-3-hydroxy-3-phenylacrylamide (5b)

100 90 ppm

Figure S5. ¹³C and DEPT-135 NMR spectra of 5b (75 MHz, CDCl₃).

Figure S6. HRMS (+ESI) spectrum of 5b.

(*E*)-*N*-(*tert*-Butyl)-2-(2-chloro-*N*-(2-nitrobenzyl)acetamido)-3-hydroxy-3-phenylacrylamide (5c)

Figure S8. ¹³C and DEPT-135 NMR spectra of 5c (75 MHz, CDCl₃).

Figure S9. HRMS (+ESI) spectrum of 5c.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-hydroxy-3-(*p*-tolyl)acrylamide (5d)

115,44 7,88 7,88 7,88 7,78 7,78 7,78 7,78 7,78 7,75

Figure S11. ¹³C and DEPT-135 NMR spectra of 5d (75 MHz, CDCl₃).

Figure S12. HRMS (+ESI) spectrum of 5d.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-3-(4-chlorophenyl)-*N*-cyclohexyl-3hydroxyacrylamide (5e)

115.55 115.55

Figure S14. ¹³C and DEPT-135 NMR spectra of 5e (75 MHz, CDCl₃).

Figure S15. HRMS (+ESI) spectrum of 5e.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-(4-fluorophenyl)-3hydroxyacrylamide (5f)

115.57 115.57

Figure S17. ¹³C and DEPT-135 NMR spectra of 5f (75 MHz, CDCl₃).

Figure S18. HRMS (+ESI) spectrum of 5f.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-(4-methoxyphenyl)-3-hydroxyacrylamide (5g)

115.52 115.52

Figure S19. ¹H NMR spectrum of 5g (300 MHz, CDCl₃).

Figure S20. ¹³C and DEPT-135 NMR spectra of 5g (75 MHz, CDCl₃).

Figure S21. HRMS (+ESI) spectrum of 5g.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)acetamido)-*N*-cyclohexyl-3-hydroxybut-2-enamide (5h)

Figure S23. ¹³C and DEPT-135 NMR spectra of 5h (75 MHz, CDCl₃).

Figure S24. HRMS (+ESI) spectrum of 5h.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)-2-phenylacetamido)-*N*-cyclohexyl-3-hydroxy-3-phenylacrylamide (5i)

Figure S26. ¹³C and DEPT-135 NMR spectra of 5i (75 MHz, CDCl₃).

Figure S27. HRMS (+ESI) spectrum of 5i.

(*E*)-2-(2-Chloro-*N*-(2-nitrobenzyl)-2-phenylacetamido)-*N*-cyclohexyl-3-(4-fluorophenyl)-3-hydroxyacrylamide (5j)

Figure S29. ¹³C and DEPT-135 NMR spectra of 5j (75 MHz, CDCl₃).

Figure S30. HRMS (+ESI) spectrum of 5j.

(*E*)-2-(*N*-Benzyl-2-chloroacetamido)-*N*-cyclohexyl-3-hydroxy-3-phenylacrylamide (5k)

Figure S32. ¹³C and DEPT-135 NMR spectra of 5k (75 MHz, CDCl₃).

Figure S33. HRMS (EI) spectrum of 5k.

Methyl (*E*)-2-(2-chloro-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)acetamido)acetate (5l)

Figure S35. ¹³C and DEPT-135 NMR spectra of 5l (75 MHz, CDCl₃).

Figure S36. HRMS (+ESI) spectrum of 5l.

Methyl (*S*,*E*)-2-(2-chloro-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)acetamido)-2-phenylacetate (5m)

Figure S38. ¹³C and DEPT-135 NMR spectra of 5m (75 MHz, CDCl₃).

Figure S39. HRMS (+ESI) spectrum of 5m.

Figure S41. ¹³C and DEPT-135 NMR spectra of 5n (75 MHz, CDCl₃).

Ċ

Figure S42. HRMS (+ESI) spectrum of 5n.

Methyl (*S,E*)-2-(2-chloro-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1en-2-yl)acetamido)-3-phenylpropanoate (50)

Figure S44. ¹³C and DEPT-135 NMR spectra of 50 (75 MHz, CDCl₃).

Figure S45. HRMS (+ESI) spectrum of 50.

Methyl (S,*E*)-2-(2-chloroacetyl)-*N*-(3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)acetamido)-3-methylbutanoate (5p)

Figure S47. ¹³C and DEPT-135 NMR spectra of **5p** (75 MHz, CDCl₃).

Figure S48. HRMS (+ESI) spectrum of 5p.

Methyl 2-(2-chloro-*N*-((*E*)-3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)-2-phenylacetamido)acetate (5q)

Figure S50. ¹³C and DEPT-135 NMR spectra of 5q (75 MHz, CDCl₃).

Figure S51. HRMS (+ESI) spectrum of 5q.

Methyl (2*S*)-2-(2-chloro-*N*-((*E*)-3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)-2-phenylacetamido)-2-phenylacetate (5r)

15.82 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 8.8.05 7.7.55 7.7

Figure S53. ¹³C and DEPT-135 NMR spectra of 5r (75 MHz, CDCl₃).

Figure S54. HRMS (+ESI) spectrum of 5r.

Methyl (2*S*)-2-(2-chloro-*N*-((*E*)-3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)-2-phenylacetamido)propanoate (5s)

Figure S56. ¹³C and DEPT-135 NMR spectra of 5s (75 MHz, CDCl₃).

Figure S57. HRMS (+ESI) spectrum of 5s.

Methyl (2*S*)-2-(2-chloro-*N*-((*E*)-3-(cyclohexylamino)-1-hydroxy-3-oxo-1-phenylprop-1-en-2-yl)-2-phenylacetamido)-3-phenylpropanoate (5t)

Figure S59. ¹³C and DEPT-135 NMR spectra of 5t (75 MHz, CDCl₃).

Figure S60. HRMS (+ESI) spectrum of 5t.

4-Benzoyl-4-cyclohexylcarbamoyl-1-(2-nitrobenzyl)azetidin-2-one (6a)

Figure S62. ¹³C and DEPT-135 NMR spectra of 6a (75 MHz, CDCl₃).

Figure S63. HRMS (+ESI) spectrum of 6a.

Figure S65. ¹³C and DEPT-135 NMR spectra of 6b (75 MHz, CDCl₃).

Figure S66. HRMS (+ESI) spectrum of 6b.

Figure S69. HRMS (+ESI) spectrum of 6c.

4-Cyclohexylcarbamoyl-4-(4-methylbenzoyl)-1-(2-nitrobenzyl)azetidin-2-one (6d)

Figure S71. ¹³C and DEPT-135 NMR spectra of 6d (75 MHz, CDCl₃).

Figure S72. HRMS (+ESI) spectrum of 6d.

Figure S74. ¹³C and DEPT-135 NMR spectra of 6e (75 MHz, CDCl₃).

Figure S75. HRMS (+ESI) spectrum of 6e.

Figure S77. ¹³C and DEPT-135 NMR spectra of 6f (75 MHz, CDCl₃).

Figure S78. HRMS (+ESI) spectrum of 6f.

4-Cyclohexylcarbamoyl-4-(4-methoxybenzoyl)-1-(2-nitrobenzyl)azetidin-2-one (6g)

Figure S81. HRMS (+ESI) spectrum of 6g.

Figure S83. ¹³C and DEPT-135 NMR spectra of 6h (75 MHz, CDCl₃).

Figure S84. HRMS (+ESI) spectrum of 6h.

4-Benzoyl-4-cyclohexylcarbamoyl-3-phenyl-1-(2-nitrobenzyl)azetidin-2-one (6i)

Figure S87. HRMS (+ESI) spectrum of 6i.

Figure S89. ¹³C and DEPT-135 NMR spectra of 6j (75 MHz, CDCl₃).

Figure S90. HRMS (+ESI) spectrum of 6j.

1-Benzyl-4-benzoyl-4-cyclohexylcarbamoylazetidin-2-one (6k)

Figure S93. HRMS (+ESI) spectrum of 6k.

Figure S95. ¹³C NMR spectrum of 6l (75 MHz, CDCl₃).

Figure S96. HRMS (+ESI) spectrum of 6l.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-1'-phenylmethyl)azetidin-2-one (6m)

Figure S98. ¹³C and DEPT-135 NMR spectra of 6m (75 MHz, CDCl₃).

Figure S99. HRMS (+ESI) spectrum of 6m.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonylethyl)-azetidin-2one (6n)

Figure S101. ¹³C and DEPT-135 NMR spectra of 6n (75 MHz, CDCl₃).

Figure S102. HRMS (+ESI) spectrum of 6n.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-2'-phenylethyl)azetidin-2-one (60)

Figure S104. ¹³C and DEPT-135 NMR spectra of 60 (75 MHz, CDCl₃).

Figure S105. HRMS (+ESI) spectrum of 60.

Figure S107. ¹³C and DEPT-135 NMR spectra of 6p (75 MHz, CDCl₃).

Figure S108. HRMS (+ESI) spectrum of 6p.

(3*R**,4*S**)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(methoxycarbonylmethyl)-3-phenylazetidin-2-one (6q_{diast1})

Figure S111. NOESY spectrum of 6q_{diast1} (300 MHz, CDCl₃).

(3*R**,4*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(methoxycarbonylmethyl)-3-phenylazetidin-2-one (6q_{diast2})

Figure S114. ¹³C and DEPT-135 NMR spectra of 6q_{diast2} (75 MHz, CDCl₃).

Figure S115. HRMS (+ESI) spectrum of 6q_{diast2}.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-1'-phenylmethyl)-3-phenylazetidin-2-one (6r)

Figure S117. ¹³C and DEPT-135 NMR spectra of 6r (75 MHz, CDCl₃).

Figure S118. HRMS (+ESI) spectrum of 6r.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonylethyl)-3-in-2-one (6s)

Figure S120. ¹³C and DEPT-135 NMR spectra of 6s (75 MHz, CDCl₃).

Figure S121. HRMS (+ESI) spectrum of 6s.

(1'S)-4-Benzoyl-4-cyclohexylcarbamoyl-1-(1'-methoxycarbonyl-2'-phenylethyl)-3-phenylazetidin-2-one (6t)

Figure S123. ¹³C and DEPT-135 NMR spectra of 6t (75 MHz, CDCl₃).

Figure S124. HRMS (+ESI) spectrum of 6t.

(4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-(2-nitrophenyl)pyrrolidin-2-one (7a)

Figure S126. ¹³C and DEPT-135 NMR spectra of 7a (75 MHz, CDCl₃).

Figure S127. HRMS (+ESI) spectrum of 7a.

(4*R**,5*R**)-4-Benzoyl-4-benzylcarbamoyl-5-(2-nitrophenyl)pyrrolidin-2-one (7b)

Figure S130. HRMS (+ESI) spectrum of 7b.

(4*R**,5*R**)-4-Benzoyl-4-(*tert*-butylcarbamoyl)-5-(2-nitrophenyl)pyrrolidin-2-one (7c)

Figure S132. ¹³C and DEPT-135 NMR spectra of 7c (75 MHz, CDCl₃).

Figure S133. HRMS (+ESI) spectrum of 7c.

(4*R**,5*R**)-4-Cyclohexylcarbamoyl-4-(4-methylbenzoyl)-5-(2nitrophenyl)pyrrolidin-2-one (7d)

Figure S135. ¹³C and DEPT-135 NMR spectra of 7d (75 MHz, CDCl₃).

Figure S136. HRMS (+ESI) spectrum of 7d.

(4*R**,5*R**)-4-(4-Chlorobenzoyl)-4-cyclohexylcarbamoyl-5-(2nitrophenyl)pyrrolidin-2-one (7e)

Figure S138. ¹³C NMR spectrum of 7e (75 MHz, CDCl₃).

Figure S139. HRMS (+ESI) spectrum of 7e.

(4*R**,5*R**)-4-Cyclohexylcarbamoyl-4-(4-fluorobenzoyl)-5-(2nitrophenyl)pyrrolidin-2-one (7f)

Figure S141. ¹³C NMR spectrum of 7f (75 MHz, CDCl₃).

Figure S142. HRMS (+ESI) spectrum of 7f.

(4*R**,5*R**)-4-Cyclohexylcarbamoyl-4-(4-methoxybenzoyl)-5-(2nitrophenyl)pyrrolidin-2-one (7g)

Figure S145. HRMS (+ESI) spectrum of 7g.

Figure S147. ¹³C and DEPT-135 NMR spectra of 7h (75 MHz, CDCl₃).

Figure S148. HRMS (+ESI) spectrum of 7h.

(3*R**,4*R**,5*S**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-(2-nitrophenyl)-3-phenylpyrrolidin-2-one (7i_{diast1})

Figure S150. ¹³C and DEPT-135 NMR spectra of 7i_{diast1} (75 MHz, CDCl₃).

Figure S151. NOESY spectrum of 7i_{diast1} (300 MHz, CDCl₃).

Figure S152. HRMS (+ESI) spectrum of 7i_{diast1}.

(3*R**,4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-(2-nitrophenyl)-3phenylpyrrolidin-2-one (7i_{diast2})

Figure S153. ¹H NMR spectrum of 7i_{diast2} (300 MHz, CDCl₃).

Figure S154. ¹³C and DEPT-135 NMR spectra of 7i_{diast2} (75 MHz, CDCl₃).

Figure S155. HRMS (+ESI) spectrum of 7idiast2.

 $(3R^*, 4R^*, 5S^*)$ -4-cyclohexylcarbamoyl-4-(4-fluorobenzoyl)-5-(2-nitrophenyl)-3-phenylpyrrolidin-2-one $(7j_{diast1})$

Figure S157. ¹³C and DEPT-135 NMR spectra of 7j_{diast1} (75 MHz, CDCl₃).

Figure S158. HRMS (+ESI) spectrum of $7j_{diast1}$.

 $(3R^*, 4R^*, 5R^*)$ -4-Cyclohexylcarbamoyl-4-(4-fluorobenzoyl)-5-(2-nitrophenyl)-3-phenylpyrrolidin-2-one (7j_{diast2})

Figure S160. ¹³C and DEPT-135 NMR spectra of $7j_{diast2}$ (75 MHz, CDCl₃).

Figure S161. HRMS (+ESI) spectrum of $7j_{diast2}$.

(4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-(methoxycarbonyl)pyrrolidin-2-one (7l)

Figure S163. ¹³C NMR spectrum of 7l (75 MHz, CDCl₃).

Figure S164. HRMS (+ESI) spectrum of 7l.

Figure S165. ¹H NMR spectrum of 9l (300 MHz, CDCl₃).

Figure S167. HRMS (+ESI) spectrum of 9l.

(3a*R**,6a*S**)-3a-Benzoyl-5-cyclohexyl-6a-phenyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (8m)

Figure S169. ¹³C and DEPT-135 NMR spectra of 8m (75 MHz, CDCl₃).

Figure S170. HRMS (+ESI) spectrum of 8m.

(3a*R**,6a*S**)-5-Cyclohexyl-6a-phenyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (9m)

Figure S172. ¹³C and DEPT-135 NMR spectra of 9m (75 MHz, CDCl₃).

Figure S173. HRMS (+ESI) spectrum of 9m.

(4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-5methylpyrrolidin-2-one (7n)

Figure S175. ¹³C and DEPT-135 NMR spectra of 7n (75 MHz, CDCl₃).

Figure S176. HRMS (+ESI) spectrum of 7n.

(3a*R**,6a*S**)-3a-Benzoyl-5-cyclohexyl-6a-methyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (8n)

Figure S178. ¹³C and DEPT-135 NMR spectra of 8n (75 MHz, CDCl₃).

Figure S179. HRMS (+ESI) spectrum of 8n.

(3a*R**,6a*S**)-5-Cyclohexyl-6a-methyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (9n)

Figure S180. ¹H NMR spectrum of 9n (300 MHz, CDCl₃).

Figure S181. ¹³C and DEPT-135 NMR spectra of 9n (75 MHz, CDCl₃).

Figure S182. HRMS (+ESI) spectrum of 9n.

(4*R**,5*R**)-4-Benzoyl-5-benzyl-4-cyclohexylcarbamoyl-5-(methoxycarbonyl)pyrrolidin-2-one (70)

Figure S184. ¹³C NMR spectrum of 70 (75 MHz, CDCl₃).

Figure S185. HRMS (+ESI) spectrum of 70.

(3a*R**,6a*S**)-3a-Benzoyl-6a-benzyl-5-cyclohexyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (80)

Figure S186. ¹H NMR spectrum of 80 (300 MHz, CDCl₃).

Figure S187. ¹³C and DEPT-135 NMR spectra of 80 (75 MHz, CDCl₃).

Figure S188. HRMS (+ESI) spectrum of 80.

(3a*R**,6a*S**)-6a-Benzyl-5-cyclohexyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (90)

Figure S190. ¹³C and DEPT-135 NMR spectra of 90 (75 MHz, CDCl₃).

Figure S191. HRMS (+ESI) spectrum of 90.

(3a*R**,6a*S**)-3a-Benzoyl-6a-isopropyl-5-cyclohexyltetrahydropyrrolo[3,4*b*]pyrrole-2,4,6(5*H*)-trione (8p)

Figure S193. ¹³C and DEPT-135 NMR spectra of 8p (75 MHz, CDCl₃).

Figure S194. HRMS (+ESI) spectrum of 8p.

(3a*R**,6a*S**)-5-Cyclohexyl-6a-isopropyltetrahydropyrrolo[3,4-*b*]pyrrole-2,4,6(5*H*)-trione (9p)

Figure S196. ¹³C and DEPT-135 NMR spectra of 9p (75 MHz, CDCl₃).

Figure S197. HRMS (+ESI) spectrum of 9p.

(3*R**,4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-3phenylpyrrolidin-2-one (7q_{diast1})

R bpm 0 © ppm

Figure S199. ¹³C and DEPT-135 NMR spectra of 7q_{diast1} (75 MHz, CDCl₃).

Figure S200. HMQC spectrum of 7q_{diast1} (300 MHz, CDCl₃).

Figure S201. HMBC spectrum of 7q_{diast1} (300 MHz, CDCl₃).

Figure S202. NOESY spectrum of 7q_{diast1} (300 MHz, CDCl₃).

Figure S203. HRMS (+ESI) spectrum of 7q_{diast1}.

Figure S204. ¹H NMR spectrum of 7q_{diast2} (300 MHz, CDCl₃).

Figure S205. ¹³C NMR spectrum of 7q_{diast2} (75 MHz, CDCl₃).

Figure S206. HRMS (+ESI) spectrum of $7q_{diast2}$.

(3a*R**,6a*S**)-3a-Benzoyl-5-cyclohexyl-3,6a-diphenyltetrahydropyrrolo[3,4*b*]pyrrole-2,4,6(5*H*)-trione (8r)

Figure S207. ¹H NMR spectrum of 8r (300 MHz, CDCl₃).

Figure S208. ¹³C and DEPT-135 NMR spectra of 8r (75 MHz, CDCl₃).

Figure S209. HRMS (+ESI) spectrum of 8r.

(3*R**,4*R**,5*R**)-4-Benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-5-methyl-3phenylpyrrolidin-2-one (7s)

7.7.37.7.4<

Figure S211. ¹³C and DEPT-135 NMR spectra of 7s (75 MHz, CDCl₃).

Figure S212. NOESY spectrum of 7s (300 MHz, CDCl₃).

Figure S213. HRMS (+ESI) spectrum of 7s.

(3*R**,4*R**,5*R**)-5-Benzyl-4-benzoyl-4-cyclohexylcarbamoyl-5-methoxycarbonyl-3phenylpyrrolidin-2-one (7t)

Figure S215. ¹³C and DEPT-135 NMR spectra of 7t (75 MHz, CDCl₃).

Figure S216. NOESY spectrum of 7t (300 MHz, CDCl₃).

Figure S219. ¹³C and DEPT-135 NMR spectra of 10a (75 MHz, CDCl₃).

Figure S220. HRMS (+ESI) spectrum of 10a.

(4*R**,5*S**)-4-Benzylcarbamoyl-5-(2-nitrophenyl)pyrrolidin-2-one (10b)

Figure S223. HRMS (+ESI) spectrum of 10b.

(4*R**,5*S**)-4-(*tert*-Butylcarbamoyl)-5-(2-nitrophenyl)pyrrolidin-2-one (10c)

Figure S226. HRMS (+ESI) spectrum of 10c.

1-Benzyl-4-cyclohexylcarbamoyl-2-azetidinone (11)

Figure S228. ¹³C and DEPT-135 NMR spectra of 11 (75 MHz, CDCl₃).

Figure S229. HRMS (+ESI) spectrum of 11.

4-Benzoyl-4-cyclohexylcarbamoyl-5-phenylpyrrolidin-2-one (7k)

Figure S231. ¹³C and DEPT-135 NMR spectra of 7k (125 MHz, CDCl₃).

3-Benzoyl-1-cyclohexylpyrrolidin-2,5-dione (12)

8.8.12 8.8.10 8.8.11 8.8.11 8.8.11 8.8.11 8.8.11 8.8.11 7.7.55 7.7.75 7.7.55 7.7.75 7.

Figure S233. ¹³C and DEPT-135 NMR spectra of 12 (75 MHz, CDCl₃).

Figure S234. HRMS (+ESI) spectrum of 12.

4. X-ray crystallographic data for compounds 6a, 7d, 7jdiast2, 8m and 9n

	6a	7d	7jdiast2	8m
formula	C24H25N3O5	C ₂₅ H ₂₇ N ₃ O ₅	C ₃₀ H ₂₈ FN ₃ O ₅ ·CHCl ₃	$C_{25}H_{24}N_2O_4$
MW	435.47	449.49	648.92	416.46
crystal system	Monoclinic	Triclinic	Triclinic	Triclinic
space group	$P2_{1}/c$	P-1	P-1	<i>P</i> -1
<i>T</i> /K	298(2)	100(2)	230(2)	100(2)
a/Å	12.5652(2)	10.1914(11)	9.940(16)	8.9559(3)
b/Å	14.3595(3)	10.3790(11)	10.793(10)	11.0368(4)
c/Å	12.2203(2)	11.8123(13)	16.25(2)	12.1951(5)
α/deg	90	73.566(2)	108.53(4)	90.7300(10)
β/deg	100.2020(10)	67.677(2)	96.84(7)	106.0010(10)
γ/deg	90	83.029(2)	106.91(5)	100.4010(10)
V/Å ³	2170.05(7)	1108.5(2)	1538(4)	1137.18(7)
F(000)	920	476	672	440
Z	4	2	2	2
λ , Å (MoK _{α} or CuK _{α})	1.54178	0.71073	1.54184	1.54178
$D_{\rm calc}/{ m g~cm^{-3}}$	1.333	1.347	1.401	1.216
μ/mm^{-1}	0.777	0.095	3.129	0.673
θ range/deg	5.58-72.16	1.93-28.25	2.95-66.67	5.38-66.79
R _{int}	0.0425	0.0462	0.0900	0.0579
reflections measured	37271	13009	29480	48611
unique reflections	4231	5000	5392	3983
reflections observed	3564	3058	3218	3736
GOF on F^2	1.028	0.914	1.023	1.136
$R1^a$	0.0421	0.0502	0.0657	0.0605
$wR2^b$	0.1100	0.1274	0.2160	0.1716
Largest \neq peak & hole/eÅ ⁻³	0.203 and -0.221	0.287 and -0.253	0.542 and -0.426	0.610 and -0.324
$a R1 = \sum F_0$	$- Fc / \Sigma F_0 . b w$	$R2$ (all data) = $\{\sum [v]$	$W(F_0 ^2 - Fc ^2)^2]/\sum[W(F_0 ^2)]/\sum[W(F_0 ^2)]/\sum[W$	$F_0^4)]\}^{1/2}$

Table S1. Crystal data and refinement details for compounds 6a, 7d, 7jdiast2 and 8m.

Table S2. Crystal data and refinement details for compound 9n.

		0
		<u>yn</u>
	formula	$C_{13}H_{18}N_2O_3$
	MW	250.29
	crystal system	Monoclinic
	space group	$P2_1/n$
	<i>T</i> /K	230(2)
	a/Å	10.9497(11)
	b/Å	10.1546(11)
	c/Å	12.5474(19)
	α/deg	90
	β/deg	111.425(8)
	v/deg	90
	V/Å ³	1298.7(3)
	<i>F</i> (000)	536
	Z	4
	λ , Å (MoK _{α} or CuK _{α})	1.54184
	$D_{\rm calc}/{\rm g~cm^{-3}}$	1.280
	μ/mm^{-1}	0.751
	θ range/deg	5.77-72.47
	$R_{\rm int}$	0.0687
	reflections measured	38343
	unique reflections	2560
	reflections observed	2194
	GOF on F^2	1.065
	$R1^a$	0.0423
	$wR2^b$	0.1093
	Largest ≠ peak & hole/eÅ ⁻³	0.286 and -0.216
$R1 = \sum F_0 - F$	$c / \sum F_0 \cdot b wR2$ (all data) =	$= \{\sum [w(F_0 ^2 - F_c ^2)^2] / \sum [w(F_0^4)]^2 \}$

X-ray diffraction studies. Single crystals were obtained by slow evaporation of solutions of the isolated compounds in acetone (**6a**), methanol (**7d** and **8m**) or a 1:3 chloroform:hexane mixture (**7jdiast2** and **9n**).

Three dimensional X-ray data were collected on BRUKER SMART APEX CCD (7d) and BRUKER D8 VENTURE (6a, 8m, 7jdiast2 and 9n) diffractometers. For 6a, 7jdiast2, 8m, and 9n, data were corrected for absorption by semiempirical methods^[1] based on symmetry-equivalent reflections; no absorption correction was carried out in the case of 7d. Complex scattering factors were taken from the SHELXL-2016^[2] (6a, 7d, 7jdiast2 and 9n) or SHELXL-2018^[2] (8m) programs, running under the WinGX program system^[3] (6a and 7d) or under the Olex2 software^[4] (7jdiast2, 8m and 9n). The structure of 6a was solved with Superflip,^[5] whereas that of 7d was solved with SIR92^[6] and those of 7jdiast2, 8m and 9n with SHELXT;^[7] all of them were refined by full-matrix least-squares on F². For 7d all hydrogen atoms, except those corresponding to the NH fragments of the amide groups, which were refined freely in the final stages of the refinement, were included in calculated positions and refined in riding mode; in the case of 6a, 7jdiast2, 8m and 9n all hydrogen atoms were included in calculated positions. The molecular structure of 7d shows positional disorder in the nitro group, with an occupation factor of 0.56 for the atoms labelled as A. EXTI correction was employed to complete the refinement of 7jdiast2 and 8m. Finally, refinement converged with anisotropic displacement parameters for all non-hydrogen atoms for the 5 crystals. Crystal data and details on data collection and refinement are summarized in Tables S1 and S2. CCDC 2193426 (6a), 2193428 (7d), 2193429 (7jdiast1), 2193430 (8m) and 2193435 (9n) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data request/cif.

^[1] SADABS 2016/2: Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. J. Appl. Cryst. 2015, 48, 3-10.

^[2] SHELXL-2016, SHELXL-2018: Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.

^[3] WinGX: Farrugia, L. J. J. Appl. Cryst. **1999**, *32*, 837-838.

^[4] Olex2: Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339-341.

^[5] SUPERFLIP: Palatinus, L.; Chapuis, G. J. Appl. Cryst. 2007, 40, 786-790.

^[6] SIR92: Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M. J. Appl. Cryst. 1994, 27, 435.

^[7] SHELXT: Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.

Figure S235. X-ray molecular structure of compound **6a**. Hydrogen atoms, except that of the N-H fragment, have been omitted for the sake of simplicity. The ORTEP plot is at the 30% probability level.

Figure S236. X-ray molecular structure of compound **7d**. The structure presents positional disorder in the nitro group, and the represented oxygen atoms correspond to those displaying the highest occupation factor. Hydrogen atoms, except those of the N-H fragments, have been omitted for the sake of simplicity. The ORTEP plot is at the 30% probability level.

Figure S237. X-ray molecular structure of compound **7jdiast2**. Hydrogen atoms, except those of the N-H fragments, and a chloroform molecule have been omitted for the sake of simplicity. The ORTEP plot is at the 30% probability level.

Figure S238. X-ray molecular structure of compound **8m**. Hydrogen atoms, except that of the N-H fragment, have been omitted for the sake of simplicity. The ORTEP plot is at the 30% probability level.

Figure S239. X-ray molecular structure of compound **9n**. Hydrogen atoms, except that of the N-H fragment, have been omitted for the sake of simplicity. The ORTEP plot is at the 30% probability level.