Supplementary material

Natural deep eutectic solvent-based aqueous biphasic system coupled with MoS₂ photocatalytic reduction for green recovery of gold from thiosulfate solution

Guiping Zhu,^a Junhui Yu,^a Ru Zhang,^a Ding Chen,^a Xiaoyu Ma,^a Lingling Zhao,^a Qilan Huang,^a Xiangjun Yang,^{*a} Shixiong Wang,^{*a}

^a Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, China.

*Corresponding Author at: School of Chemical Science and Technology, Yunnan University, No. 2, CuiHu North Road, Kunming, Yunnan Province 650091, China. E-mail: yxjun@ynu.edu.cn (X. Yang); wangshixiong@ynu.edu.cn (S. Wang)

Number of pages in Supporting Information: 29 Number of tables in Supporting Information: 7 Number of figures in Supporting information: 9 Number of texts in Supporting information: 7

Contents

Table S1. Chemicals
Table S2. Preparation of NADESs ^a
Fig. S1. (a)~(c) represent ¹ H NMR spectra of Bet-Lac, ChCl-Lac and ChCl-Xyl
Table S3. ¹ H NMR data of Bet-Lac, ChCl-Lac and ChCl-Xyl
Fig. S2. FT-IR spectra of pure substances ChCl-Lac (a), Bet-Lac (b) and ChCl-Xyl (c)7
TEXT S1. FT-IR analysis of NADESs
TEXT S2. Preparation of the stock solution of $Au(S_2O_3)_2^{3-}$
Table S4. Distribution ratio of NADES + K_3PO_4 + water system at extraction equilibrium °9
TEXT S3. Preparation of MoS ₂ 10
Table S5. Fitting parameters of NADES + K_3PO_4 + water system10
Table S6. Tie-line data of NADES + K_3PO_4 + water system ^e 10
Fig. S3. Effects of temperature on extraction of $Au(S_2O_3)_2^{3-}$ 11
Table S7. Thermodynamic parameters of extraction of $Au(S_2O_3)_2^{3-}$ by NADES-ATPSs11
Fig. S4. FT-IR spectra of Bet-Lac (a) and ChCl-Xyl (b) before and after loaded with Au(I)12
Fig. S5. Wide scanning XPS spectra (a) and S 2p spectra (b) of the NADES-rich phase with or
without Au(I) loaded
Fig. S6. Effects of ClO_4^- content on extraction efficiency
TEXT S4. Characterization of MoS ₂ 14
Fig. S7. XRD patterns of MoS ₂ that were synthesized using a microwave-assisted method15
Fig. S8. Wide scanning XPS spectra (a) and Mo 3d spectra (b) of sediments before and after
reduction16
TEXT S5. Mechanism of gold recovery from NADES-rich phase by MoS ₂ 16
Fig. S9. Diffuse reflection absorption curve of MoS_2 (a) and Tauc plots of MoS_2 (b)17
TEXT S6. Construction of a cyclic model17
TEXT S7. The calculation details

2. Material and methods

2.1. Chemicals

Content Manufacturer (Company) Reagent 99.0% Betaine hydrochloride Adamas Chemical reagent Choline chloride 99.0% Adamas Chemical reagent 99.0% Acetic acid glacial Adamas Chemical reagent Propionic acid 99.0% Adamas Chemical reagent Malonic acid 99.0% Adamas Chemical reagent Butyric acid 99.0% Adamas Chemical reagent Ethylene glycol 99.0% Adamas Chemical reagent D-(+)-glucose 99.0% Adamas Chemical reagent D-(-)-fructose 99.0% Adamas Chemical reagent Potassium phosphate tribasic 99.0% Adamas Chemical reagent Sodium thiosulfate 99.0% Adamas Chemical reagent Thiourea 99.0% Adamas Chemical reagent Molybdenum (IV) sulfide 99.0% Adamas Chemical reagent Itaconic acid 99.0% Adamas Chemical reagent DL-Malic acid 99.8% Adamas Chemical reagent Sorbic acid 99.8% Adamas Chemical reagent 99.8% 2-Propanol Adamas Chemical reagent 99.8% 1,3-Propanediol Adamas Chemical reagent Cupric chloride anhydrous 99.8% Adamas Chemical reagent 99.8% Dimethyl sulfoxide-d6 Adamas Chemical reagent Cobalt chloride 99.8%+ Adamas Chemical reagent Methyl alcohol 99.9% Adamas Chemical reagent 99.9% 1-Butanol Adamas Chemical reagent **Xylitol** 99.9%+ Adamas Chemical reagent Ammonium molybdate(VI) 99.9%+ Adamas Chemical reagent Tetrahydrate 99.9%+ Lithium hydroxide Adamas Chemical reagent Gold 99.99% Adamas Chemical reagent Lactic acid ≥80.0% Greagent Chemical reagent Sodium hydroxide ≥96.0% Greagent Chemical reagent Sodium sulfide nonahydrate ≥98.0% Greagent Chemical reagent Ammonium citrate tribasic ≥98.5% Greagent Chemical reagent Ammonium dihydrogen phosphate ≥99.0% Greagent Chemical reagent Sodium citrate dihydrate ≥99.0% Greagent Chemical reagent Glycerol ≥99.0% Greagent Chemical reagent Oxalic acid ≥99.0% Greagent Chemical reagent

Table S1. Chemicals

1-Propanol	≥99.5%	Greagent Chemical reagent
N,N-Dimethylformamide	≥99.5%	Greagent Chemical reagent
Ethanol	≥99.7%	Greagent Chemical reagent
Nickel(II) chloride hexahydrate	≥98.0%	Accela Chemical reagent
HCl	36.0-38.0 wt%	Fengchuan Reagent Technology Co., Ltd.

2.2. Preparation of NADESs

Table S2	2. Prepar	ation o	f NADESs ^a
----------	-----------	---------	-----------------------

HBA		Betaine Hydrochloride				Choline Chloride	
Туре	HBD	Proportion ^b	Phase separation capability	Extraction rate (%)	Proportion ^b	Phase separation capability	Extraction rate (%)
	Acetic acid Glacial	1:1:0	Poor	_	1:1:0	Poor	_
	Oxalic acid	1:1:2	Poor	—	1:1:2	Poor	—
	Propionic acid	1:1:0	Ordinary	93.6	1:1:0	Ordinary	93.9
	Malonic acid	1:1:2	Poor	—	1:1:2	Poor	-
Acids	Lactic acid	1:1:0	Fine	96.4	1:1:0	Fine	96.2
	Butyric acid	1:1:0	Ordinary	93.1	1:1:0	Ordinary	94.5
	DL-Malic acid	3:2:6	Poor	_	1:1:2	Poor	_
	Sorbic acid	1:1:2	Poor	—	1:1:2	Poor	—
	Itaconic acid	1:1:2	Poor	—	1:1:2	Poor	_
	Methyl alcohol	1:1:0	Poor	—	1:1:0	Poor	_
	Ethanol	1:3:0	Poor	—	1:4:0	Poor	_
	Ethylene glycol	1:2:0	Ordinary	88.6	1:1:2	Ordinary	89.4
	1-Propanol	1:1:0	Poor	—	1:1:0	Poor	_
Alcohols	1,3-Propanediol	1:4:0	Ordinary	89.8	1:4:0	Ordinary	90.8
	2-Propanol	1:1:0	Poor	—	1:1:0	Poor	—
	Glycerol	1:2:1	Poor	—	1:2:1	Poor	—
	1-Butanol	1:1:0	Poor	—	1:4:0	Poor	_
	Xylitol	2:1:8	Poor	—	1:1:1	Fine	96.1
	D-(+)-Glucose	1:1:4	Poor	_	1:1:4	Poor	_
Sugars	D-(-)-Fructose	2:1:2	Poor	_	1:1:4	Poor	_

^b Refers to the molar ratio of HBA, HBD, and water.

2.2. Preparation of NADESs

Characterization of NADESs: ¹H NMR analysis results

Fig. S1. (a)~(c) represent ¹H NMR spectra of Bet-Lac, ChCl-Lac and ChCl-Xyl with DMSO-d6 as the solvent, respectively

Table S3. ¹H NMR data of Bet-Lac, ChCl-Lac and ChCl-Xyl. (600 MHz, DMSO-d6).

Name	¹ H NMR (ppm)
Bet-Lac	δ 4.9306 (q, J = 7.1 Hz, 1H), 4.0518 (m, 1H), 3.8517 (s, 2H), 3.1805 (s, 9H), 1.2672 (m, 3H).
ChCl-Lac	δ 12.4255 (s, 1H), 5.6273 (s, 1H), 4.9960 (m, 1H), 4.0474 (m, 1H), 3.8210 (tt, J = 5.3, 3.0 Hz,
	2H), 3.4398 (t, J = 5.1 Hz, 2H), 3.1507 (s, 9H), 1.2363 (m, 3H).
ChCl-Xyl	δ 5.5886 (t, J = 5.3 Hz, 1H), 4.5358 (m, 4H), 4.1993 (s, 1H), 3.8250 (t, J = 4.8 Hz, 2H), 3.5239
	(q, J = 5.2 Hz, 2H), 3.4450 (d, J = 7.5 Hz, 6H), 3.3459 (dd, J = 10.9, 6.2 Hz, 1H), 3.1448 (s, 9H).

Characterization of NADESs: FT-IR analysis

Fig. S2. FT-IR spectra of pure substances ChCl-Lac (a), Bet-Lac (b) and ChCl-Xyl (c).

TEXT S1. FT-IR analysis of NADESs

To study the interaction between the HBA (Bet or ChCl) and HBD (Lac or Xyl), the raw materials and synthesized compounds were characterized using FT-IR. In the FT-IR spectrum of pure Lac (Fig. S2a), there is a broad peak at 3445.90 cm⁻¹ that corresponds to the -OH stretching vibration. After ChCl-Lac formed, the -OH absorption band was dispersed and wider; also, the frequency was redshifted to 3362.58 cm⁻¹.¹ These results indicate that the -OH in the carboxyl group forms an intermolecular hydrogen bond with the chloride in ChCl.² Furthermore, the stretching vibration peak of C=O is at 1728.61 cm⁻¹ in the spectrum of pure Lac. After ChCl-Lac was generated, the stretching vibration peak of C=O shifted to 1732.50 cm⁻¹ ($\Delta\lambda \approx 4$ cm⁻¹). The reason for this is that the generation of intermolecular hydrogen bonds causes the electron cloud between the atoms in the C=O bond, which was originally close to the O atom, to move to a certain extent toward the C atom, thus affecting the tensile vibration of C=O. Bet-Lac and ChCl-Xyl have similar results; details are provided in Fig. S2b and c. These FT-IR results confirm that the HBAs and HBDs proposed in this work successfully formed NADESs through hydrogen bonds.

2.4. Extraction procedures

TEXT S2. Preparation of the stock solution of Au(S₂O₃)₂³⁻

Preparation of gold thiosulfate $[Au(S_2O_3)_2]^{3-}$: First, pure gold was dissolved in aqua regia on a heating plate, followed by nitrate removal with 6 mol·L⁻¹ HCl for 3 times. Thereafter, the gold solution was dissolved to 2 g·L⁻¹ with deionized water and adjust the pH value of the solution to 9.0. Then add 1.0 mol·L⁻¹ Na₂S₂O₃ solution into the above gold solution until the solution becomes colorless ³. Finally, the solution was diluted to 200 mg·L⁻¹ with deionized water and adjusting the pH to 9.0 for standby.

			NADES	
Distribution ratio		Bet-Lac	ChCl-Lac	ChCl-Xyl
	5.00	/	/	/
	10.00	/	/	/
	25.00	/	/	/
	50.00	79.91±4.37	/	97.61±2.86
Concentration of gold (mg/L)	100.00	39.82±1.99	64.79±3.30	87.36±1.97
	200.00	24.17±0.57	28.31±0.82	79.31±2.45
	500.00	19.09±1.63	$22.841.07 \pm$	60.04±3.84
	900.00	18.13 ± 0.88	21.96±1.57	55.48±1.93
	1.00	16.19±0.75	22.35±1.50	40.61±2.32
	3.00	17.12±2.79	23.68±2.87	43.14±2.58
T ' (')	5.00	17.22±3.18	23.71±1.61	43.84 ± 0.80
Time (min)	10.00	17.52±1.56	24.23±2.32	65.11±2.24
	15.00	17.62 ± 2.40	24.46±3.27	72.52±1.38
	20.00	17.72 ± 0.57	24.34±0.71	79.31±2.45
	7.00	6.62±0.32	9.32±0.90	14.91±0.24
	8.00	10.21 ± 0.77	14.14 ± 0.83	30.29±3.23
	9.00	17.72 ± 0.57	24.34±0.71	79.31±2.45
-11	10.00	10.06 ± 2.94	14.07 ± 1.86	33.21±2.62
рн	11.00	8.41±1.12	11.76±1.21	$17.60{\pm}1.28$
	12.00	7.43 ± 0.43	$10.39{\pm}0.87$	15.31 ± 0.89
	13.00	6.18 ± 0.45	8.68 ± 0.52	12.82 ± 0.56
	14.00	5.77±0.65	8.10±0.43	$11.91{\pm}0.39$
	298.15	17.72 ± 0.57	24.34±0.71	79.31±2.45
	303.15	19.30±0.23	$26.48{\pm}0.83$	$80.93{\pm}0.85$
T(K)	313.15	22.57±1.35	31.06±2.71	86.38±1.93
	323.15	25.14 ± 2.02	34.59 ± 2.38	92.57±2.20
	333.15	$29.40{\pm}0.52$	$39.03{\pm}1.98$	99.63±0.00
	$[Au(S_2O_3)_2]^{3-1}$	$21.54{\pm}0.78$	23.01±1.57	73.26±2.56
Solootivity of NADES ATES for Au(SO) 3-	$[Cu(NH_3)_4]^{2+}$	0.00	0.00	0.00
Selectivity of NADES-ATPS8 for All $(S_2O_3)_2^\circ$	[Ni(NH ₃) ₆] ²⁺	$0.06{\pm}0.01$	0.00	$0.39{\pm}0.02$
	$[Co(NH_3)_6]^{3+}$	0.11±0.01	0.09±0.02	0.48±0.03

Table S4. Distribution ratio of NADES + K_3PO_4 + water system at extraction equilibrium ^c

$$SD = \left(\sum_{i=1}^{n} (X_{exp} - X_{ave})^2 / (n-1)\right)^{0.5}$$
, where X_{exp} and X_{ave} represent the experimental and average values of the

c

distribution coefficient respectively, and n represents the number of samples.

TEXT S3. Preparation of MoS₂

In this work, we obtained layered nanosheets MoS_2 based on a rapid microwave-assistant solvothermal synthesis method. First, add ammonium molybdate(VI) tetrahydrate (4 mmol) and thiourea (60 mmol) into 50 ml of deionized water and stir evenly at room temperature. Then, the solution was transferred to a 100 mL reaction tank and heated in a microwave reactor (UWave-2000) at a microwave power of 400 W at 200°C for 120 minutes. After synthesis, it was washed three times with deionized water and separated by centrifuge (8000 rpm, 10 minutes). The synthesized MoS_2 was dried in a vacuum drying oven at 80 °C for 24 hours and then stored for use.

3.3. Correlation of binodal curve and tie-line.

Table S5. Fitting parameters of NADES + K₃PO₄ + water system

	а	b	с	d	R ²	SD^d
Bet-Lac	163.8657	-48.7758	4.6932	-0.0180	0.9987	0.1056
ChCl-Lac	145.9355	-46.9527	5.0954	-0.0247	0.9963	0.4665
ChCl-Xyl	213.2084	-46.4719	2.0229	0.0109	0.9985	0.1769

 $SD = \left(\sum_{i=1}^{n} \left(w_{N}^{cal} - w_{N}^{exp}\right)^{2} / N\right)^{0.5}$, where w_{N}^{cal} and w_{N}^{exp} represent the calculated and experimental values of the mass

fraction of NADES respectively, and N represents the number of double nodes.

Table S6. Tie-line data of NADES + K₃PO₄ + water system ^e

	Total s	system	Bottom phase		Top phase			C C	TII	
	K(A)	N(A)	K(B)	N(B)	W(B)	K(T)	N(T)	W(T)	3	ILL
Bet-Lac	35.00	25.00	48.83	9.37	41.80	9.70	48.24	42.06	-0.99	55.15
ChCl-Lac	32.50	25.00	45.77	9.71	44.52	6.42	50.23	43.35	-1.03	56.48
ChCl-Xyl	40.00	25.00	38.86	18.63	42.51	10.52	52.15	37.33	-1.18	43.89

^e where K, N, and W represent the mass fraction (wt%) of K₃PO₄, NADES, and water respectively, and A, T, and B represent all, the top and bottom phases respectively.

3.4. Optimization of the extraction by NADESs

Fig. S3. Effects of temperature on extraction of $Au(S_2O_3)_2^{3-}$ under the conditions of [ChCl-Lac] ≈ 25.0 wt%, $[K_3PO_4] \approx 32.5$ wt%, [Au(I)] = 200 mg·L⁻¹, pH = 9.0 and time = 20 min.

T(K)	NADES-ATPS	$\Delta G_m^0(kJ \cdot mo^{l-1})$	$\Delta H_m^0(kJ \cdot mol^{-1})$	$\Delta S_m^0(J \cdot mol^{-1} K^{-1})$	$T \times \Delta S_m^0(kJ \cdot mol^{-1})$
298.15		-10.91 ± 0.38			18.80 ± 0.38
303.15		-11.23±0.39			19.11±0.39
313.15	Bet-lac	-11.86 ± 0.40	11.66 ± 0.40	63.04±1.29	19.74 ± 0.40
323.15		-12.49 ± 0.42			20.37±0.42
333.15		-13.12±0.43			21.00±0.43
298.15		-10.74 ± 0.38			18.99±0.38
303.15		-11.06±0.38	11.05±0.39	63.70±1.26	19.31 ± 0.38
313.15	ChCl-lac	-11.70±0.39			19.95±0.39
323.15		-12.34 ± 0.41			20.58±0.41
333.15		-12.97 ± 0.42			21.22±0.42
298.15		-8.53±0.28			16.25±0.28
303.15		-8.80 ± 0.28			16.52±0.28
313.15	ChCl-Xyl	-9.34±0.29	5.44±0.29	54.51±0.93	17.07±0.29
323.15		-9.89±0.30			17.62 ± 0.30
333.15		-10.43 ± 0.31			18.16±0.31

Table S7. Thermodynamic parameters of extraction of $Au(S_2O_3)_2^{3-}$ by NADES-ATPSs

3.6. Characterization of NADES-rich phase loaded with Au(I).

Fig. S4. FT-IR spectra of Bet-Lac (a) and ChCl-Xyl (b) before and after loaded with Au(I)

Fig. S5. Wide scanning XPS spectra (a) and S 2p spectra (b) of the NADES-rich phase with or without Au(I)

loaded.

Fig. S6. Effects of ClO_4^- content on extraction efficiency under the conditions of [ChCl-Lac] = 25.0 wt%, $[K_3PO_4] = 32.5$ wt%, [Au(I)] = 200 mg·L⁻¹, pH = 9.0, T = 298.15 K and t = 20 min.

TEXT S4. Characterization of MoS₂

XRD analysis. 2H MoS₂ usually exhibits a poor electrochemical performance due to limited active sites and intrinsic poor electrical transport property.⁴ Moreover, MoS₂ tends to form a stable 2H phase by restacking during the process of synthesis due to a thermodynamically metastable 1T phase.^{5,6} In addition, compared with 2H phase MoS₂, metallic 1T phase MoS₂ can promote both ion diffusion and electron transport due to the higher conductivity and the large number of edge active sites of 1T-MoS₂ that can accelerate the redox kinetics of polysulfides.⁷⁻⁹

Compared with traditional hydrothermal methods, microwave-assistant solvothermal synthesis method has fast, uniform, and efficient heating;¹⁰ thus, the resulting MoS₂ has more active sites and intrinsic activity. MoS₂, generally in the form of semiconductor phase (2H), but when ion migration occurs, it can be converted into metastable metal phase (1T). To obtain MoS₂ with high catalytic efficiency, we use a rapid microwave-assistant solvothermal synthesis method to convert part of the inert 2H phase into the catalytically active 1T phase. The prepared MoS₂ nanomaterial was characterized by XRD, as shown in Fig. S7. The characteristic diffraction peaks observed at $2\theta = 9.1^{\circ}$ and 18.2° of the sample correspond to the crystal plane (002) and crystal plane (004) of 1T-MoS₂ respectively.^{11, 12} The diffraction peaks at $2\theta = 32.5^{\circ}$, 35.8° and 57.8° correspond to the (100),

(102) and (110) crystal planes of 2H-MoS₂ (JCPDS card No. 73-1508),¹³ respectively. This indicates the presence of a thermodynamically unstable 1T phase in the final product under the rapid synthesis of microwave-assistant solvothermal synthesis method. The final product is amorphous MoS₂ with 1T phase and 2H phase coexistence. The absence of the 002 diffraction at $2\theta = 14.4^{\circ}$ suggests that absence of stacking, thus the sample should be an aggregate of single sheets of MoS₂.¹⁴ This proves that an amorphous phase of MoS₂ is formed.¹⁵

Fig. S7. XRD patterns of MoS₂ that were synthesized using a microwave-assisted method.

3.8. Reduction mechanism of MoS₂

Fig. S8. Wide scanning XPS spectra (a) and Mo 3d spectra (b) of sediments before and after reduction

TEXT S5. Mechanism of gold recovery from NADES-rich phase by MoS₂

UV-vis diffuse reflectance spectroscopy (DRS) of MoS_2 is presented in Fig. S9a. MoS_2 shows excellent absorption properties in both the ultraviolet and visible light regions because of the quantum effect of the transverse size of MoS_2 . This is consistent with the value that was obtained by Ghaleghafi et al. ¹⁶ and is very different from MoS_2 with good crystallization. This further confirms the high disorder of the quasi-amorphous phase of MoS_2 . The bandgap (E_g) of semiconductors can be obtained according to the tauc plot method ¹⁷, which uses Eq. (S1).

$$(\alpha hv)^{\frac{1}{n}} = A(hv - E_g)$$
(S1)

Here, α , h, v, A, and E_g are the absorbance, Planck's constant, the optical frequency, a constant, and the semiconductor bandgap, respectively. The index n is related to the type of semiconductor that is used. For the indirect bandgap semiconductor MoS₂, the index n is 2. The value of E_g for MoS₂ was obtained from Fig. S9b and is 1.66 eV. This is consistent with the value that was obtained by Zeng et al. ¹⁸. In addition, other essential parameters (the photocatalytic reaction, conduction band energy (E_{CB}), and valence band energy (E_{VB})) can be calculated using Eqs. (S2)-(S4)¹⁹.

$$E_{CB} = X - E_{e} - 0.5E_{g}$$
 (S2)

$$E_{VB} = E_g + E_{CB}$$
(S3)

$$\chi = [\chi(\text{Mo})^a \chi(\text{S})^b]^{1/(a+b)}$$
(S4)

 χ represents the Mulliken electronegativity of the semiconductor MoS₂; a and b refer to the atomic numbers of Mo and S in MoS₂, respectively. E_e, ^E_{CB}, and ^E_{VB} are the energy of free electrons and hydrogen (4.5 eV), the conduction band, and the valence band of MoS₂, respectively. According to ref. ²⁰, the values of χ (Mo) and χ (S) are 3.90 and 6.22, respectively. From the above equations, the value of χ for MoS₂ is 5.32, and the values of E_{CB} and E_{VB} are -0.01 eV and 1.65 eV, respectively.

Fig. S9. Diffuse reflection absorption curve of MoS_2 (a) and Tauc plots of MoS_2 (b)

TEXT S6. Construction of a cyclic model

First, according to method 2.4, $Au(S_2O_3)_2^{3-}$ was extracted from the solution using ChCl-Lac-ATPS. After separating the salt-rich and NADES-rich phases, defect-rich MoS₂ was added to the NADES-rich phase for the photocatalytic reduction of $Au(S_2O_3)_2^{3-}$. After centrifugal separation, the NADES-rich phase was washed with 40.0 wt% K₃PO₄ solutions to regenerate NADES. The goldloaded sediment was eluted with 1.0 mol·L⁻¹ Na₂S solution at room temperature for three hours (the elution rate reached 99.9%) and then centrifuged to separate the sediment. The sediment was washed with ultrapure water and ethanol and dried in a vacuum drying oven at 60 °C for 24 hours. Then, the regenerated ChCl-Lac and MoS₂ were repeatedly used to extract and reduce Au(I). It is worth noting that, the salt addition during cyclic extraction comes from the salt-rich salt content in the phase diagram.

TEXT S7. The calculation details

Computing software:

Structure optimization frequency calculation: Gauss 09 electrostatic potential: Multiwfn 3.8. Computing level: b3lyp/6-311G* (C, H, P, N, Cl) SDD (Au) scrf=(smd, solvent=water) em=gd3bj.

Au is optimized using pseudopotential basis set SDD ^{21,22}, S, O, C, N, and H adopt a 6-311G(d) foundation set. The electrostatic potential of the local surface (ESP) is generated by the Mutiwfn 3.8 program (the isosurface is defined as the electrostatic potential of 0.002au) ²³.

$Au(S_2O_3)_2^{3-}$			
-3 1			
Au	-0.00001600	-0.72619300	-0.00001500
S	3.06895900	0.82909800	0.16774000
S	-3.06886700	0.82914100	-0.16769400
S	2.15091100	-0.75110200	-0.94142200
S	-2.15099600	-0.75124100	0.94141300
0	3.07743600	0.43486400	1.60845400
0	4.44586600	0.92213100	-0.40128700
0	2.27527100	2.07255700	-0.06388500
0	-2.27517000	2.07259300	0.06396400
0	-3.07746000	0.43494300	-1.60841900
0	-4.44579800	0.92228000	0.40124700

Zero-point correction=	0.028364 (Hartree/Particle)
Thermal correction to Energy=	0.041568
Thermal correction to Enthalpy=	0.042512
Thermal correction to Gibbs Free Energy=	-0.016426
Sum of electronic and zero-point Energies=	-2180.604578
Sum of electronic and thermal Energies=	-2180.591374
Sum of electronic and thermal Enthalpies=	-2180.590430
Sum of electronic and thermal Free Energies=	-2180.649368

Choline chloride

-0.126e0

01				
С	-2.62173300	-0.67328600	-0.02163400	
С	-1.71876700	0.55688800	-0.03434200	
Ν	-0.23238200	0.28371000	-0.01801200	
С	0.47880000	1.60447200	-0.08135000	
0	-3.97856300	-0.23024000	-0.03465600	
С	0.18019600	-0.54040300	-1.20209100	
С	0.17605100	-0.41848300	1.24418800	
Н	-2.49298200	-1.27251100	-0.92195900	
Н	-2.43269400	-1.30605800	0.84876200	
Н	-1.91651200	1.14460200	-0.92975300	
Н	-1.92461500	1.17234900	0.84200200	
Н	1.55024300	1.41554900	-0.06036000	
Н	0.19674400	2.10480100	-1.00499300	
Н	0.17842500	2.20043000	0.77756800	
Н	-4.17126100	0.16822400	0.82320000	
Н	-0.26106600	-1.53004900	-1.12296800	
Н	-0.16330300	-0.04257400	-2.10619200	
Н	1.26571400	-0.61787100	-1.19463400	
Н	-0.27186500	-1.40749800	1.26756100	
Н	1.26111900	-0.50232100	1.24440700	
Н	-0.16323300	0.17181500	2.09248400	
Cl	3.75489300	-0.29518100	0.02468100	
Zero-point correction	n=		0.198944 (Hartree/Particle)	
Thermal correction	to Energy=	0.210227		
Thermal correction	to Enthalpy=	0.211171		
Thermal correction	to Gibbs Free Ene	0.160565		
Sum of electronic a	and zero-point Ener	-789.096104		
Sum of electronic a	and thermal Energi	es=	-789.084821	
Sum of electronic a	and thermal Enthalj	pies=	-789.083877	
Sum of electronic a	and thermal Free Er	-789.134483		

0.126e0

Lactic acid

01			
0	1.30942800	0.98338200	-0.45492100
С	0.80163000	-0.12967700	0.09360000
С	-0.68854200	-0.04111600	0.39824400
С	-1.44457700	-1.05564500	-0.44942700
0	-1.24425900	1.24050700	0.14418000
0	1.46575500	-1.11851500	0.32816000
Н	2.25895200	0.84647700	-0.61053500
Н	-0.78840200	-0.30289700	1.45830300
Н	-1.05724500	-2.06066800	-0.28165300
Н	-2.50216100	-1.03735000	-0.18150200
Н	-1.34576200	-0.81046400	-1.50972800
Н	-0.82384600	1.88054100	0.73126600

Zero-point correction=

Thermal correction to Energy=	0.101722
Thermal correction to Enthalpy=	0.102666
Thermal correction to Gibbs Free Energy=	0.064425
Sum of electronic and zero-point Energies=	-343.633160
Sum of electronic and thermal Energies=	-343.626512
Sum of electronic and thermal Enthalpies=	-343.625568
Sum of electronic and thermal Free Energies=	-343.663809

0.095074 (Hartree/Particle)

Chlorine

-1 1				
Cl	0.00000000	0.00000000	0.00000000	
Zero-point correction	on=		0.000000 (Hartree/Particle)
Thermal correction	n to Energy=		0.001416	
Thermal correctio	n to Enthalpy=		0.002360	
Thermal correction	n to Gibbs Free Ener	·gy=	-0.015023	
Sum of electronic	and zero-point Energy	gies=	-460.406331	
Sum of electronic	and thermal Energie	s=	-460.404915	
Sum of electronic	and thermal Enthalp	ies=	-460.403971	
Sum of electronic	and thermal Free En	ergies=	-460.421354	

Choline Chloride - Lactic acid

01			
С	-2.62094100	-0.67533800	-0.02151900
С	-1.71989000	0.55623000	-0.03588200
Ν	-0.23291800	0.28559500	-0.01777000
С	0.47569400	1.60741500	-0.08364200
Ο	-3.97837500	-0.23410800	-0.03536600
С	0.18198400	-0.54055200	-1.19956100
С	0.17567900	-0.41292800	1.24636900
Н	-2.49118100	-1.27572600	-0.92092100
Н	-2.43122600	-1.30651700	0.84987200
Н	-1.91781100	1.14187400	-0.93261200
Н	-1.92735600	1.17309500	0.83908800
Н	1.54756200	1.42109200	-0.06132600
Н	0.19353200	2.10495500	-1.00875400
Н	0.17334700	2.20490900	0.77350700
Н	-4.17171700	0.16521300	0.82195100
Н	-0.25841400	-1.53044800	-1.11878000
Н	-0.16091900	-0.04510300	-2.10519900
Н	1.26758100	-0.61705900	-1.19041300
Н	-0.27166200	-1.40212700	1.27220600
Н	1.26078900	-0.49638100	1.24696600
Н	-0.16411800	0.17933800	2.09307700
Cl	3.75610900	-0.29719900	0.02435600
Ο	9.71374378	-0.05550170	0.17643408
С	10.18214010	-1.19866199	-0.34455045
С	11.69392126	-1.21524224	-0.53298242
С	12.30823133	-2.28660023	0.35820714
Ο	12.31789676	0.02165047	-0.22204858
Ο	9.46962983	-2.13587861	-0.64091814
Н	8.74771517	-0.12496408	0.25717128
Н	11.85660614	-1.47691111	-1.58526063
Н	11.86467190	-3.26021402	0.14945693
Н	13.38198725	-2.34248729	0.17239189
Н	12.14538767	-2.04156468	1.41061203
Н	11.99062669	0.69380810	-0.83209589
Zero-point correction=		0.294623 (Hartree/Particle)	
Thermal correction to Energy=		0.314287	
Thermal correction to Enthalpy=		0.315231	
Thermal correction to Gibbs Free Energy= 0.241866			0.241866
Sum of electronic and zero-point Energies= -1132.740379			-1132.740379
Sum of electronic and thermal Energies= -1132.720714			
Sum of	electronic and thermal Enthalpie	es=	-1132.719770
Sum of	electronic and thermal Free Ene	ergies=	-1132.793135

Choline Chloride - Lactic acid - Au(S₂O₃)₂³⁻

0 1			
Au	0.29020800	-1.27931300	0.19472100
S	3.16735000	-2.53542000	-1.27338600
S	-3.17480100	-1.43978400	0.20442500
S	2.22747700	-2.53163000	0.63843900
S	-1.64805000	-0.00176200	-0.16961000
0	-3.01381100	-2.56329200	-0.76447000
0	-3.04719600	-1.90033000	1.61924200
С	2.25332435	5.04423956	-3.36165004
С	3.12735451	4.52351635	-2.22342952
Ν	3.92050755	3.27224602	-2.52270990
С	4.74770454	2.95017274	-1.31298414
0	1.61204011	6.24060220	-2.92069828
С	4.84133739	3.48214691	-3.68933480
С	3.01001074	2.11497241	-2.80614989
Н	2.85221900	5.32610745	-4.22641125
Н	1.51122553	4.30707272	-3.67679544
Н	3.84978522	5.28918921	-1.94425935
Н	2.50668716	4.29282315	-1.35695645
Н	5.33358560	2.05893644	-1.52229080
Н	5.40489320	3.79218424	-1.10812162
Н	4.08017476	2.77916750	-0.47161563
Н	0.95231296	6.00082416	-2.25810101
Н	4.25596695	3.62779176	-4.59221055
Н	5.45645927	4.35655016	-3.48858986
Н	5.45891147	2.59458970	-3.79423937
Н	2.43339080	2.32763656	-3.69848680
Н	3.61937519	1.22865491	-2.95357954
Н	2.35017620	1.97794708	-1.95213206
С	-7.54155183	-0.40301034	6.59016673
С	-7.65503907	-0.30151283	5.07105562
Ν	-6.36315352	-0.46069225	4.29914291
С	-6.69201402	-0.38697251	2.83570619
0	-8.84362245	-0.22328556	7.14621540
С	-5.72503991	-1.78918144	4.58149778
С	-5.39941374	0.64175800	4.62878669
Н	-7.21709408	-1.39539983	6.89993079
Н	-6.84535387	0.33447927	6.99596733
Н	-8.33188985	-1.07289492	4.70649907
Н	-8.05458700	0.67497339	4.79537724
Н	-5.76985712	-0.49428947	2.27086870
Н	-7.38096153	-1.19278552	2.59383044

Н	-7.15146331	0.57741735	2.63165811
Н	-9.09393271	0.70200369	7.03155464
Н	-5.38988354	-1.81746668	5.61421130
Н	-6.45740164	-2.57185707	4.39697091
Н	-4.87309850	-1.90234422	3.91663553
Н	-5.09471021	0.55769314	5.66763651
Н	-4.53274412	0.53868882	3.98111906
Н	-5.89343923	1.59471182	4.45403016
С	-7.80942637	-5.88214505	-3.68574930
С	-6.62668749	-6.68042211	-3.14497866
Ν	-5.55875027	-5.87281357	-2.44386009
С	-4.51719127	-6.82732936	-1.93714717
0	-8.70897451	-6.79105043	-4.32004261
С	-6.13740632	-5.12588929	-1.27927053
С	-4.90128375	-4.90961011	-3.38914338
Н	-8.37452524	-5.41312413	-2.88163500
Н	-7.48948814	-5.10680599	-4.38586190
Н	-6.98282718	-7.41540125	-2.42425266
Н	-6.12948174	-7.20272700	-3.96287996
Н	-3.74977839	-6.25677344	-1.42119851
Н	-4.98905406	-7.52783756	-1.25318068
Н	-4.09174781	-7.35691650	-2.78657105
Н	-8.29743817	-7.10118042	-5.13649595
Н	-6.81467553	-4.35917157	-1.64387142
Н	-6.66999034	-5.83186178	-0.64638794
Н	-5.32202198	-4.67078498	-0.72266264
Н	-5.62523525	-4.16671520	-3.70861567
Н	-4.07870297	-4.43076310	-2.86622517
Н	-4.53051738	-5.46931963	-4.24513061
0	-4.44005400	-0.67248700	-0.02636100
0	3.32817800	-1.11436400	-1.71227900
0	4.48260900	-3.20012900	-1.02652900
0	2.31135800	-3.30908400	-2.21964100
0	7.99719703	-1.18925229	-4.47894651
С	7.65498088	-0.15997842	-5.26705746
С	8.66376323	0.13202085	-6.37085018
С	8.01752262	-0.10473149	-7.72942482
0	9.83273857	-0.67052673	-6.29775509
0	6.63613237	0.48289956	-5.11693989
Н	7.30878127	-1.30351870	-3.80249863
Н	8.91622219	1.19381976	-6.26561728
Н	7.11621720	0.49900325	-7.83618770
Н	8.71942497	0.16904453	-8.51871707
Н	7.75321087	-1.15888867	-7.84347949

Н	10.29126315	-0.47258454	-5.47214416
0	-0.21123423	-0.11047970	5.84798128
С	0.36822061	1.09848157	5.86472025
С	0.75188730	1.57788410	7.25907920
С	2.26548022	1.71813017	7.35273346
0	0.32953705	0.70415381	8.29548863
0	0.56919321	1.75389697	4.86276200
Н	-0.42871346	-0.33689296	4.92820163
Н	0.28532502	2.56389059	7.37015228
Н	2.63740898	2.38931338	6.57850641
Н	2.53330319	2.12517735	8.32904587
Н	2.74328044	0.74244106	7.23502944
Н	-0.63465280	0.66684191	8.29323821
0	-0.57215186	-6.13204585	-4.06133263
С	-0.03432914	-5.19264292	-4.85247377
С	0.91223388	-5.74669558	-5.90997453
С	0.34494775	-5.47406554	-7.29679209
0	1.13417853	-7.14445394	-5.79621594
0	-0.27650871	-4.00847381	-4.73857796
Н	-1.15379341	-5.69708865	-3.41553069
Н	1.85089748	-5.19433305	-5.78335432
Н	0.16476428	-4.40791652	-7.43501507
Н	1.05543595	-5.81135252	-8.05312963
Н	-0.59603139	-6.01278537	-7.43264396
Н	1.56339490	-7.32043722	-4.95012936

Zero-point correction=

Thermal correction to Energy=

Thermal correction to Enthalpy=

Thermal correction to Gibbs Free Energy=

Sum of electronic and zero-point Energies=

Sum of electronic and thermal Energies=

Sum of electronic and thermal Enthalpies=

Sum of electronic and thermal Free Energies=

0.915401 (Hartree/Particle) 0.983845 0.984789 0.802993 -4197.815986 -4197.747541 -4197.746597 -4197.928393

Reference

- 1. M. Shyama and S. Lakshmipathi, Journal of Molecular Liquids, 2020, 304, 112720.
- D. J. G. P. van Osch, L. F. Zubeir, A. van den Bruinhorst, M. A. A. Rocha and M. C. Kroon, Green Chemistry, 2015, 17, 4518-4521.
- 3. H. Yu, F. Zi, X. Hu, Y. Nie, P. Xiang, J. Xu and H. Chi, *Hydrometallurgy*, 2015, **154**, 111-117.
- 4. S. Wu, Y. Ke, J. Tang, X. Lei, H. Deng and Z. Lin, *Surfaces and Interfaces*, 2022, **30**, 101869.
- Q. Luo, M. Zhang, J. M. Liu, Z. W. Li, Y. Y. Hu, Y. H. Yin, X. B. Liu, Y. S. Li and Z. P. Wu, Electrochimica Acta, 2022, 413, 140178.
- N. Gao, Y. Zhang, C. Chen, B. Li, W. Li, H. Lu, L. Yu, S. Zheng and B. Wang, *Journal of Materials Chemistry A*, 2022, 10, 8378-8389.
- 7. J. Xu, S. An, X. Song, Y. Cao, N. Wang, X. Qiu, Y. Zhang, J. Chen, X. Duan, J. Huang, W. Li and Y. Wang, *Advanced Materials*, 2021, **33**, 2105178.
- 8. G. Wen, X. Zhang, Y. Sui, K. Rao, J. Liu, S. Zhong and L. Wu, *Chemical Engineering Journal*, 2022, **430**, 133041.
- 9. X. Bai, X. Wang, T. Jia, L. Guo, D. Hao, Z. Zhang, L. Wu, X. Zhang, H. Yang, Y. Gong, J. Li and H. Li, *Applied Catalysis B: Environmental*, 2022, **310**, 121302.
- S. B. Dhanalekshmi, R. Priya, K. Tamizh Selvi, K. Alamelu Mangai, G. K. Weldegebrieal, S. Garg and S. Sagadevan, *Inorganic Chemistry Communications*, 2021, 131, 108768.
- 11. C. Tian, B. Li, X. Hu, J. Wu, P. Li, X. Xiang, X. Zu and S. Li, ACS Applied Materials & Interfaces, 2021, 13, 6229-6240.
- H. Li, S. Chen, X. Jia, B. Xu, H. Lin, H. Yang, L. Song and X. Wang, *Nature Communications*, 2017, 8, 15377.
- 13. Z. Feng, P. Yang, G. Wen, H. Li, Y. Liu and X. Zhao, *Applied Surface Science*, 2020, **502**, 144129.
- G. Nagaraju, C. N. Tharamani, G. T. Chandrappa and J. Livage, *Nanoscale Research Letters*, 2007, 2, 461.
- 15. Y. Gao, C. Chen, X. Tan, H. Xu and K. Zhu, *Journal of Colloid and Interface Science*, 2016, **476**, 62-70.
- 16. E. Ghaleghafi and M. B. Rahmani, *Physica E: Low-dimensional Systems and Nanostructures*, 2022, **138**, 115128.
- 17. S. Krithika and J. Balavijayalakshmi, *Materials Today: Proceedings*, 2022, **50**, 17-25.
- 18. S. Zeng, F. Jia, B. Yang and S. Song, *Hydrometallurgy*, 2020, **195**, 105369.
- M. Mousavi, A. Habibi-Yangjeh and M. Abitorabi, *Journal of Colloid and Interface Science*, 2016, 480, 218-231.
- 20. R. G. Pearson, Inorganic Chemistry, 1988, 27, 734-740.
- 21. S. Mohammadnejad, J. L. Provis and J. S. J. van Deventer, *Computational and Theoretical Chemistry*, 2017, **1101**, 113-121.
- 22. R. A. Bryce, J. M. Charnock, R. A. D. Pattrick and A. R. Lennie, *The Journal of Physical Chemistry A*, 2003, **107**, 2516-2523.
- 23. T. Lu and F. Chen, *Journal of computational chemistry*, 2012, **33**, 580-592.