Supporting Information

1,2,3,5-Tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN)-based porous organic polymers for visible-light-driven organic transformations in water under aerobic oxidation

Shan-Shan Zhu^{*a,b*}, Lin Zuo^{*b*}, Yan Liu^{*a,b*} and Bing Yu^{*b*}

^{*a*} Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou 451191, China.

^b Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

* Corresponding author. E-mail: liuyan@haue.edu.cn (Yan Liu), bingyu@zzu.edu.cn (Bing Yu)

Table of Contents

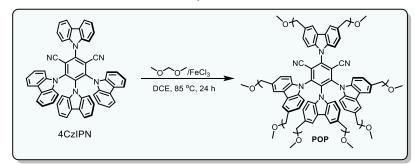
1. General Methods	
2. Experimental Procedures	
3. Characterization Data	
4. NMR Spectra	S25
5. References	S80


1. General Methods

All reagents were used without further purification. TLC was performed on silica gel plates (F254, 200-300 mesh) using UV light (254/366 nm) for detection and column chromatography was performed on neutral aluminum oxide (100-200 mesh). Liquid ¹H NMR (400 MHz), ¹³C NMR (101 MHz or 151MHz), ¹⁹F NMR (376 MHz), ³¹P NMR (162 MHz) were measured on a Bruker Avance 400 MHz spectrometer. Proton chemical shifts δ were given in ppm using tetramethylsilane (TMS) as internal standard. All NMR spectra were recorded in CDCl₃ at room temperature (20 ± 3 °C). To display multiplicities and signal forms correctly the following abbreviations were used: s = singlet, d = doublet, t = triplet, m = multiplet. ¹H and ¹³C chemical shifts are quoted in parts per million (ppm) downfield from TMS. High-resolution mass spectra (HRMS) were taken with a 3000-mass spectrometer, using Waters Q-Tof MS/MS system and the ESI technique. The ¹³C CP/MAS NMR spectra were recorded by Bruker Avance (3) 400 WB. FT-IR spectra of the samples were recorded by Perkin Elmer. Gas sorption isotherms were obtained with Micromeritics ASAP 2460 2.01 accelerated surface area and porosimetry analyzers at certain temperature. Surface areas were calculated from the adsorption data using Brunauer-Emmett-Teller (BET) methods. The pore-size-distribution curves were obtained from the adsorption branches using non-local density functional theory (NLDFT) method. Field emission scanning electron microscopy (SEM) observations were performed on a Zeiss Merlin Compact microscope operated at an accelerating voltage of 15.0 kV. High-resolution transmission electron microscopy (HR-TEM, Tecnai G2 S-Twin F20, FEI), the energydispersive X-ray (EDX) spectroscopy, scanning TEM-EDX elemental mapping were performed on a HITACHI SU-8020 TEM. The XRD analysis was performed on a D/MAX-RC diffractometer operating at 50 kV and 200 mA with Cu K α radiation ($\lambda = 1.54056$ Å). X-ray photoelectron spectroscopy (XPS) measurements were performed by a Thermo Fisher K-Alpha spectrometer, and the binding energies were calibrated using the carbonaceous C 1s line (284.8 eV) as the reference. EPR spectra were recorded with Bruker EMX-10/12 EPR spectrometer at room temperature. The thermal gravity analysis (TGA) measurement was conducted on Simultaneous. The UV-vis diffuse reflectance spectra (UV-vis DRS) were measured on a UV-vis-NIR spectrophotometer (Shimadzu UV-3600) detecting absorption over the range of 200-800 nm Cyclic voltammetry (CV) measurement was performed using Chen hua CHI 660E potentiostat/galvanostat (Metrohm) in a three-electrode-cell system.

2. Experimental Procedures

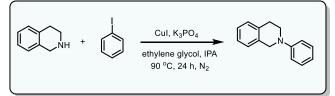
2.1 Preparation of Photocatalyst


2.1.1 Procedure for the synthesis of 4CzIPN photocatalyst¹

Scheme S1 Synthesis of 4CzIPN photocatalyst

Sodium hydride (60% suspension in mineral oil, 8.0 equiv) was added slowly to a stirred solution of carbazole (5.0 equiv) in dry THF (0.05 M) under a nitrogen atmosphere at rt. After 30 min, 2,4,5,6-

tetrafluoroisophthalonitrile (1.0 mmol, 1.0 equiv) was added. After stirring at rt for 12 h, 2 mL water was added to the reaction mixture to quench the excess NaH. The resulting mixture was then concentrated under reduced pressure and then the solid residue was washed with H_2O and EtOH to yield the crude product, which was purified by recrystallization from hexane/CH₂Cl₂ then filtered.

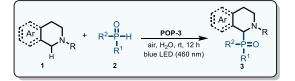


Scheme S2 Synthesis of POPs

FeCl₃ (5.84 g, 36 mmol, anhydrous) was added to a solution of 4CzIPN (3.15 g, 4 mmol) in 80 mL 1,2dichloroethane (DCE). After being stirred at room temperature for 30 min, formaldehyde dimethyl acetal (FDA, 1.12 mL) was added. Then the resulting mixture was stirred first at 45 °C for 5 h and then at 80 °C for another 24 h to complete the cross-linking reaction, providing the crude **POP-1** solution. For the synthesis of **POP-2**, FDA (1.04 mL) was added again to the crude **POP-1** solution. The mixture was stirred at 80 °C for 24 h to complete the cross-linking reaction, providing the crude **POP-2** solution. Similarly, the addition of FDA (1.04 mL) to the crude **POP-2** solution and then stirring at 80 °C for 24 h will give the crude **POP-3** solution. For the further purification procedure, 30 mL methanol was added to the crude solution and stirred for 1 h. The resulting precipitate was washed with methanol three times. After filtration, the obtained solid was vigorously stirred in concentrated HCl for 2 h. Then, the suspension was filtered and washed with water and methanol. After extraction with methanol/dichloromethane in a Soxhlet extractor for 24 h and with tetrahydrofuran for another 24 h. The solid products were dried under vacuum at 60 °C for 24 h, giving the desired **POP-1**, **POP-2**, and **POP-3**.

2.2 Preparation of Starting Materials

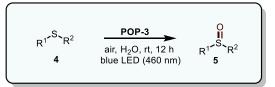
2.2.1 Synthesis of *N*-aryl-1,2,3,4-tetrahydroisoquinoline (exemplified by *N*-phenyl-1,2,3,4-tetrahydroisoquinoline)



Scheme S3 Synthesis of N-phenyl -1,2,3,4-tetrahydroisoquinoline

A typical procedure is described as follows for the synthesis of *N*-phenyl-1,2,3,4-tetrahydroisoquinoline: To a two-neck round bottom flask, 400 mg CuI and 8.5 g anhydrous potassium phosphate was added. The flask was then connected with a condenser tube and the system was put into vacuum and recharged with N₂ to keep the system under an inert atmosphere. 20.0 mL 2-propanol (IPA), 2.2 mL ethylene glycol (EG), 4.0 mL 1,2,3,4-tetrahydroisoquinoline, and 2.6 mL iodine benzene was added into the flask *via* syringe. The mixture was refluxed for 24 h under 90 °C and then left to cool to rt to pass a celite pad. The filtrate was mixed with 20.0 mL water and then extracted with ethyl acetate. The organic phase was collected and dried over anhydrous Na₂SO₄. The solvent was removed via rotary evaporation, and the remaining residue was purified by flash column chromatography on silica gel (petroleum ether/DCM (100:1~100:10) to afford the target compound.

2.3 Experimental procedures


2.3.1 General Procedure for the Synthesis of 1-functionalized N-Aryl-tetrahydroisoquinolines

Scheme S4 Synthesis of the product 3aa

In a 10 mL reaction tube, a mixture of *N*-substituted THIQs **1** (0.2 mmol) and phosphorous reagents **2** (0.4 mmol), **POP-3** (2.0 mg) in 1.0 mL H₂O was allowed to stir with irradiation of 7 W blue LED (460 nm) in open air at rt for 12 h. The reaction was monitored by TLC. After substrate **1** was completely consumed, the reaction mixture was diluted with water (5.0 mL) and extracted with ethyl acetate (3×5.0 mL). The organic layers were combined, dried over anhydrous Na₂SO₄. and concentrated in *vacuo*. The residue was purified by chromatography on neutral aluminum oxide using petroleum ether/ethyl acetate as eluent to afford desired product **3**.

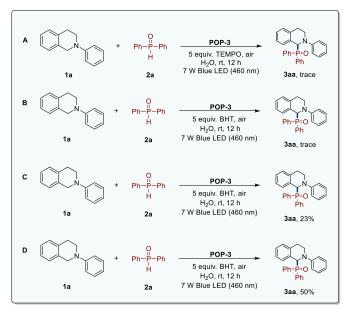
2.3.2 General Procedure for the Selective Oxidation of Sulfides to Sulfoxides

Scheme S5 Synthesis of the product Sulfoxides

In a 10 mL reaction tube, a mixture of sulfides 4 (0.2 mmol), **POP-3** (2.0 mg) in 1.0 mL H₂O was allowed to stir with irradiation of 7 W blue LED (460 nm) in open air at rt for 12 h. The reaction was monitored by TLC. After substrate 4 was completely consumed, the reaction mixture was diluted with water (5.0 mL) and extracted with ethyl acetate (3×5.0 mL). The organic layers were combined, dried over anhydrous Na₂SO₄. and concentrated in *vacuo*. The residue was purified by chromatography on silica gel using petroleum ether/ethyl acetate as eluent to afford desired product **5**.

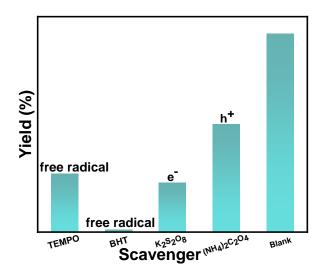
2.4 Recycle experiment

In a 10 mL reaction tube, a mixture of *N*-phenyl-1,2,3,4-tetrahydroisoquinoline **1a** (0.2 mmol), diphenylphosphine oxide **2a** (0.4 mmol) **POP-3** (2.0 mg) in 1.0 mL H₂O was allowed to stir with irradiation of 7 W blue LEDs (460 nm) in the open air at rt for 12 h. After the reaction, the catalyst previously used was simply centrifuged at 10000 rpm for 10 min, and was washed with absolute ethanol (5 mL) for three times, the recyclable **POP-3** was dried under vacuum and directly reused for the next reaction cycle without any further purification.


2.5 EPR experiment

a) POP-3 2 mg	+	DMPO 0.2 mmol	MeCN (1 mL)	DMPO-O2
b) POP-3 2 mg	+	TEMP 0.2 mmol	MeCN (1 mL)	TEMP- ¹ O ₂

Scheme S6 EPR experiments


Reaction conditions: To a reaction tube, **POP-3** (2.0 mg), DMPO (5,5-dimethyl-1-pyrroline-*N*-oxide, 0.2 mmol) or TEMP (2,2,6,6-teteamethyl-piperidine) were dissolved in MeCN (1.0 mL), and then the solution was excited under the 7 W blue LED in open air at rt for 0.5 h. After reaction, the solution was directly detected by EPR, an obvious signal is detected. EPR spectroscopy is consistent with the previous report and clearly shows that superoxide free radicals or singlet oxygen are generated in the reaction process, suggesting a radical process was involved in this reaction.

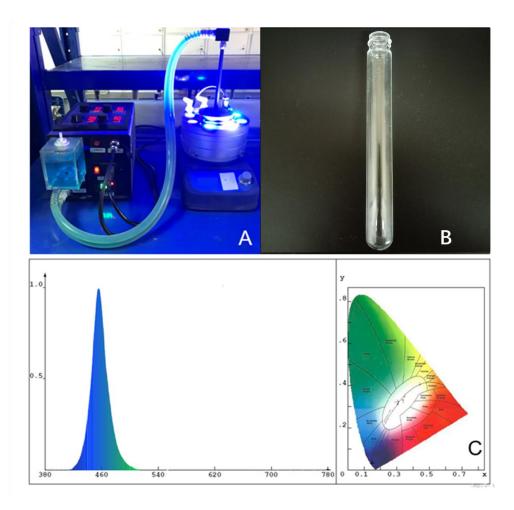
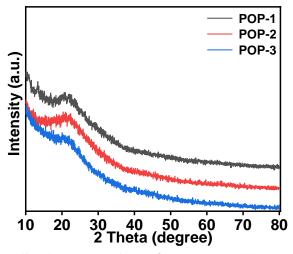
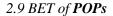
2.6 Control experiments

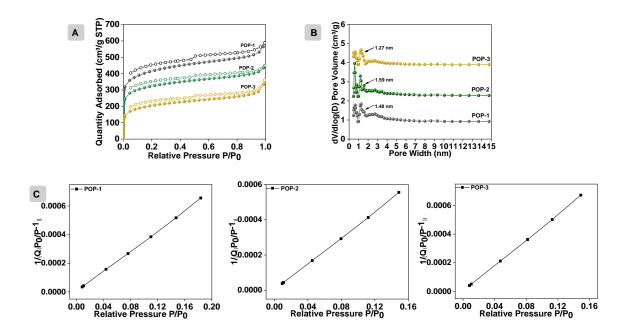
Scheme S7 Control experiments

We carried out two control experiments using TEMPO (2,2,6,6-tetramethylpiperidin-1-yl)- oxidanyl), BHT (2,6-di-tert-butyl-4-methylphenol) as radical scavengers, respectively (Scheme S7 A, B). As it can be seen, the two reactions were severely suppressed, reminding of a radical-involved process. Two more extra experiments were then carried out to gain deeper insight into the related photochemical process, in which ammonium oxalate as hole scavenger and $K_2S_2O_8$ as electron scavenger were added to the reaction system, respectively, and the product **3aa** was obtained in obviously lower yields in both cases, suggesting that both hole and electron in **POP-3** were heavily involved in the photocatalytic process (Scheme S7 C, D).

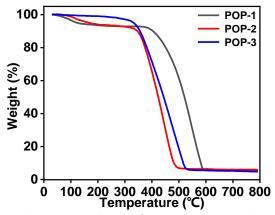
Reaction conditions: In a 10 mL reaction tube, *N*-phenyl-1,2,3,4-tetrahydroisoquinoline **1a** (0.2 mmol), diphenylphosphine oxide **2a** (0.4 mmol) and **POP-3** (2.0 mg) were added in H₂O (1.0 mL). Afterward, TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy)/2,6-ditert-butyl-4-methyl-phenol (BHT, 5.0 equiv.)/ ammonium oxalate (5.0 equiv.)/ K₂S₂O₈ (5.0 equiv.) was added in the mixture. The mixture was stirred under the irradiation of blue LED (460 nm) in open air at rt for 12 h.

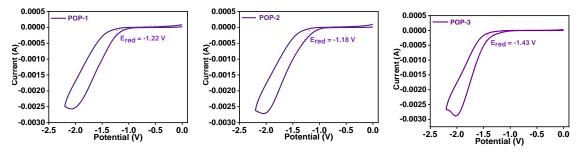
2.7 Photograph of Photoreactor, Reaction Vial, and Spectrum of Blue LED Lamp


Figure S1 A: photoreactor; B: 10 mL reaction vial; C: spectrum of blue LED lamp.

2.8 Powder X-ray diffraction (XRD) spectra of POPs


Figure S2 Powder X-ray diffraction spectra of the **POPs**. The crystalline structure of the samples was characterized by powder X-ray diffraction (XRD) with a Rigaku D/Max-2550 diffractometer using Cu K α radiation ($\lambda = 1.540598$ Å) at 50 kV and 200 mA in the 2θ range of 10-80 ° at a scanning rate of 10 ° min⁻¹.


Figure S3 A: Adsorption (solid point) and desorption (hollow point) isotherms of N_2 at 77 K for **POPs**; B: Pore size distributions of **POPs** based on the calculation results of the NLDFT method. The samples were outgassed at 120 °C for 12 h before the measurements. Surface areas were calculated from the adsorption data using Brunauer-Emmett-Teller (BET) methods; C: BET plot of **POPs**.

2.10 Thermogravimetric analysis of the POPs

Figure S4 Thermogravimetric analysis of the **POPs**. TGA was applied in air atmosphere over the temperature range of 30 to 800 °C at a heating rate of 10 °C min⁻¹.

2.11 Cyclic voltammetry (CV) measurement of POPs

Figure S5 Cyclic voltammetry (CV) measurement of **POPs.** Cyclic voltammetry (CV) measurement was performed using Chenhua CHI660E potentiostat/galvanostat (Metrohm) in a three-electrode-cell system: as-prepared electrode film drop-casted with the polymers as the working electrode, Pt wire as the counter electrode, Hg/Hg₂Cl₂ (in saturated KCl solution) electrode as the reference electrode, Bu₄NPF₆ (0.1 M in MeCN) was used as electrolyte. For preparation of electrode film, 10 mg of catalysts were thoroughly mixed with 1.0 mL of ethanol and 30 µL of Nafion solution to get a slurry. Then, 30 µL of slurry was evenly dropped onto the FTO substrate and let the solvent evaporate. The measurement was carried out in a 0.1 M of Bu₄NPF₆ solution as supporting electrolyte in MeCN with a scan rate of 100 mV s⁻¹.

2.12 SEM image and FT-IR spectra of POP-3 Recycle

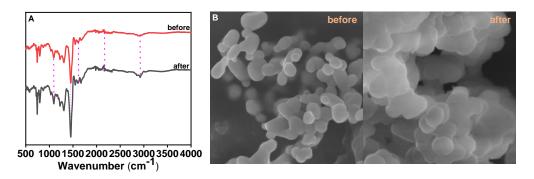


Figure S6 A: FT-IR spectra of POP-3 and POP-3-after; B: SEM image of POP-3 that refers to POP-3 reused for 5 times, scale bar 200 nm.

2.13 Optimization of reaction condition


Table S1^a

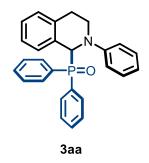
Ć	N +	O II H—P—Ph Ph 2a	PC (2 mg) LED light H ₂ O, air, rt, 12 h		Ph Ph
Entry	РС	Solvent	Light Source	Oxidant	Yield (%)
1 ^b	POP-1	H ₂ O	Blue 5 W	air	60
2 ^b	POP-2	H ₂ O	Blue 5 W	air	64
3 ^b	POP-3	H ₂ O	Blue 5 W	air	76
4	POP-3	H ₂ O	Blue 5 W	air	86
5 ^c	POP-3	H ₂ O	Blue 5 W	air	80
6 ^{<i>d</i>}	POP-3	H ₂ O	Blue 5 W	air	80
7	POP-3	H ₂ O	Blue 3 W	air	86
8	POP-3	H ₂ O	Blue 7 W	air	92
9	POP-3	H ₂ O	Blue 10 W	air	87
10	POP-3	H ₂ O	Green 7 W	air	82
11 ^e	POP-3	H ₂ O	Blue 7 W	air	54
12	POP-3	H ₂ O	Purple 7 W	air	64
13	POP-3	H ₂ O	Blue 7 W	O ₂	62
14	POP-3	H ₂ O	Blue 7 W	N_2	trace
16 ^f		H ₂ O	Blue 7 W	air	21
17 ^g	POP-3	H ₂ O	Blue 7 W	air	32
18^{h}	POP-3	H ₂ O	Blue 7 W	air	58
19 ^{<i>i</i>}	POP-3	H ₂ O	Blue 7 W	air	80
20 ^j	POP-3	H ₂ O	Blue 7 W	air	92

^{*a*}Model reaction conditions: **1a** (0.2 mmol), **2a** (0.4 mmol) and **POP-3** (2 mg) in H₂O (1.0 mL) under irradiation of 7 W blue LED (460 nm) in open air at rt for 12 h. Isolated yields are given. ^{*b*}4 mg of PC was used. ^{*c*}6 mg of PC was used. ^{*d*}10 mg of PC was used. ^{*e*}Reaction under irradiation of 7 W blue LED (430 nm). ^{*f*}None of **PC** was used. ^{*g*}Reaction time is 3h. ^{*h*}Reaction time is 6h. ^{*i*}Reaction time is 9h. ^{*f*}Reaction time is 15h.

2.14 Proposed mechanism for the selective oxidation of sulfide

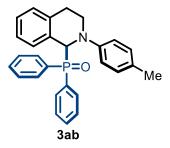
A plausible mechanism for selective oxidation of sulfide was proposed. As shown in Scheme S8, Initially, upon visible light irradiation, **POP-3** promotes the generation of ${}^{1}O_{2}$ by triplet energy transfer (TET). Then sulfide **4a** can react with ${}^{1}O_{2}$ to furnish peroxysulfoxide diradical **III**, which can coexist with dipolar one during the reaction process. Finally, the active intermediate **III** can rapidly react with another sulfide **4a** to produce two sulfoxide products **5a**.

Scheme S8 Proposed mechanism for the selective oxidation of sulfide


2.15 Oxygen elemental analysis testing

In order to indicate the amounts of the ether group in the three samples, a series of elemental analysis testing was performed. As shown in Table R1 below. the oxygen contents in **POP-1**, **POP-2** and **POP-3** are detected as 14.358%, 17.157%, 17.824%, respectively, indicating that the quantity of ether groups definitely grows with the continuous polymerization between 4CzIPN and FDA.

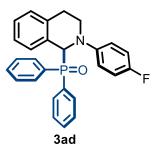
1 15 1			
Organic Elemental Analysis Test Results Report			
Test items	Organic element analyzer		
Test mode	O mode		
Instrument model	Elementar UNICUBLE		
Sample serial number	0 (%)		
POP-1	14.358		
POP-2	17.157		
POP-3	17.824		


Table S2. Experimental results of oxygen contents analysis

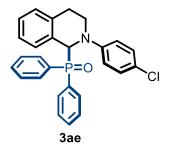
3. Characterization Data


diphenyl(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3aa) S10

White solid (75.3 mg, 92% yield); m.p. 199.7 – 202.1 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.89 – 7.77 (m, 2H), 7.76 – 7.67 (m, 2H), 7.63 – 7.51 (m, 1H), 7.54 – 7.42 (m, 3H), 7.36 (td, J = 7.5, 3.0 Hz, 2H), 7.23 – 7.03 (m, 4H), 6.96 (t, J = 7.5 Hz, 1H), 6.84 – 6.78 (m, 3H), 6.68 (d, J = 7.7 Hz, 1H), 5.59 (d, J = 8.0 Hz, 1H), 4.20 – 3.84 (m, 1H), 3.64 – 3.58 (m, 1H), 2.95 – 2.58 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.0 (d, J = 7.8 Hz), 136.9 (d, J = 4.2 Hz), 132.30 (d, J = 92.7 Hz), 132.26 (d, J = 8.5 Hz), 131.9 (d, J = 2.9 Hz), 131.74, 131.65 (d, J = 1.9 Hz), 131.4 (d, J = 88.3 Hz), 123.0, 129.3 (d, J = 2.2 Hz), 129.1, 128.4 (d, J = 11.1 Hz), 128.3 (d, J = 11.3 Hz), 127. 8 (d, J = 3.3 Hz), 127.4 (d, J = 2.9 Hz), 135.5 (d, J = 2.6 Hz), 119.5, 116.8, 62.0 (d, J = 79.6 Hz), 45.2, 25.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.65. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₇H₂₄NNaOP 432.1488 found 432.1487.


diphenyl(2-(p-tolyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ab)²

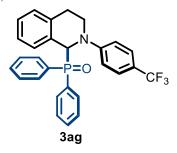
White solid (77.0 mg, 91% yield); m.p. 213.9 – 215.6 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.90 – 7.79 (m, 2H), 7.78 – 7.66 (m, 2H), 7.56 (t, *J* = 6.9 Hz, 1H), 7.49 – 7.45 (m, 3H), 7.38 (td, *J* = 7.5, 2.7 Hz, 2H), 7.17 (t, *J* = 7.4 Hz, 1H), 7.09 (d, *J* = 7.4 Hz, 1H), 7.02 – 6.92 (m, 3H), 6.75 (d, *J* = 8.4 Hz, 2H), 6.67 (d, *J* = 7.7 Hz, 1H), 5.51 (d, *J* = 11.5 Hz, 1H), 4.17 – 3.81 (m, 1H), 3.66 – 3.43 (m, 1H), 2.96 – 2.51 (m, 2H), 2.25 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.0 (d, *J* = 9.1 Hz), 136.9 (d, *J* = 4.3 Hz), 132.5 (d, *J* = 95.5 Hz), 132.2 (d, *J* = 8.4 Hz), 131.8 (d, *J* = 2.7 Hz), 131.74 (d, *J* = 8.6 Hz), 131.72 (d, *J* = 90.9 Hz), 131.6 (d, *J* = 2.7 Hz), 129.9, 129.7, 129.3 (d, *J* = 1.8 Hz), 128.4 (d, *J* = 11.1 Hz), 128.3 (d, *J* = 11.3 Hz), 127.8 (d, *J* = 3.1 Hz), 127.3 (d, *J* = 3.0 Hz), 125.4 (d, *J* = 2.6 Hz), 117.7, 62.0 (d, *J* = 80.6 Hz), 45.7, 25.1, 20.5. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.22.


 $(2-(4-methoxyphenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide <math>(3ac)^2$

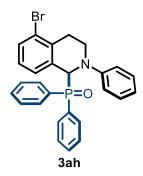
White solid (78.2 mg, 89% yield); m.p. 181.8 – 183.2 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.65 (m, 4H), 7.54 (t, *J* = 6.9 Hz, 1H), 7.51 – 7.41 (m, 3H), 7.38 (td, *J* = 7.5, 2.8 Hz, 2H), 7.23 – 7.04 (m, 2H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.85 – 6.71 (m, 4H), 6.65 (d, *J* = 7.7 Hz, 1H), 5.40 (d, *J* = 11.9 Hz, 1H), 4.05 – 3.98 (m, 1H), 3.74 (s, 3H), 3.45 – 3.42 (m, 1H), 2.82 – 2.55 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.1, 144.6 (d, *J* = 10.2 Hz), 137.0 (d, *J* = 4.4 Hz), 132.5 (d, *J* = 96.1 Hz), 132.2 (d, *J* = 8.5 Hz), 131.9 (d, *J* = 90.8 Hz), 131.8 (d, *J* = 2.7 Hz), 131.7, 131.6 (d, *J* = 2.7 Hz), 129.7, 129.4 (d, *J* = 2.1 Hz), 128.4 (d, *J* = 11.1 Hz), 128.2 (d, *J* = 11.3 Hz), 127.8 (d, *J* = 3.1 Hz), 127.2 (d, *J* = 2.9 Hz), 125.5 (d, *J* = 2.8 Hz), 120.4, 114.4, 62.1 (d, *J* = 81.3 Hz), 55.5, 46.8, 24.8. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.94.


(2-(4-fluorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ad)

White solid (69.2 mg, 81% yield); m.p. 196.2 – 197.9 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.81 – 7.71 (m, 4H), 7.56 (t, *J* = 7.0 Hz, 1H), 7.47 (d, *J* = 7.1 Hz, 3H), 7.40 – 7.36 (m, 2H), 7.18 (t, *J* = 7.3 Hz, 1H), 7.10 (d, *J* = 7.4 Hz, 1H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.86 (t, *J* = 8.6 Hz, 2H), 6.77 (dd, *J* = 8.9, 4.5 Hz, 2H), 6.63 (d, *J* = 7.6 Hz, 1H), 5.44 (d, *J* = 10.9 Hz, 1H), 4.21 – 3.93 (m, 1H), 3.59 – 3.35 (m, 1H), 2.89 – 2.54 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.1 (d, *J* = 239.4 Hz), 146.8 (dd, *J* = 8.7, 2.3 Hz), 136.9 (d, *J* = 4.3 Hz), 132.3 (d, *J* = 91.4 Hz), 132.2 (d, *J* = 8.5 Hz), 132.0 (d, *J* = 2.8 Hz), 131.71 (d, *J* = 2.4 Hz), 131.66 (d, *J* = 3.6 Hz), 131.4 (d, *J* = 86.5 Hz), 129.6, 129.3 (d, *J* = 2.1 Hz), 128.4 (d, *J* = 11.2 Hz), 128.3 (d, *J* = 11.1 Hz), 127.8 (d, *J* = 3.2 Hz), 127.5 (d, *J* = 2.9 Hz), 125.6 (d, *J* = 2.7 Hz), 119.2 (d, *J* = 7.6 Hz), 115.6 (d, *J* = 22.2 Hz), 62.3 (d, *J* = 80.1 Hz), 46.3, 25.3. ³¹P NMR (162 MHz, Chloroform-*d*) δ -124.11. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₇H₂₃FNNaOP 450.1394 found 450.1395.


(2-(4-chlorophenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ae)²

White solid (70.0 mg, 79% yield); m.p. 198.7 – 201.1 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.83 – 7.76 (m, 2H), 7.75 – 7.67 (m, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.54 – 7.43 (m, 3H), 7.37 (td, *J* = 7.7, 2.7 Hz, 2H), 7.24 – 7.16 (m, 3H), 7.11 (d, *J* = 7.5 Hz, 1H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.66 (dd, *J* = 17.2, 8.3 Hz, 3H), 5.50 (d, *J* = 10.0 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.71 – 3.39 (m, 1H), 2.98 – 2.56 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.0 (d, *J* = 7.2 Hz), 136.7 (d, *J* = 4.3 Hz), 132.2 (d, *J* = 8.4 Hz), 132.1 (d, *J* = 2.9 Hz), 132.0 (d, *J* = 95.0 Hz), 131.9, 131.8 (d, *J* = 2.7 Hz), 131.6 (d, *J* = 8.8 Hz), 130.9 (d, *J* = 90.4 Hz), 129.6, 129.2 (d, *J* = 2.3 Hz), 128.5, 128.4 (d, *J* = 11.7 Hz), 127.7 (d, *J* = 3.3 Hz), 127.6 (d, *J* = 2.9 Hz), 125.7 (d, *J* = 2.7 Hz), 118.0, 111.5, 62.1 (d, *J* = 78.7 Hz), 45.1, 25.8. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.53.

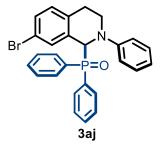


(2-(4-broPOPhenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3af)²

White solid (80.9 mg, 83% yield); m.p. 190.3 – 191.9 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.88 – 7.76 (m, 2H), 7.75 – 7.64 (m, 2H), 7.57 (t, *J* = 6.9 Hz, 1H), 7.55 – 7.44 (m, 3H), 7.37 (td, *J* = 7.6, 2.8 Hz, 2H), 7.18 (t, *J* = 7.4 Hz, 1H), 7.17 – 7.01 (m, 3H), 6.96 (t, *J* = 7.5 Hz, 1H), 6.73 (d, *J* = 8.9 Hz, 2H), 6.65 (d, *J* = 7.7 Hz, 1H), 5.51 (d, *J* = 10.0 Hz, 1H), 4.10 – 4.03 (m, 1H), 3.53 (dt, *J* = 12.8, 4.8 Hz, 1H), 2.87 – 2.70 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.6 (d, *J* = 7.1 Hz), 136.7 (d, *J* = 4.2 Hz), 132.2 (d, *J* = 8.4 Hz), 132.1 (d, *J* = 2.7 Hz), 132.0 (d, *J* = 109.6 Hz), 131.8 (d, *J* = 2.9 Hz), 131.6 (d, *J* = 8.9 Hz), 130.1 (d, *J* = 84.7 Hz), 129.2 (d, *J* = 2.3 Hz), 129.0, 128.5, 128.4 (d, *J* = 1.5 Hz), 128.3, 127.8 (d, *J* = 3.3 Hz), 127.6 (d, *J* = 3.0 Hz), 125.7 (d, *J* = 2.6 Hz), 124.2, 117.7, 62.2 (d, *J* = 79.0 Hz), 45.2, 25.8. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.57.


diphenyl(*2-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ag)* White solid (69.7 mg, 73% yield); m.p. 219.3 – 221.1 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 (dt, J = 26.2, 9.2 Hz, 4H), 7.58 (t, J = 7.0 Hz, 1H), 7.56 – 7.42 (m, 3H), 7.37 (d, J = 8.3 Hz, 4H), 7.24 – 7.07 (m, 2H), 6.98 (t, J = 7.3 Hz, 1H), 6.83 (d, J = 8.4 Hz, 2H), 6.69 (d, J = 7.4 Hz, 1H), 5.69 (d, J = 8.4 Hz, 1H), 4.12 – 4.09 (m, 1H), 3.65 – 3.61 (m, 1H), 2.94 – 2.83 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.8 (d, J = 5.1 Hz), 136.5 (d, J = 4.0 Hz), 132.3 (d, J = 8.1 Hz), 132.2, 132.0 (d, J = 2.9 Hz), 131.7 (d, J = 94.2 Hz), 131.5 (d, J = 9.0 Hz), 130.2 (d, J = 90.8 Hz), 129.8, 129.1 (d, J = 2.3 Hz), 128.5 (d, J = 21.4 Hz), 127.9 (d, J = 2.9 Hz), 127.7 (d, J = 3.4 Hz), 126.3 (q, J = 3.8 Hz), 125.8 (d, J = 2.6 Hz), 124.7 (q, J = 270.5 Hz), 119.9 (q, J = 32.6 Hz), 114.2, 62.2 (d, J = 76.8 Hz), 44.3, 26.5. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.22. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -61.27. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₈H₂₃F₃NNaOP 500.1362 found 500.1362.

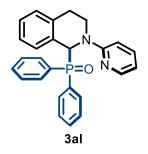
(5-bromo-2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ah)


White solid (73.1 mg, 75% yield); m.p. 218.4 – 220.0 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.95 – 7.69 (m, 4H), 7.58 (t, *J* = 7.2 Hz, 1H), 7.54 – 7.34 (m, 6H), 7.18 (t, *J* = 7.9 Hz, 2H), 6.90 – 6.78 (m, 4H), 6.58 (d, *J* = 7.7 Hz, 1H), 5.53 (d, *J* = 11.2 Hz, 1H), 4.18 – 4.11 (m, 1H), 3.74 – 3.71 (m, 1H), 2.75 – 2.72 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.7 (d, *J* = 9.0 Hz), 136.3 (d, *J* = 4.2 Hz), 132.5, 132.10 (d, *J* = 2.8 Hz), 132.08 (d, *J* = 8.5 Hz), 131.9 (d, *J* = 96.6 Hz), 131.8 (d, *J* = 2.8 Hz), 131.62 (d, *J* = 8.7 Hz), 131.56 (d, *J* = 91.5 Hz), 131.5 (d, *J* = 2.9 Hz), 129.3, 128.6 (d, *J* = 11.3 Hz), 128.4 (d, *J* = 11.4 Hz),

126.9 (d, J = 3.1 Hz), 126.6 (d, J = 2.7 Hz), 125.9 (d, J = 2.4 Hz), 120.1, 117.1, 61.7 (d, J = 79.4 Hz), 45.0, 26.0. ³¹P NMR (162 MHz, Chloroform-*d*) δ 31.04. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₂₃BrNNaOP 510.0593 found 510.0592.

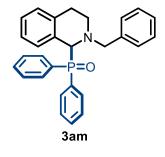

(6-bromo-2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ai)

White solid (76.0 mg, 78% yield); m.p. 208.8 – 210.4 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.79 (m, 2H), 7.79 – 7.69 (m, 2H), 7.63 – 7.56 (m, 1H), 7.56 – 7.44 (m, 3H), 7.38 (td, *J* = 7.5, 3.0 Hz, 2H), 7.27 (s, 1H), 7.24 – 7.15 (m, 2H), 7.12 – 7.04 (m, 1H), 6.82 (dd, *J* = 17.5, 7.7 Hz, 3H), 6.51 – 6.49 (m, 1H), 5.49 (d, *J* = 10.8 Hz, 1H), 4.61 – 3.91 (m, 1H), 3.62 – 3.58 (m, 1H), 3.05 – 2.41 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.8 (d, *J* = 8.6 Hz), 139.2 (d, *J* = 4.2 Hz), 132.2 (d, *J* = 2.2 Hz), 132.1 (d, *J* = 3.0 Hz), 131.9 (d, *J* = 96.1 Hz), 131.8 (d, *J* = 2.8 Hz), 131.7 (d, *J* = 8.7 Hz), 131.3 (d, *J* = 91.4 Hz), 129.2 (d, *J* = 2.0 Hz), 128.9, 128.64 (d, *J* = 3.7 Hz), 128.58 (d, *J* = 4.9 Hz), 128.4, 128.3, 121.3 (d, *J* = 3.6 Hz), 120.1, 117.2, 61.3 (d, *J* = 79.8 Hz), 45.0, 25.2. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.48. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₇H₂₃BrNNaOP 510.0593 found 510.0594.

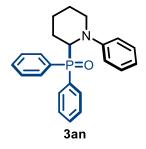


(7-bromo-2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3aj)

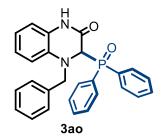
White solid (73.1 mg, 75% yield); m.p. 228.3 – 230.1 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.87 – 7.67 (m, 4H), 7.68 – 7.58 (m, 1H), 7.58 – 7.44 (m, 3H), 7.40 (td, *J* = 7.6, 3.0 Hz, 2H), 7.27 (s, 1H), 7.18 (t, *J* = 7.9 Hz, 2H), 6.98 (d, *J* = 8.1 Hz, 1H), 6.96 – 6.68 (m, 3H), 6.53 (s, 1H), 5.43 (d, *J* = 10.5 Hz, 1H), 4.25 – 4.18 (m, 1H), 3.67 – 3.63 (m, 1H), 3.02 – 2.38 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9 (d, *J* = 9.1 Hz), 135.9 (d, *J* = 4.1 Hz), 132.2 (d, *J* = 2.9 Hz), 132.0 (d, *J* = 8.7 Hz), 131.8 (d, *J* = 3.4 Hz), 131.71 (d, *J* = 97.0 Hz), 131.68 (d, *J* = 8.7 Hz), 131.3 (d, *J* = 91.6 Hz), 130.9 (d, *J* = 2.1 Hz), 130.6 (d, *J* = 3.0 Hz), 130.3 (d, *J* = 2.9 Hz), 129.3, 128.7 (d, *J* = 11.3 Hz), 128.4 (d, *J* = 11.4 Hz), 120.3, 118.7 (d, *J* = 2.9 Hz), 117.5, 61.2 (d, *J* = 79.7 Hz), 45.3, 24.7. ³¹P NMR (162 MHz, Chloroform-*d*) δ 32.21. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₂₃BrNNaOP 510.0593 found 510.0595.



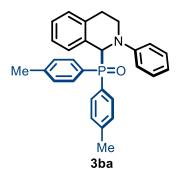
(6,7-dimethoxy-2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3ak) White solid (79.8 mg, 85% yield); m.p. 228.9 – 229.8 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.85 (t, J = 8.9 Hz, 2H), 7.76 (t, J = 9.3 Hz, 2H), 7.55 – 7.44 (m, 4H), 7.39 – 7.35 (m, 2H), 7.17 (t, J = 7.1 Hz, 2H), 6.86 – 6.80 (m, 3H), 6.58 (s, 1H), 6.08 (s, 1H), 5.47 (d, J = 10.0 Hz, 1H), 4.15 (t, J = 10.6 Hz, 1H), 3.83 (s, 3H), 3.65 (d, J = 10.9 Hz, 1H), 3.38 (s, 3H), 3.00 – 2.35 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.3 (d, J = 9.2 Hz), 148.2 (d, J = 2.9 Hz), 146.5 (d, J = 2.6 Hz), 132.5 (d, J = 95.3 Hz), 132.3 (d, J = 8.5 Hz), 132.1 (d, J = 87.8 Hz), 131.8 (d, J = 2.8 Hz), 131.7 (d, J = 1.7 Hz), 131.6 (d, J = 2.2 Hz), 129.14, 129.11, 128.6 (d, J = 11.0 Hz), 128.3 (d, J = 11.3 Hz), 121.0, 119.9, 117.5, 112.0 (d, J = 2.2 Hz), 110.4 (d, J = 2.6 Hz), 61.2 (d, J = 81.3 Hz), 55.8, 55.3, 45.4, 24.7. ³¹P NMR (162 MHz, Chloroform-*d*) δ 23.07. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₉H₂₈NNaO₃P 492.1699 found 492.1703.


diphenyl(2-(pyridin-2-yl)-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3al)

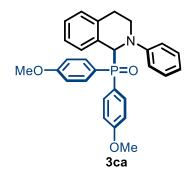
White solid (54.9 mg, 67% yield); m.p. 165.5 – 167.3 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 – 8.08 (m, 1H), 8.11 – 7.96 (m, 2H), 8.00 – 7.77 (m, 2H), 7.61 – 7.51 (m, 3H), 7.37 – 7.31 (m, 2H), 7.30 – 7.20 (m, 3H), 7.16 (q, J = 7.6 Hz, 2H), 7.01 – 6.80 (m, 1H), 6.57 (d, J = 7.7 Hz, 1H), 6.54 – 6.44 (m, 2H), 4.17 – 4.10 (m, 1H), 3.64 – 3.58 (m, 1H), 3.46 – 3.39 (m, 1H), 3.02 – 2.95 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 157.1 (d, J = 3.0 Hz), 147.3, 137.3, 136.9 (d, J = 3.8 Hz), 132.2 (d, J = 96.4 Hz), 132.0 (d, J = 8.6 Hz), 131.9 (d, J = 89.4 Hz), 131.8 (d, J = 2.8 Hz), 131.5 (d, J = 9.4 Hz), 131.3 (d, J = 2.9 Hz), 131.2, 128.7 (d, J = 2.3 Hz), 128.5 (d, J = 11.2 Hz), 127.7, 127.6 (d, J = 4.0 Hz), 127.4 (d, J = 2.9 Hz), 125.6 (d, J = 2.4 Hz), 112.7, 106.1, 56.7 (d, J = 76.1 Hz), 42.3, 27.4. ³¹P NMR (162 MHz, Chloroform-*d*) δ 33.32. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₆H₂₃N₂NaOP 433.1440 found 433.1440.


(2-benzyl-1,2,3,4-tetrahydroisoquinolin-1-yl)diphenylphosphine oxide (3am)

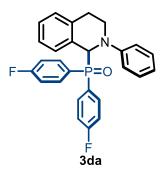
White solid (54.2 mg, 64% yield); m.p. 154.7 – 156.7 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.79 – 7.70 (m, 2H), 7.70 – 7.61 (m, 2H), 7.56 – 7.51 (m, 2H), 7.46 – 7.40 (m, 4H), 7.31 – 7.25 (m, 3H), 7.20 – 7.05 (m, 4H), 6.88 (t, *J* = 16.0 Hz 1H), 6.41 (d, *J* = 7.7 Hz, 1H), 4.61 (d, *J* = 11.2 Hz, 1H), 4.24 – 3.52 (m, 3H), 3.20 – 2.68 (m, 2H), 2.59 – 2.43 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 138.3, 136.7 (d, *J* = 4.4 Hz), 132.5 (d, *J* = 95.8 Hz), 132.1 (d, *J* = 8.3 Hz), 131.9 (d, *J* = 91.8 Hz), 131.8 (d, *J* = 8.3 Hz), 131.6 (d, *J* = 2.7 Hz), 131.4 (d, *J* = 2.6 Hz), 129.4, 129.3, 128.83, 128.79 (d, *J* = 1.5 Hz), 128.3 (d, *J* = 83.6 Hz), 59.3 (d, *J* = 12.5 Hz), 45.2, 23.4. ³¹P NMR (162 MHz, Chloroform-*d*) δ 31.32. HRMS (ESI-TOF) *m*/*z*: [M + H]⁺ calcd for C₂₈H₂₇NOP 423.1825 found 423.1825.


diphenyl(1-phenylpiperidin-2-yl)phosphine oxide (3an)

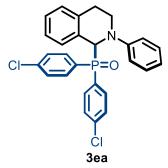
White solid (39.0 mg, 54% yield); m.p. 171.8 – 173.2 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 – 7.82 (m, 2H), 7.78 – 7.62 (m, 2H), 7.56 – 7.50 (m, 3H), 7.43 – 7.31 (m, 1H), 7.32 – 7.17 (m, 2H), 7.18 – 7.00 (m, 2H), 6.69 – 6.65 (m, 3H), 4.69 – 4.64 (m, 1H), 4.07 – 4.00 (m, 1H), 3.66 – 3.39 (m, 1H), 2.50 – 2.39 (m, 1H), 2.12 – 1.79 (m, 2H), 1.74 – 1.42 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.6 (d, *J* = 5.8 Hz), 132.8 (d, *J* = 86.5 Hz), 132.7 (d, *J* = 95.1 Hz), 131.6 (d, *J* = 2.8 Hz), 131.3 (d, *J* = 2.8 Hz), 131.1, 131.0 (d, *J* = 8.4 Hz), 129.1, 128.7 (d, *J* = 10.7 Hz), 128.1 (d, *J* = 11.2 Hz), 118.2, 115.9, 56.7 (d, *J* = 77.1 Hz), 46.1, 24.0 (d, *J* = 4.1 Hz), 23.6 (d, *J* = 1.7 Hz), 21.1 (d, *J* = 1.9 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 33.49. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₃H₂₄NNaOP 384.1488 found 384.1487.


4-benzyl-3-(diphenylphosphoryl)-3,4-dihydroquinoxalin-2(1H)-one (3ao)

White solid (76.2 mg, 87% yield); m.p. 181.3 – 182.9 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.10 – 7.96 (m, 2H), 7.84 (s, 1H), 7.64 – 7.46 (m, 3H), 7.39 – 7.30 (m, 3H), 7.33 – 7.23 (m, 4H), 7.19 (td, *J* = 7.9, 2.9 Hz, 2H), 6.98 (dt, *J* = 15.4, 7.9 Hz, 2H), 6.67 (t, *J* = 7.7 Hz, 1H), 6.25 (d, *J* = 7.7 Hz, 1H), 5.32 (s, 1H), 5.00 (s, 1H), 4.88 (d, *J* = 7.8 Hz, 1H), 4.73 (dd, *J* = 14.6, 2.5 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.0 (d, *J* = 8.8 Hz), 136.2, 134.1, 132.2 (d, *J* = 2.9 Hz), 132.0 (d, *J* = 91.0 Hz), 131.8, 131.7 (d, *J* = 3.9 Hz), 131.5 (d, *J* = 9.9 Hz), 130.6 (d, *J* = 89.1 Hz), 128.7, 128.7 (d, *J* = 11.8 Hz), 128.4, 127.8, 127.7 (d, *J* = 3.9 Hz), 126.3, 124.5, 119.8, 114.9, 114.2 (d, *J* = 1.6 Hz), 64.3 (d, *J* = 50.3 Hz), 53.8 (d, *J* = 70.3 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 31.42. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ C₂₇H₂₃N₂NaO₂P 461.1389 found 461.1393.


(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)di-p-tolylphosphine oxide (3ba)

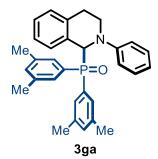
White solid (78.7 mg, 90% yield); m.p. 220.9 – 222.3 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 (dd, J = 10.2, 8.1 Hz, 2H), 7.60 (dd, J = 10.5, 8.1 Hz, 2H), 7.28 (dd, J = 7.4, 2.2 Hz, 2H), 7.19 – 7.15 (m, 5H), 7.09 (d, J = 7.4 Hz, 1H), 6.98 (t, J = 7.4 Hz, 1H), 6.89 – 6.67 (m, 4H), 5.56 (d, J = 12.0 Hz, 1H), 4.07 – 4.00 (m, 1H), 3.77 – 3.51 (m, 1H), 2.97 – 2.61 (m, 2H), 2.43 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.1 (d, J = 7.8 Hz), 142.3 (d, J = 2.9 Hz), 142.0 (d, J = 2.8 Hz), 136.8 (d, J = 4.2 Hz), 132.3 (d, J = 8.7 Hz), 131.7 (d, J = 9.1 Hz), 130.2, 129.23 (d, J = 97.5 Hz), 129.21 (d, J = 2.8 Hz), 129.10, 129.08, 129.0 (d, J = 11.6 Hz), 128.1 (d, J = 79.7 Hz), 45.0, 25.6, 21.7, 21.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 31.00. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₉H₂₈NNaOP 438.1981 found 438.1982.


bis(4-methoxyphenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ca)³

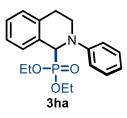
White solid (72.3 mg, 77% yield); m.p. 188.3 – 190.2 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.71 (t, *J* = 9.3 Hz, 2H), 7.59 (t, *J* = 9.4 Hz, 2H), 7.17 (t, *J* = 7.7 Hz, 3H), 7.08 (d, *J* = 7.4 Hz, 1H), 7.02 – 6.96 (m, 3H), 6.87 – 6.83 (m, 4H), 6.78 (t, *J* = 7.8 Hz, 2H), 5.51 (d, *J* = 11.7 Hz, 1H), 4.01 – 3.94 (m, 1H), 3.87 (s, 3H), 3.80 (s, 3H), 3.62 – 3.58 (m, 1H), 2.97 – 2.76 (m, 1H), 2.72 – 2.59 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.4 (d, *J* = 2.8 Hz), 162.2 (d, *J* = 2.7 Hz), 150.0 (d, *J* = 7.4 Hz), 136.7 (d, *J* = 4.2 Hz), 134.2 (d, *J* = 9.5 Hz), 133.5 (d, *J* = 10.1 Hz), 130.4, 129.12, 129.10, 128.0 (d, *J* = 3.3 Hz), 127.3 (d, *J* = 2.9 Hz), 125.5 (d, *J* = 2.6 Hz), 123.9 (d, *J* = 101.0 Hz), 122.3 (d, *J* = 98.1 Hz), 119.2, 116.4, 114.0, 113.8 (d, *J* = 11.9 Hz), 62.4 (d, *J* = 80.8 Hz), 55.34, 55.27, 44.8, 25.7. ³¹P NMR (162 MHz, Chloroform-*d*) δ 30.37.

bis(4-fluorophenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3da)

White solid (72.1 mg, 81% yield); m.p. 218.3 – 219.7 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.91 – 7.78 (m, 2H), 7.73 – 7.57 (m, 2H), 7.19 (q, *J* = 7.8 Hz, 5H), 7.13 – 6.92 (m, 4H), 6.86 – 6.67 (m, 4H), 5.54 (d, *J* = 11.1 Hz, 1H), 4.05 – 3.95 (m, 1H), 3.59 (dt, *J* = 12.8, 4.2 Hz, 1H), 3.03 – 2.42 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 165.2 (dd, *J* = 254.0, 3.2 Hz), 165.0 (dd, *J* = 253.7, 3.1 Hz), 149.9 (d, *J* = 8.0 Hz), 136.8 (d, *J* = 4.4 Hz), 134.9, 134.7 (d, *J* = 9.1 Hz), 134.2 (d, *J* = 8.5 Hz), 134.1 (d, *J* = 8.7 Hz), 129.4 (d, *J* = 13.4 Hz), 129.3 (d, *J* = 8.1 Hz), 128.0 (dd, *J* = 105.9, 3.2 Hz), 127.7 (dd, *J* = 13.8, 3.2 Hz), 127.0 (dd, *J* = 102.0, 3.6 Hz), 125.7 (d, *J* = 2.6 Hz), 120.0, 117.0, 116.0 (dd, *J* = 20.8, 12.2 Hz), 115.7 (d, *J* = 12.4 Hz), 62.2 (d, *J* = 81.5 Hz), 45.3, 25.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 29.38. ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -106.31, -106.61. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₂₇H₂₂F₂NNaOP 468.1299 found 468.1299.

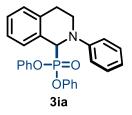

bis(4-chlorophenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ea)²

White solid (75.5 mg, 79% yield); m.p. 212.2 - 214.2 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.78 – 7.70 (m, 2H), 7.70 – 7.54 (m, 2H), 7.54 – 7.43 (m, 2H), 7.42 – 7.30 (m, 2H), 7.19 (q, J = 7.5, 7.0 Hz, 3H), 7.12 (d, J = 7.5 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 6.84 (t, J = 8.7 Hz, 3H), 6.75 (d, J = 7.6 Hz, 1H), 5.54 (d, J = 11.0 Hz,1H), 4.02 – 3.95 (m, 1H), 3.62 – 3.52 (m, 1H), 3.03 – 2.46 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.9 (d, J = 8.2 Hz), 138.8 (d, J = 3.5 Hz), 138.5 (d, J = 3.5 Hz), 136.8 (d, J = 4.4 Hz), 133.6 (d, J = 9.2 Hz), 133.0 (d, J = 9.5 Hz), 130.5 (d, J = 96.2 Hz), 129.7 (d, J = 91.1 Hz), 129.4 (d, J = 2.2 Hz), 129.3, 128.9 (d, J = 11.5 Hz), 128.7 (d, J = 11.8 Hz), 127.7 (d, J = 3.2 Hz), 125.8 (d, J = 2.6 Hz), 120.2, 117.3, 62.0 (d, J = 81.0 Hz), 45.5, 25.5. ³¹P NMR (162 MHz, Chloroform-*d*) δ 29.57.

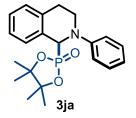


bis(2,5-dimethylphenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3fa)

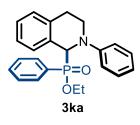
White solid (74.4 mg, 80% yield); m.p. 215.2 – 215.9 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 (d, J = 11.2 Hz, 1H), 7.28 (t, J = 7.9 Hz, 2H), 7.26 – 7.20 (m, 2H), 7.20 – 7.01 (m, 7H), 6.94 (t, J = 7.3 Hz, 1H), 6.82 (t, J = 12.0 Hz, 1H), 6.18 (d, J = 8.0 Hz, 1H), 5.50 (d, J = 12.0 Hz, 1H), 4.82 – 4.53 (m, 1H), 3.75 (dd, J = 14.2, 5.9 Hz, 1H), 2.97 – 2.59 (m, 2H), 2.27 (s, 3H), 2.21 (s, 3H), 2.11 (s, 3H), 2.05 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 151.0 (d, J = 11.5 Hz), 140.1 (d, J = 7.8 Hz), 140.0 (d, J = 7.5 Hz), 137.7 (d, J = 4.3 Hz), 135.1 (d, J = 11.8 Hz), 134.3 (d, J = 11.1 Hz), 133.1 (d, J = 9.6 Hz), 132.9, 132.4 (d, J = 2.9 Hz), 132.1 (d, J = 2.7 Hz), 131.9 (d, J = 11.0 Hz), 131.7, 131.2 (d, J = 82.7 Hz), 130.6 (d, J = 88.2 Hz), 129.39 (d, J = 2.2 Hz), 129.35, 128.2 (d, J = 2.9 Hz), 127.0 (d, J = 3.0 Hz), 124.9 (d, J = 2.9 Hz), 120.9, 119.6, 59.1 (d, J = 80.6 Hz), 46.7, 24.7, 20.9, 20.83, 20.79, 20.7. ³¹P NMR (162 MHz, Chloroform-*d*) δ 36.10. HRMS (ESI-TOF) *m/z*: [M + Na]⁺ calcd for C₃₁H₃₂NNaOP 488.2114 found 488.2117.


bis(3,5-dimethylphenyl)(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphine oxide (3ga) White solid (80.9 mg, 87% yield); m.p. 200.9 – 202.3 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.33 (dd, J = 17.3, 10.9 Hz, 4H), 7.27 – 7.14 (m, 4H), 7.11 – 7.08 (m, 2H), 6.97 (t, J = 7.4 Hz, 1H), 6.86 (d, J = 8.1 Hz, 2H), 6.80 (t, J = 7.2 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 5.56 (d, J = 10.6 Hz, 1H), 4.09 – 4.02 (m, 1H), 3.73 – 3.46 (m, 1H), 3.14 – 2.41 (m, 2H), 2.32 (s, 6H), 2.23 (s, 6H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.2 (d, J = 7.3 Hz), 138.0 (d, J = 11.8 Hz), 137.8 (d, J = 11.9 Hz), 137.0 (d, J = 4.2 Hz), 133.5 (d, J = 2.9 Hz), 133.3 (d, J = 2.9 Hz), 132.0 (d, J = 94.4 Hz), 131.2 (d, J = 89.6 Hz), 130.3, 129.8 (d, J = 8.5 Hz), 129.4 (d, J = 8.8 Hz), 129.1 (d, J = 2.2 Hz), 129.0, 127.9 (d, J = 3.2 Hz), 127.3 (d, J = 3.0 Hz), 125.3 (d, J = 2.6 Hz), 119.4, 117.0, 61.7 (d, J = 78.7 Hz), 45.2, 25.8, 21.3, 21.2. ³¹P NMR (162 MHz, Chloroform-*d*) δ 31.73. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₃₁H₃₂NNaOP 488.2114 found 488.2117.

diethyl (2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3ha)⁴


White solid (41.4 mg, 60% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.35 (m, 1H), 7.28 (t, *J* = 8.0 Hz, 2H), 7.25 – 7.11 (m, 3H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.82 (t, *J* = 7.3 Hz, 1H), 5.23 (d, *J* = 20.0 Hz, 1H), 4.43 – 3.85 (m, 5H), 3.69 – 3.63 (m, 1H), 3.27 – 2.89 (m, 2H), 1.28 (t, *J* = 7.1 Hz, 3H), 1.17 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.4 (d, *J* = 5.8 Hz), 136.5 (d, *J* = 5.6 Hz), 130.7, 129.2, 128.8 (d, *J* = 2.6 Hz), 128.2 (d, *J* = 4.6 Hz), 127.4 (d, *J* = 3.3 Hz), 125.9 (d, *J* = 2.9 Hz), 118.5,

114.8, 63.3 (d, J = 7.2 Hz), 62.3 (d, J = 7.7 Hz), 58.8 (d, J = 159.2 Hz), 43.5, 26.8, 16.5 (d, J = 5.5 Hz), 16.4 (d, J = 5.9 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 22.18.


diphenyl-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphonate (3ia)⁴

¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 (d, *J* = 7.4 Hz, 1H), 7.36 – 7.25 (m, 4H), 7.25 – 7.13 (m, 5H), 7.11 – 7.05 (m, 5H), 6.95 – 6.82 (m, 3H), 5.63 (d, *J* = 19.9 Hz, 1H), 4.13 – 4.07 (m, 1H), 3.70 (dt, *J* = 12.1, 5.4 Hz, 1H), 3.25 – 2.92 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.8 (d, *J* = 10.4 Hz), 150.3 (d, *J* = 11.3 Hz), 149.3 (d, *J* = 6.8 Hz), 136.8 (d, *J* = 6.0 Hz), 129.6, 129.5 (d, *J* = 1.6 Hz), 129.4, 129.3, 129.1 (d, *J* = 2.8 Hz), 128.4 (d, *J* = 5.0 Hz), 128.0 (d, *J* = 3.7 Hz), 126.2 (d, *J* = 3.2 Hz), 125.0 (d, *J* = 21.6 Hz), 120.7 (d, *J* = 4.3 Hz), 120.4 (d, *J* = 4.2 Hz), 119.2, 115.5, 59.2 (d, *J* = 160.7 Hz), 44.0, 26.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 14.76.

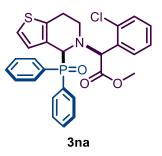
4,4,5,5-tetramethyl-2-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)-1,3,2-dioxaphospholane 2-oxide $(3ja)^4$


White solid (61.6 mg, 83% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.47 (m, 1H), 7.31 – 7.27 (m, 2H), 7.24 – 7.16 (m, 3H), 7.02 (d, *J* = 8.3 Hz, 2H), 6.84 (t, *J* = 7.3 Hz, 1H), 5.33 (d, *J* = 20.0 Hz 1H), 4.30 – 3.84 (m, 1H), 3.64 – 3.58 (m, 1H), 3.15 – 2.09 (m, 2H), 1.53 (s, 3H), 1.49 (s, 3H), 1.31 (s, 3H), 1.23 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.3 (d, *J* = 5.0 Hz), 136.2 (d, *J* = 5.6 Hz), 130.3, 129.1, 128.7 (d, *J* = 4.6 Hz), 128.6 (d, *J* = 2.6 Hz), 127.6 (d, *J* = 3.5 Hz), 126.2 (d, *J* = 2.9 Hz), 118.7, 114.9, 89.0 (d, *J* = 3.2 Hz), 88.2 (d, *J* = 2.5 Hz), 59.7 (d, *J* = 149.1 Hz), 43.8, 26.9, 25.5 (d, *J* = 2.2 Hz), 24.9 (d, *J* = 4.8 Hz), 24.2 (d, *J* = 4.1 Hz), 23.9 (d, *J* = 7.0 Hz). ³¹P NMR (162 MHz, Chloroform-*d*) δ 35.34.

ethyl phenyl(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)phosphinate (3ka)⁴

White solid (64.9 mg, 86% yield); ¹H NMR (400 MHz, Chloroform-*d*) δ 7.84 – 7.59 (m, 2H), 7.60 – 7.31 (m, 4H), 7.27 – 7.17 (m, 2H), 7.14 – 7.08 (m, 2H), 7.07 – 6.96 (m, 1H), 6.92 (d, *J* = 8.2 Hz, 1H), 6.85 – 6.66 (m, 2H), 5.25 (t, *J* = 13.6 Hz, 1H), 4.44 – 3.79 (m, 3H), 3.62 – 3.50 (m, 1H), 3.16 – 2.36 (m, 2H), 1.36 – 1.21 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 149.59, 149.55, 149.5, 136.8, 136.7, 136.51, 136.46, 132.6, 132.5, 132.4, 132.34, 132.31, 132.3, 132.19, 132.17, 131.0, 130.6, 130.4, 130.2, 129.8,

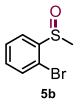
129.2, 129.01, 128.99, 128.96, 128.9, 128.54, 128.50, 128.44, 128.42, 128.33, 128.29, 128.25, 128.21, 128.17, 127.4, 127.33, 127.30, 125.73, 125.70, 125.7, 118.7, 118.3, 115.5, 114.6, 62.8, 61.7, 61.62, 61.59, 61.55, 61.3, 61.2, 60.5, 43.8, 43.7, 27.1, 25.9, 16.6, 16.5. ³¹P NMR (162 MHz, Chloroform-*d*) δ 37.70, 37.04.



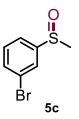
6-(2-phenyl-1,2,3,4-tetrahydroisoquinolin-1-yl)dibenzo[c,e][1,2]oxaphosphinine 6-oxide (3la)⁴ White solid (67.2 mg, 79% yield); ¹H NMR (400 MHz, Chloroform-d) δ 7.97 – 7.75 (m, 2H), 7.66 – 7.59

(m, 2H), 7.44 – 7.26 (m, 2H), 7.26 – 7.09 (m, 6H), 7.02 (d, J = 7.4 Hz, 1H), 6.91 – 6.63 (m, 4H), 5.46 – 5.34 (m, 1H), 4.21 – 3.06 (m, 2H), 3.02 – 2.20 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 150.1, 150.0, 148.8, 148.7, 136.9, 136.8, 136.31, 136.25, 133.63, 133.61, 133.5, 132.3, 132.2, 130.4, 130.3, 129.13, 129.07, 128.9, 128.7, 128.53, 128.51, 128.4, 128.10, 128.05, 127.9, 127.79, 127.75, 126.51, 126.48, 125.7, 124.8, 124.7, 124.3, 124.1, 123.7, 123.1, 122.6, 121.8, 121.7, 120.7, 119.8, 119.7, 119.0, 118.8, 115.8, 114.8, 62.3, 61.2, 60.3, 44.5, 43.5, 26.9, 26.8. ³¹P NMR (162 MHz, Chloroform-*d*) δ 33.10, 32.03.

(5-(2-chlorobenzyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridin-4-yl)diphenylphosphine oxide (3ma) White solid (47.24 mg, 51% yield); m.p. 169.5 – 170.8 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 7.80 – 7.70 (m, 2H), 7.70 – 7.60 (m, 2H), 7.58 – 7.42 (m, 4H), 7.37 (td, *J* = 7.6, 2.8 Hz, 2H), 7.31 (d, *J* = 7.9 Hz, 1H), 7.26 – 7.16 (m, 1H), 7.17 – 7.00 (m, 2H), 6.92 (d, *J* = 5.2 Hz, 1H), 5.96 (d, *J* = 5.2 Hz, 1H), 4.65 (d, *J* = 11.0 Hz, 1H), 3.97 (dd, *J* = 13.9, 1.6 Hz, 1H), 3.89 – 3.47 (m, 2H), 3.08 – 2.98 (m, 2H), 2.66 – 2.59 (m, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 136.9 (d, *J* = 7.0 Hz), 135.9, 134.6, 132.4 (d, *J* = 98.2 Hz), 131.84, 131.83 (d, *J* = 78.8 Hz), 131.8 (d, *J* = 2.8 Hz), 131.4, 131.3, 131.1, 129.5, 128.4 (d, *J* = 3.0 Hz), 128.3 (d, *J* = 2.3 Hz), 128.2, 126.64, 126.57, 126.3, 121.5 (d, *J* = 1.7 Hz), 61.0 (d, *J* = 85.9 Hz), 55.5 (d, *J* = 13.2 Hz), 46.0, 20.0. ³¹P NMR (162 MHz, Chloroform-*d*) δ 28.77. HRMS (ESI-TOF) *m/z*: [M + H]⁺ calcd for C₂₆H₂₄CINOPS 464.0999 found 464.0998.


methyl 2-(2-chlorophenyl)-2-(4-(diphenylphosphoryl)-6,7-dihydrothieno[3,2-c]pyridin-5(4H)yl)acetate (3na)

White solid (21.9 mg, 21% yield); m.p. 169.5 – 170.8 °C; ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 – 8.01 (m, 2H), 8.00 – 7.81 (m, 2H), 7.63 – 7.53 (m, 6H), 7.40 – 7.29 (m, 2H), 7.25 – 7.13 (m, 2H), 6.95 (d, *J* = 5.2 Hz, 1H), 5.97 (d, *J* = 5.1 Hz, 1H), 5.42 – 4.78 (m, 2H), 4.18 – 3.59 (m, 1H), 3.57 (s, 3H), 2.88 – 2.78 (m, 1H), 2.67 (dd, *J* = 14.6, 5.8 Hz, 1H), 2.51 (dt, *J* = 16.4, 4.3 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 171.6, 136.5 (d, *J* = 6.7 Hz), 134.4 (d, *J* = 25.0 Hz), 132.21 (d, *J* = 97.1 Hz), 132.20 (d, *J* = 8.9 Hz), 132.0 (d, *J* = 8.5 Hz), 131.9 (d, *J* = 2.8 Hz), 131.8 (d, *J* = 92.4 Hz), 131.5 (d, *J* = 2.8 Hz), 130.1, 129.8, 129.5, 128.5 (d, *J* = 11.2 Hz), 128.0 (d, *J* = 11.7 Hz), 127.3, 126.9, 126.3, 126.0, 122.0 (d, *J* = 1.7 Hz), 63.8 (d, *J* = 11.6 Hz), 60.7 (d, *J* = 82.1 Hz), 52.2, 43.0, 20.6. ³¹P NMR (162 MHz, Chloroform-*d*) δ 29.95. HRMS (ESI-TOF) *m*/*z*: [M + Na]⁺ calcd for C₂₈H₂₅ClNNaO₃PS 544.0837 found 544.0837.

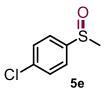

(methylsulfinyl)benzene $(5a)^5$

¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (dd, J = 8.0, 1.6 Hz, 2H), 7.58 – 7.50 (m, 3H), 2.75 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.7, 131.0, 129.4, 123.5, 44.0.

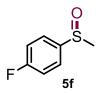
1-bromo-2-(methylsulfinyl)benzene (5b)⁵

¹H NMR (400 MHz, Chloroform-*d*) δ 7.94 (dd, J = 7.8, 1.4 Hz, 1H), 7.68 – 7.48 (m, 2H), 7.37 (td, J = 7.9, 1.5 Hz, 1H), 2.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.4, 132.9, 132.3, 128.7, 125.7, 118.4, 41.9.

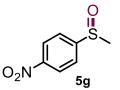
1-bromo-3-(methylsulfinyl)benzene (5c)⁶


S22

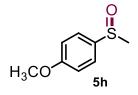
¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (t, *J* = 1.7 Hz, 1H), 7.64 – 7.62 (ddd, *J* = 7.9, 1.8, 1.0 Hz, 1H), 7.58 – 7.52 (m, 1H), 7.41 (t, *J* = 7.8 Hz, 1H), 2.75 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 148.0, 134.1, 130.8, 126.5, 123.6, 122.1, 44.1.


1-bromo-4-(methylsulfinyl)benzene (5d)⁵

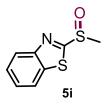
¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, J = 8.5 Hz, 2H), 7.53 (d, J = 8.5 Hz, 2H), 2.72 (s, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.9, 132.6, 125.4, 125.1, 44.0.


1-chloro-4-(methylsulfinyl)benzene (5e)⁵

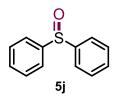
¹H NMR (400 MHz, Chloroform-*d*) δ 7.66 – 7.55 (m, 2H), 7.56 – 7.42 (m, 2H), 2.72 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 144.3, 137.2, 129.6, 125.0, 44.1.


1-fluoro-4-(methylsulfinyl)benzene (5f)⁶

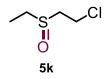
¹H NMR (400 MHz, Chloroform-*d*) δ 7.73 – 7.55 (m, 2H), 7.28 – 7.11 (m, 2H), 2.72 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 164.3 (d, *J* = 251.4 Hz), 141.2 (d, *J* = 3.2 Hz), 125.8 (d, *J* = 8.8 Hz), 116.7 (d, *J* = 22.5 Hz), 44.2 (d, *J* = 1.4 Hz). ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -108.64.


1-(methylsulfinyl)-4-nitrobenzene $(5g)^7$

¹H NMR (400 MHz, Chloroform-*d*) δ 8.70 – 8.23 (m, 2H), 8.03 – 7.62 (m, 2H), 2.82 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 153.3, 149.5, 124.7, 124.5, 43.9.


1-methoxy-4-(methylsulfinyl)benzene (5h)⁶

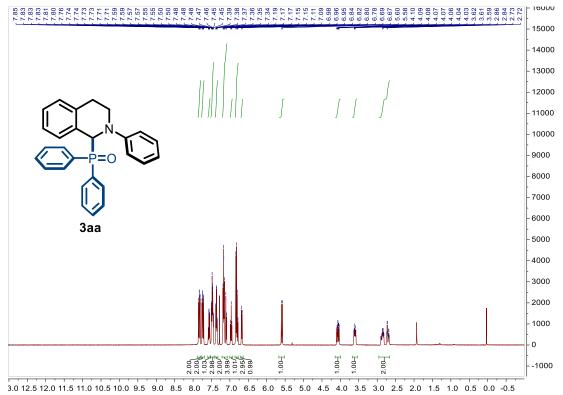
¹H NMR (400 MHz, Chloroform-*d*) δ 7.76 – 7.45 (m, 2H), 7.19 – 6.70 (m, 2H), 3.83 (s, 3H), 2.68 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.9, 136.6, 125.4, 114.8, 55.5, 44.0.


2-(methylsulfinyl)benzo[d]thiazole (5i)⁸

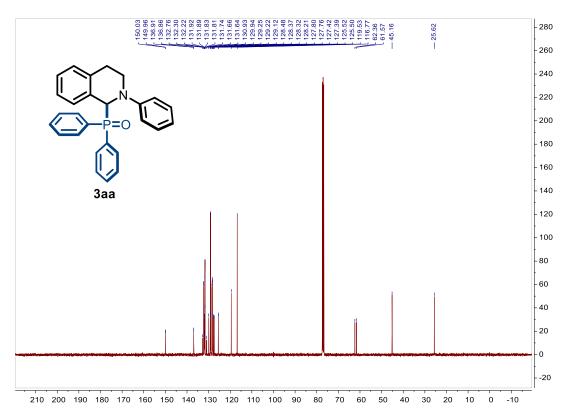
¹H NMR (400 MHz, Chloroform-*d*) δ 8.08 (d, J = 8.2 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.64 – 7.55 (m, 1H), 7.54 – 7.46 (m, 1H), 3.10 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.4, 153.8, 136.0, 127.0, 126.3, 122.4, 43.2.

Sulfinyldibenzene $(5j)^5$

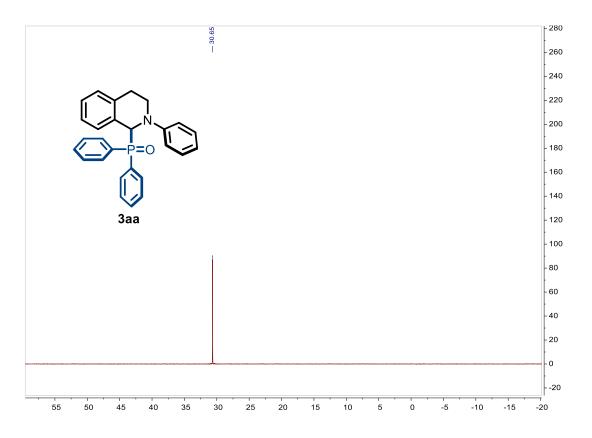
¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 (d, *J* = 2.1 Hz, 2H), 7.66 – 7.64 (m, 2H), 7.46 (d, *J* = 3.6 Hz, 2H), 7.45 – 7.42 (m, 4H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 145.6, 131.1, 129.3, 124.8.



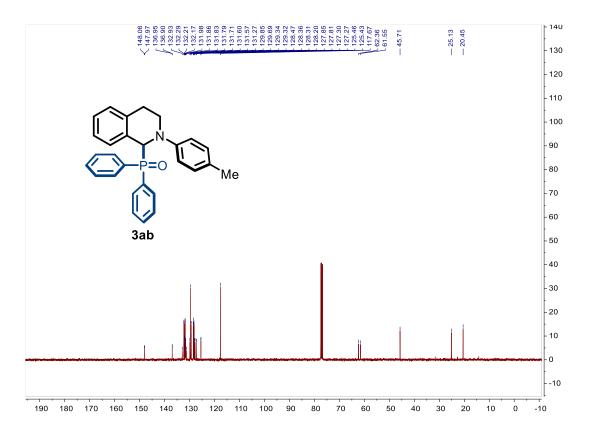
1-chloro-2-(ethylsulfinyl)ethane (5k)⁷

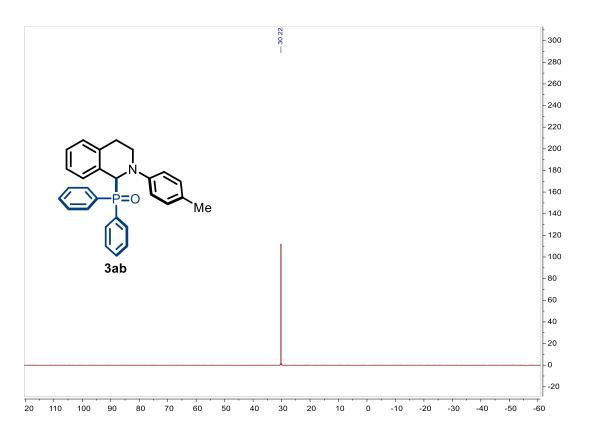

¹H NMR (400 MHz, Chloroform-*d*) δ 4.17 – 3.73 (m, 2H), 3.29 - 3.01 (m, 2H), 2.82 (q, J = 7.2 Hz, 2H), 1.39 (t, J = 7.5 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 54.2, 46.1, 37.0, 6.8.

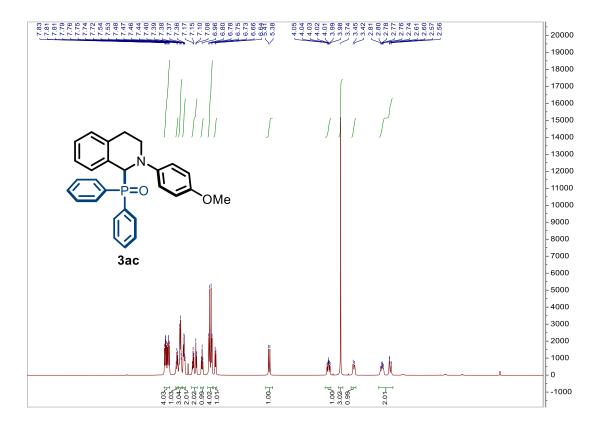
4. NMR Spectra

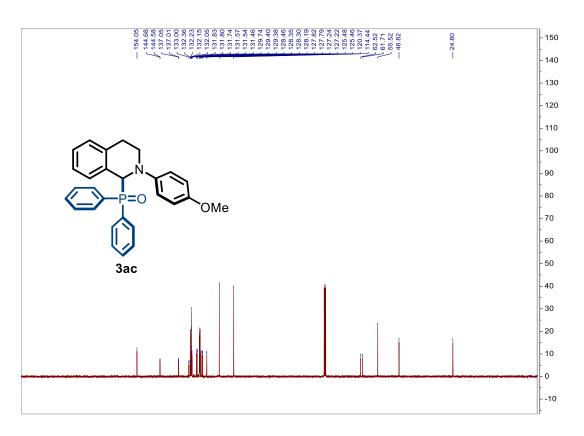

¹H NMR spectrum of 3aa

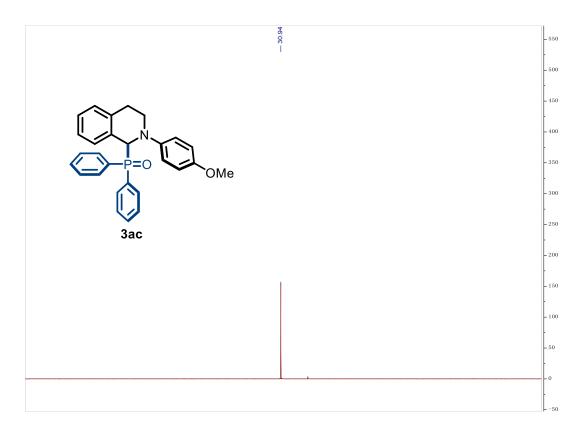
¹³C NMR spectrum of 3aa

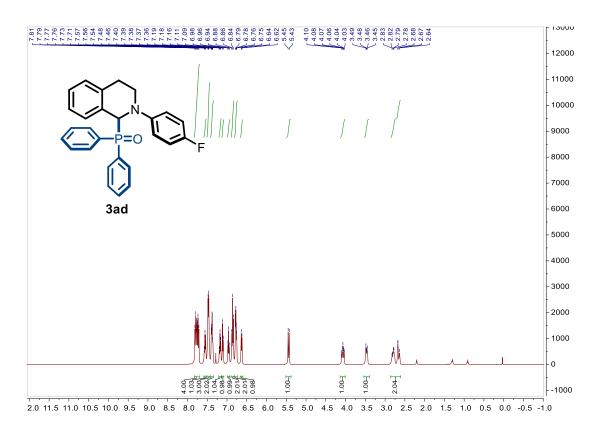

³¹P NMR spectrum of 3aa

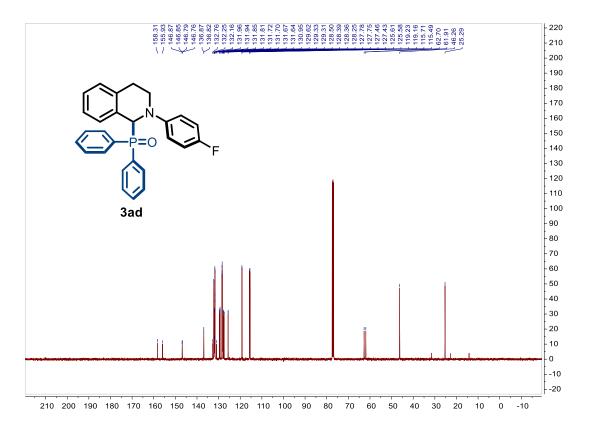

¹H NMR spectrum of 3ab

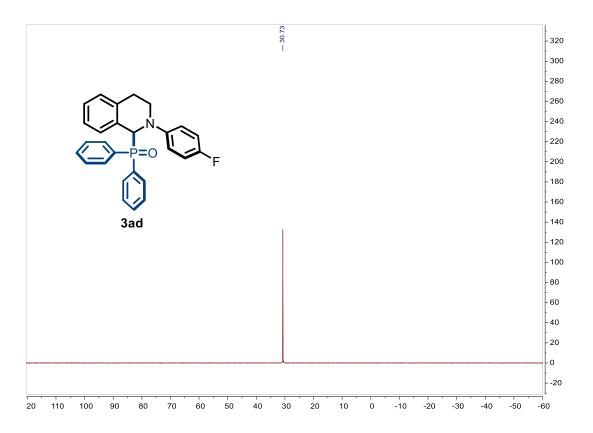

¹³C NMR spectrum of 3ab

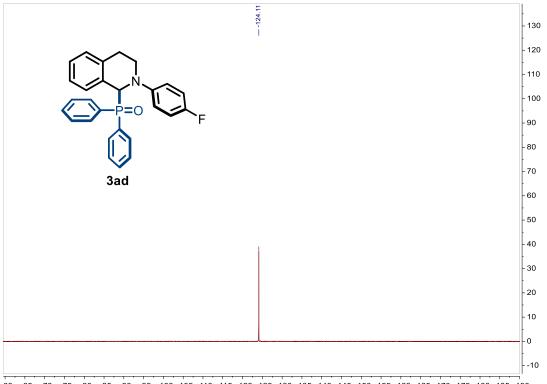

³¹P NMR spectrum of 3ab


¹H NMR spectrum of 3ac

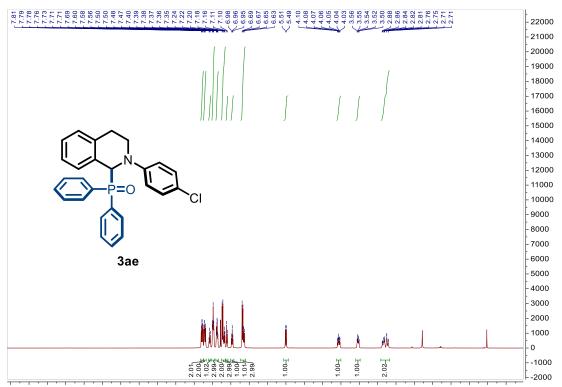

¹³C NMR spectrum of 3ac


³¹P NMR spectrum of 3ac

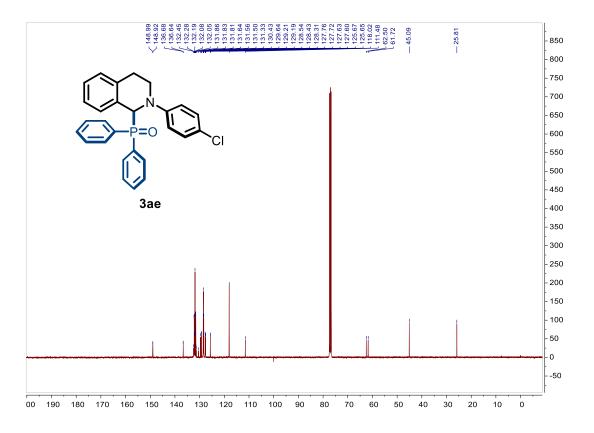

¹H NMR spectrum of 3ad


¹³C NMR spectrum of 3ad

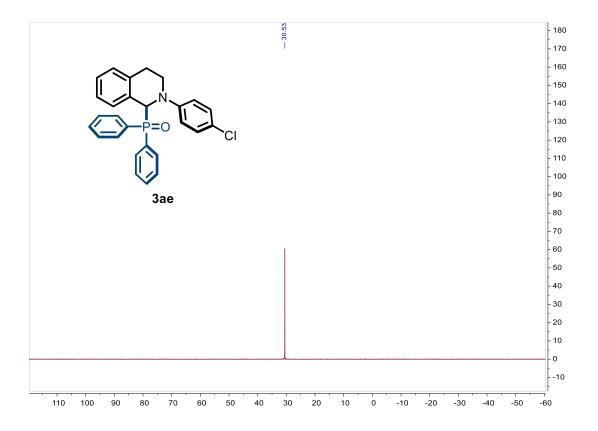
³¹P NMR spectrum of 3ad



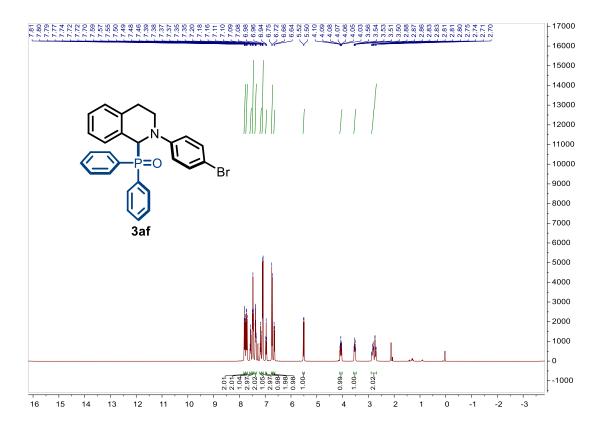
¹⁹F NMR spectrum of 3ad

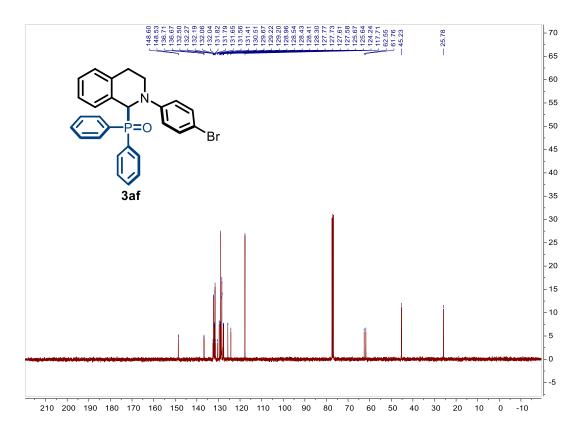

60 -65 -70 -75 -80 -85 -90 -95 -100 -105 -110 -115 -120 -125 -130 -135 -140 -145 -150 -155 -160 -165 -170 -175 -180 -185 -190

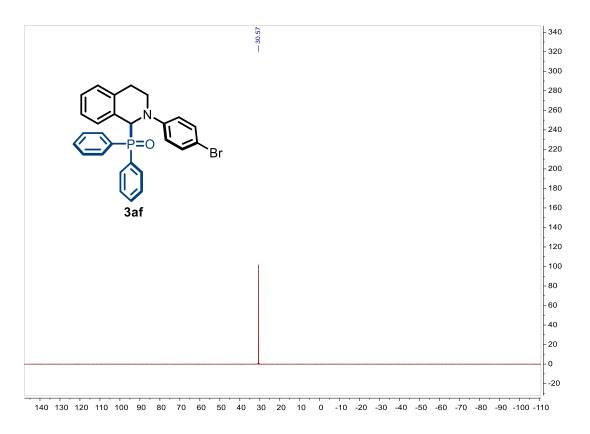
¹H NMR spectrum of 3ae

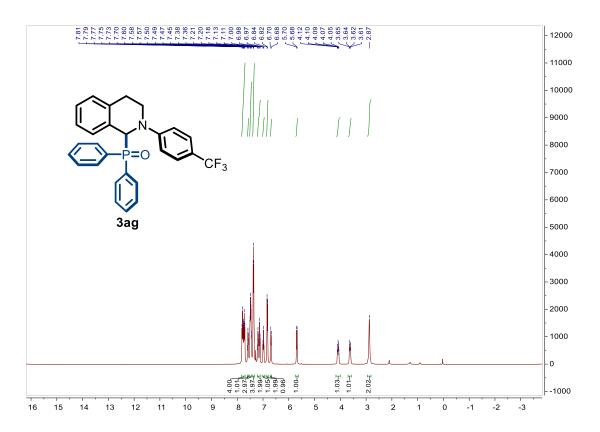


3.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

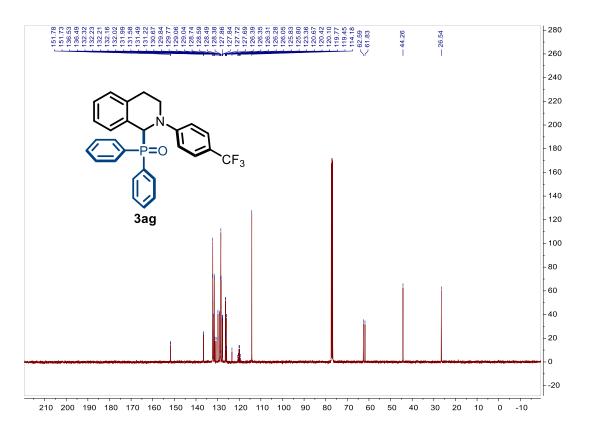

¹³C NMR spectrum of 3ae


³¹P NMR spectrum of 3ae

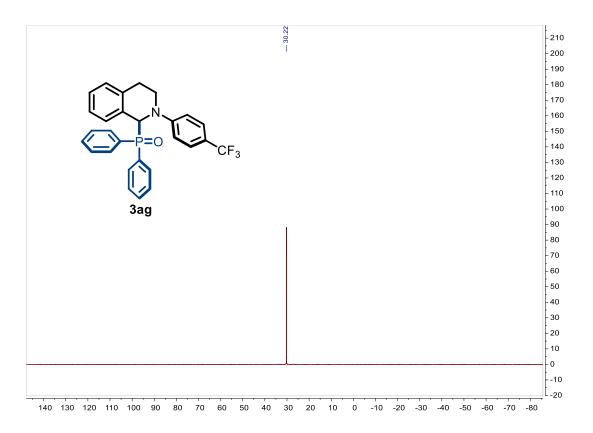

¹H NMR spectrum of 3af


¹³C NMR spectrum of 3af

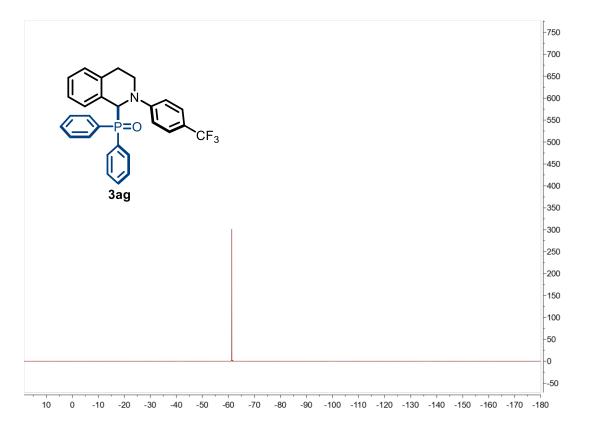
³¹P NMR spectrum of 3af

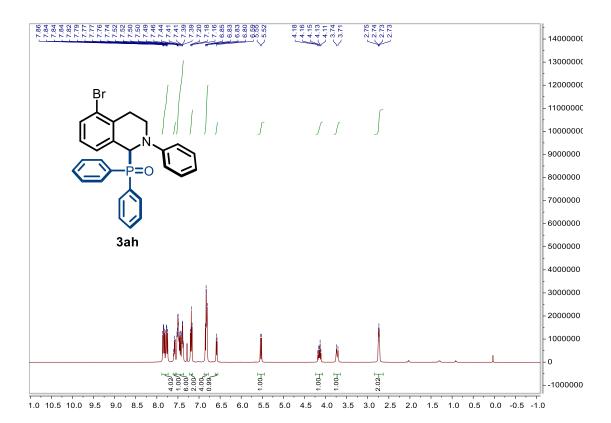


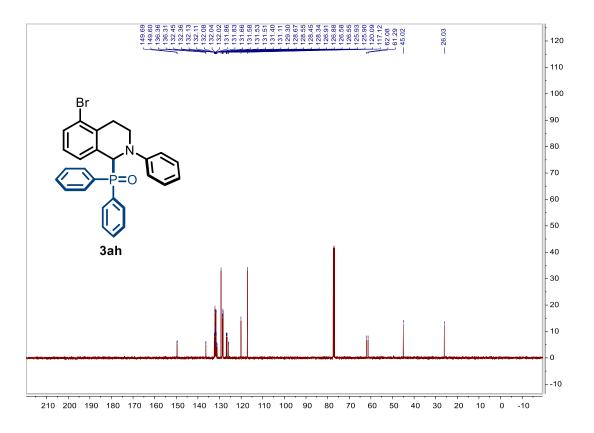
¹H NMR spectrum of 3ag

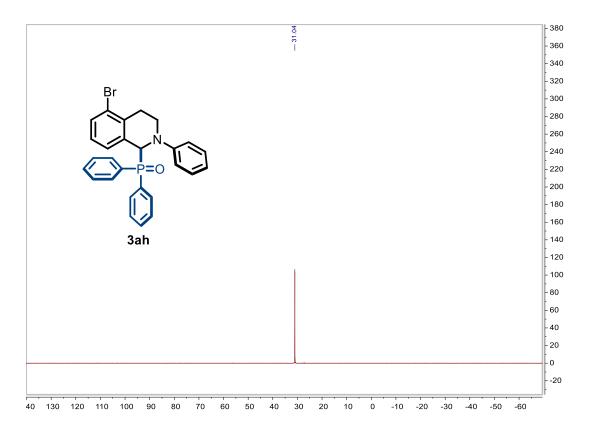


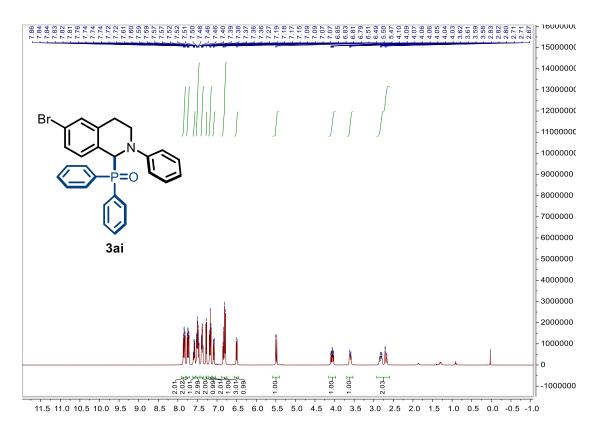
S34

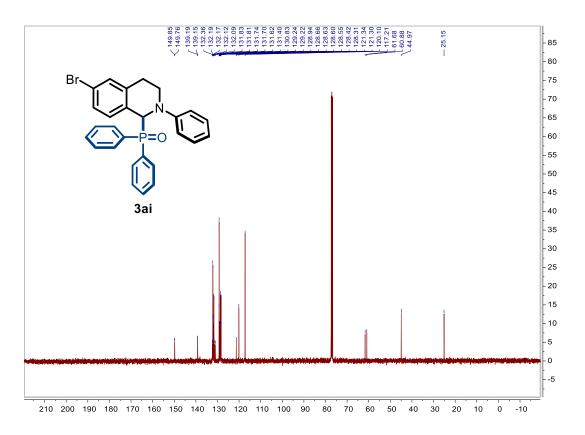

¹³C NMR spectrum of 3ag

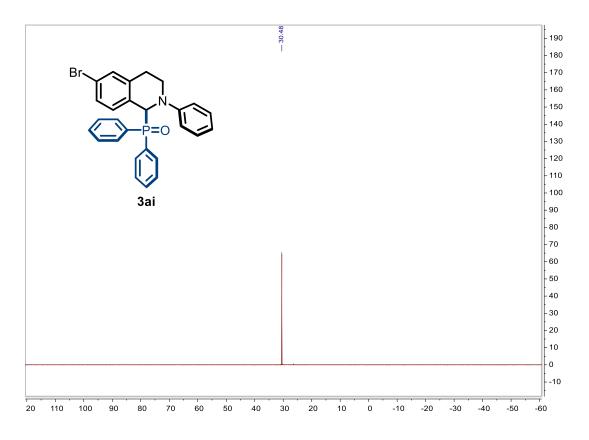

³¹P NMR spectrum of 3ag

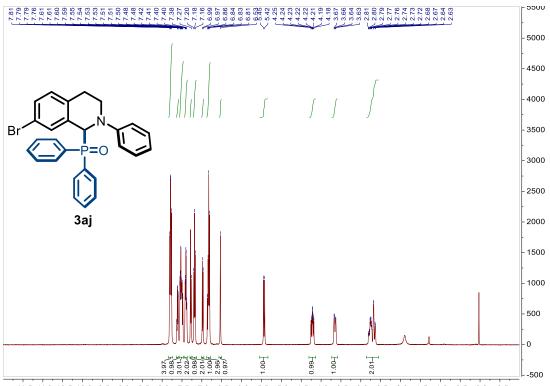

¹⁹F NMR spectrum of 3ag


¹H NMR spectrum of 3ah

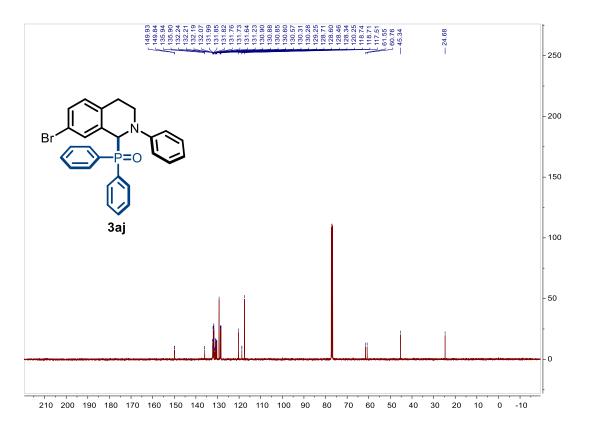

¹³C NMR spectrum of 3ah


³¹P NMR spectrum of 3ah

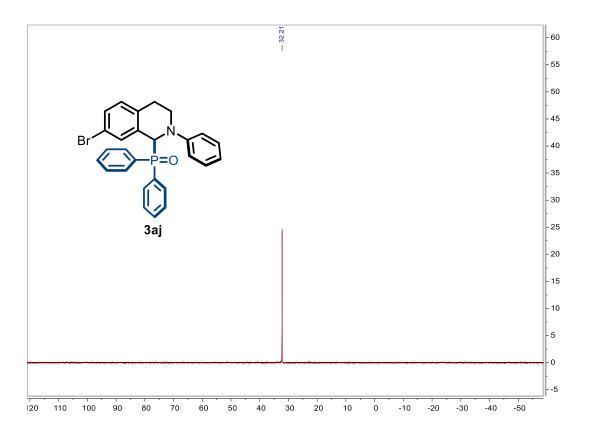

¹H NMR spectrum of 3ai


¹³C NMR spectrum of 3ai

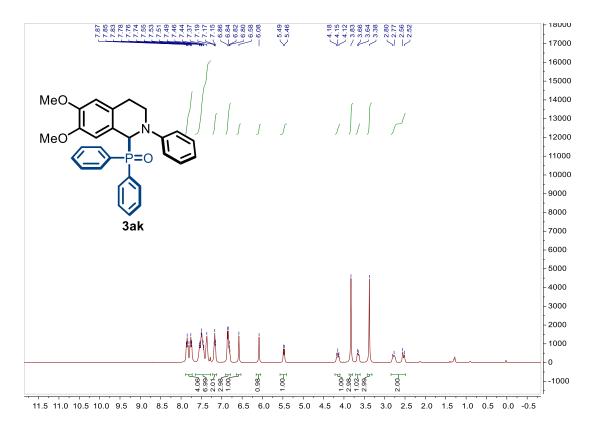
³¹P NMR spectrum of 3ai

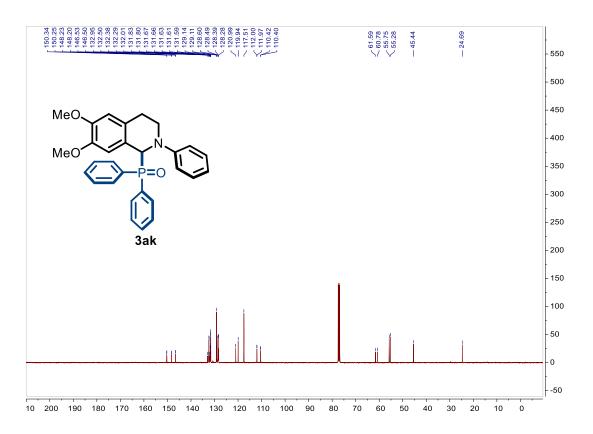


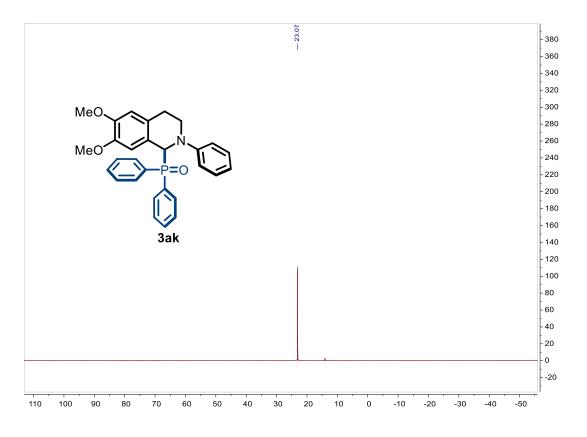
¹H NMR spectrum of 3aj

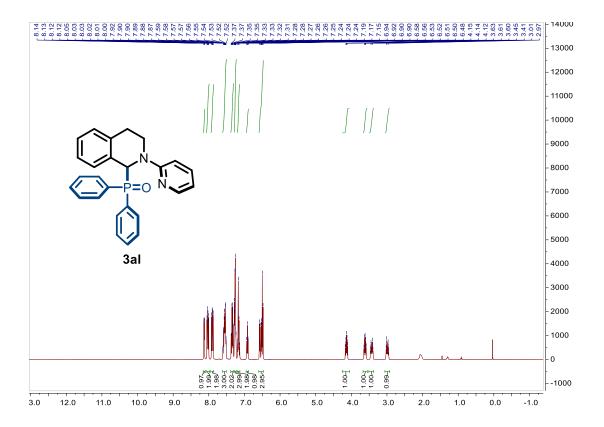


11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

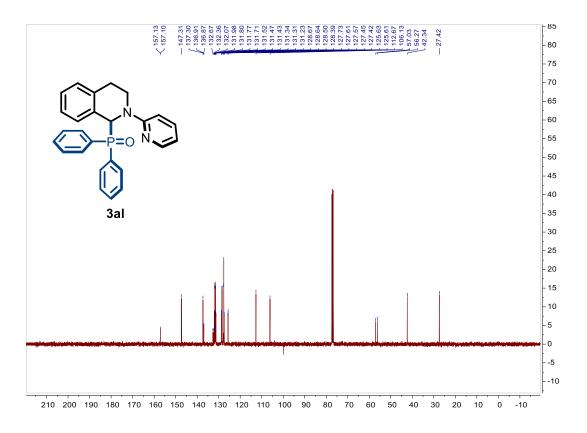

¹³C NMR spectrum of 3aj


³¹P NMR spectrum of 3aj

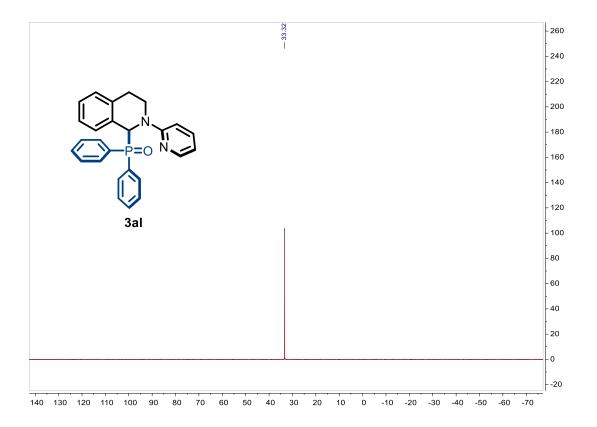

¹H NMR spectrum of 3ak


¹³C NMR spectrum of 3ak

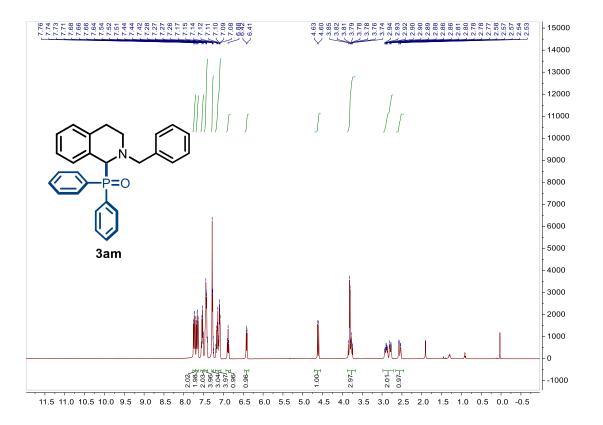
³¹P NMR spectrum of 3ak

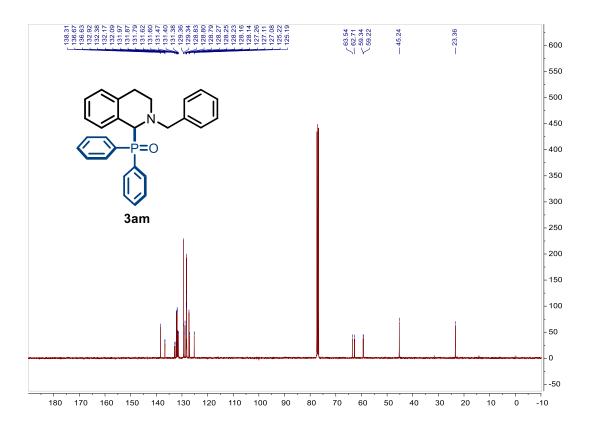


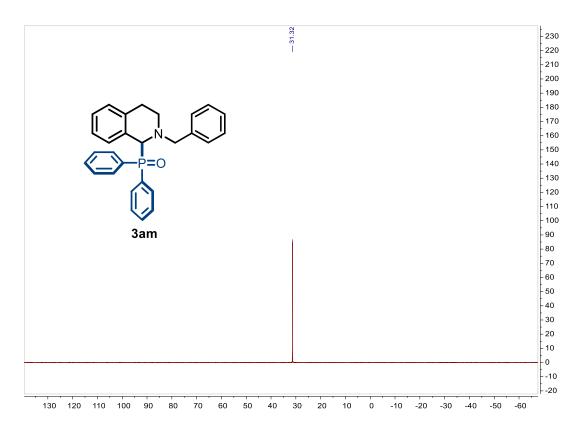
¹H NMR spectrum of 3al

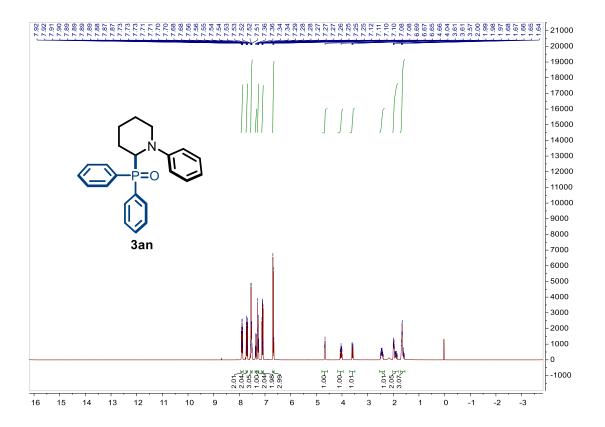


S42

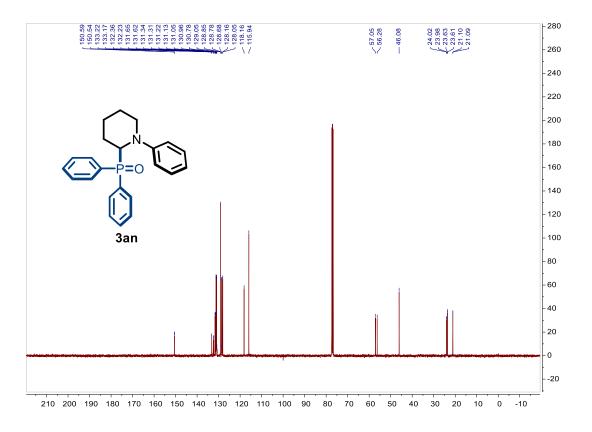

¹³C NMR spectrum of 3al


³¹P NMR spectrum of 3al

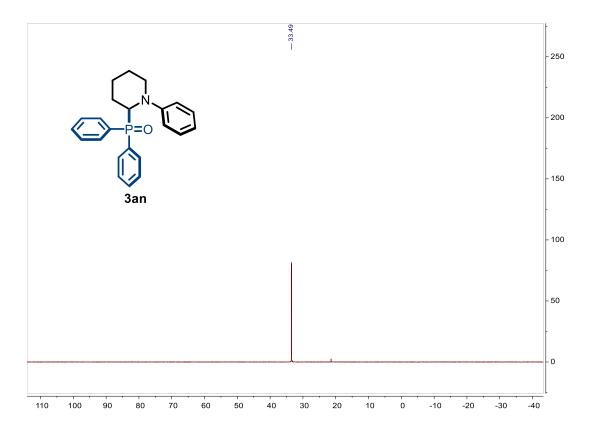

¹H NMR spectrum of 3am


¹³C NMR spectrum of 3am

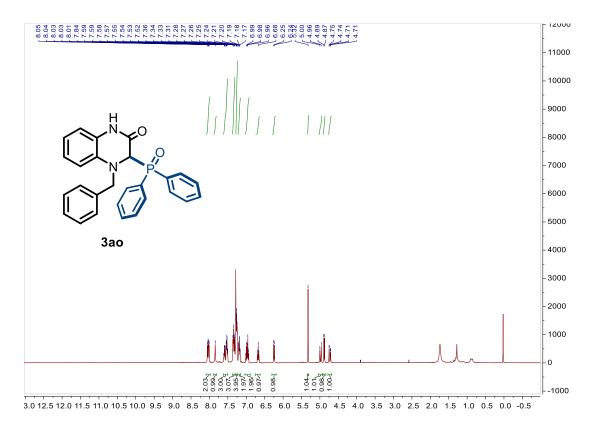
³¹P NMR spectrum of 3am

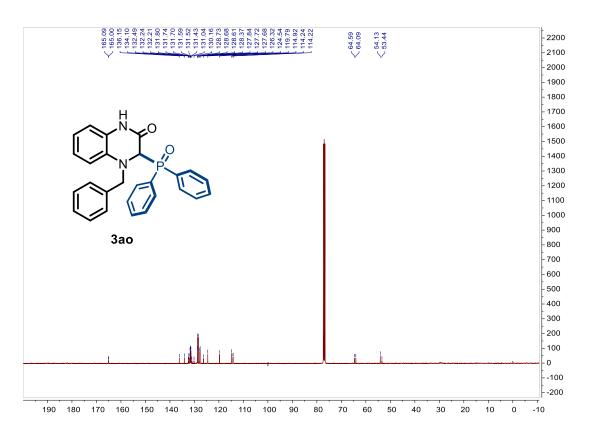


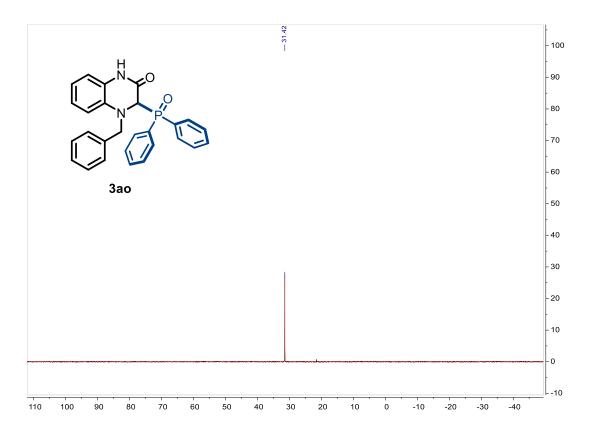
¹H NMR spectrum of 3an

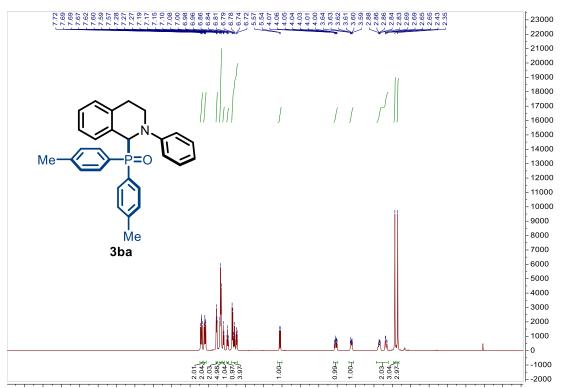


S45

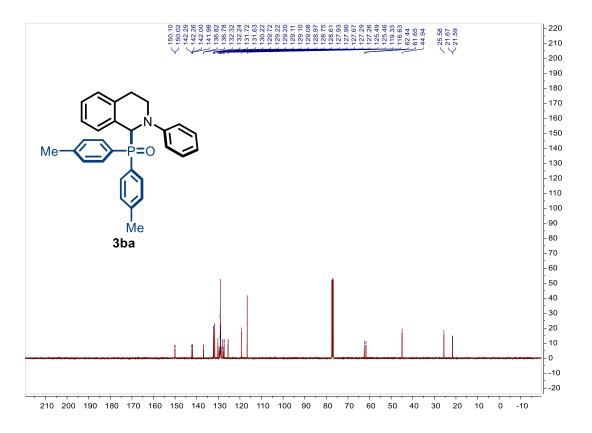

¹³C NMR spectrum of 3an


³¹P NMR spectrum of 3an

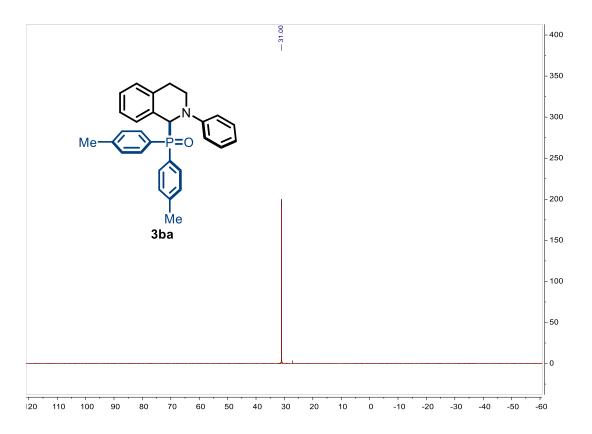

¹H NMR spectrum of 3ao


¹³C NMR spectrum of 3ao

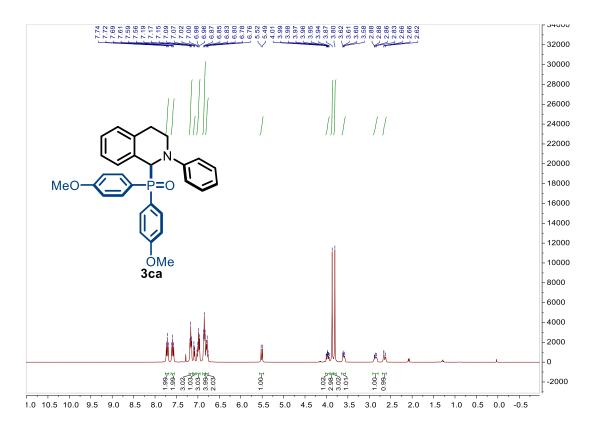
³¹P NMR spectrum of 3ao

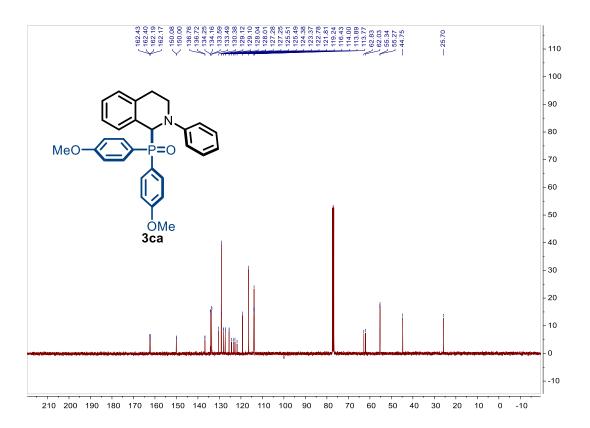


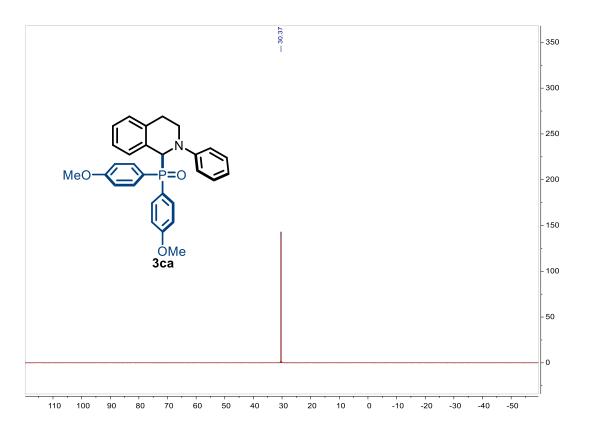
¹H NMR spectrum of 3ba

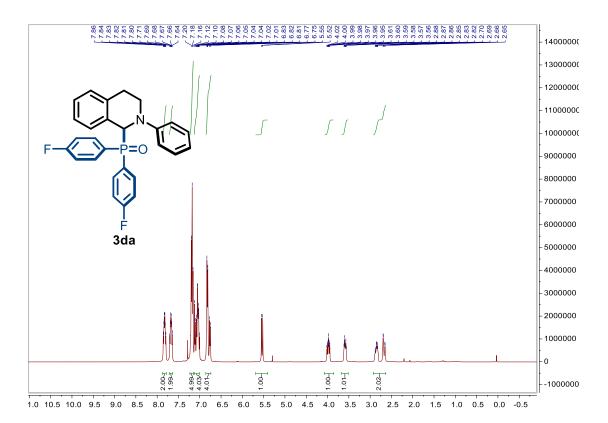


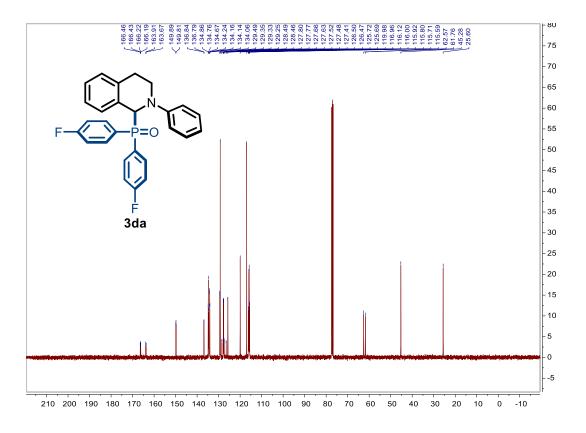
^{12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0}

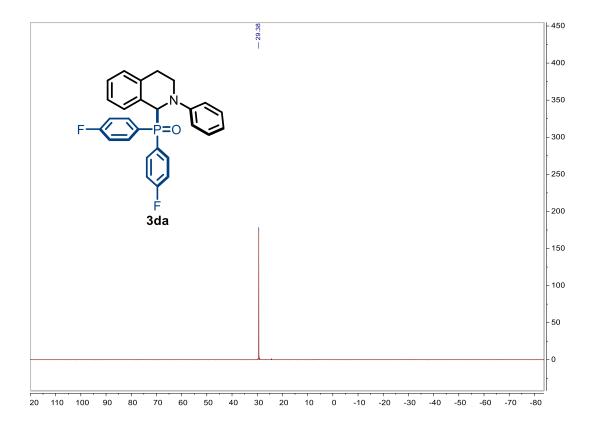

¹³C NMR spectrum of 3ba

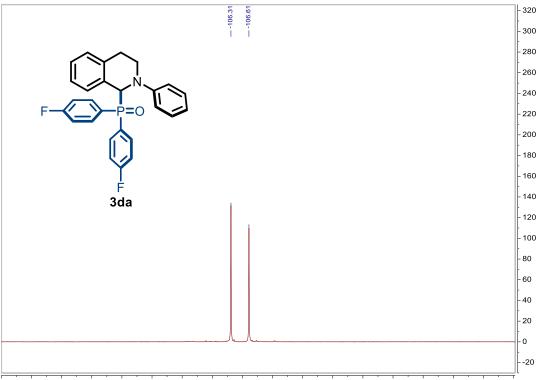

³¹P NMR spectrum of 3ba


¹H NMR spectrum of 3ca

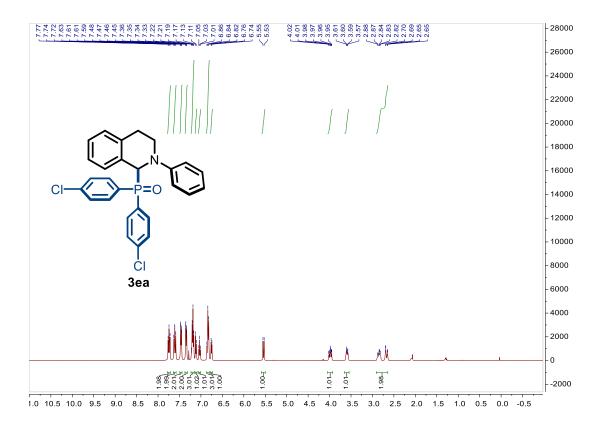

¹³C NMR spectrum of 3ca


³¹P NMR spectrum of 3ca

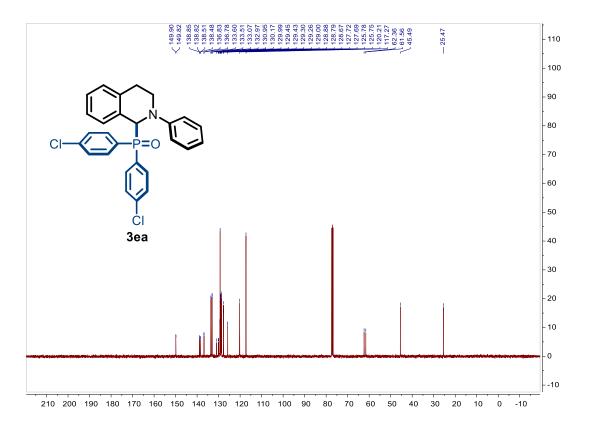

¹H NMR spectrum of 3da


¹³C NMR spectrum of 3da

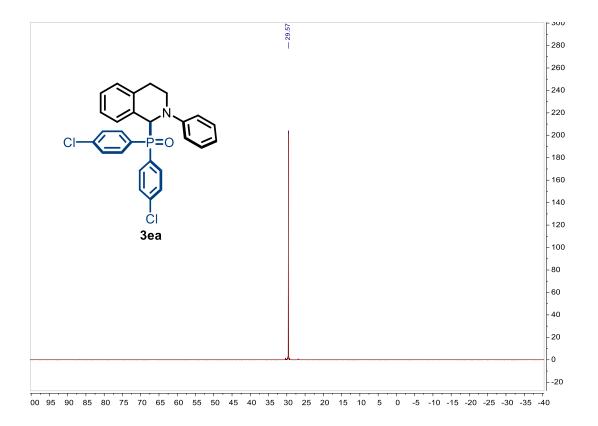
³¹P NMR spectrum of 3da

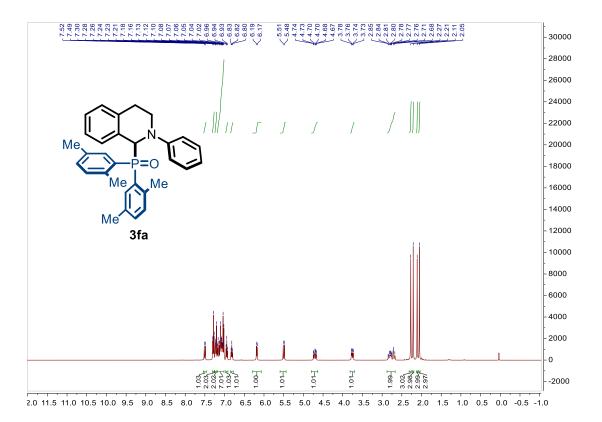


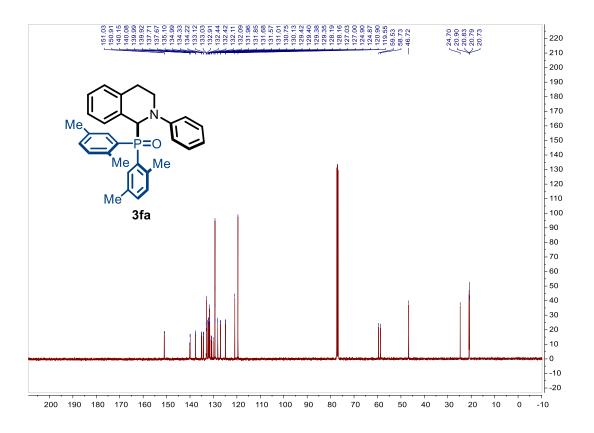
¹⁹F NMR spectrum of 3da

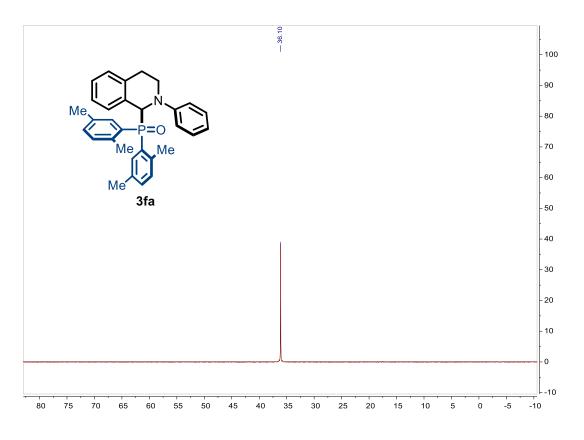


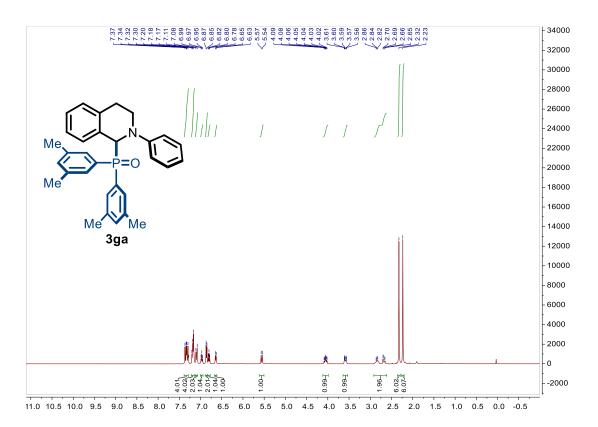
)2.5 -103.0 -103.5 -104.0 -104.5 -105.0 -105.5 -106.0 -106.5 -107.0 -107.5 -108.0 -108.5 -109.0 -109.5 -110.0 -110.5 -111.0


¹H NMR spectrum of 3ea

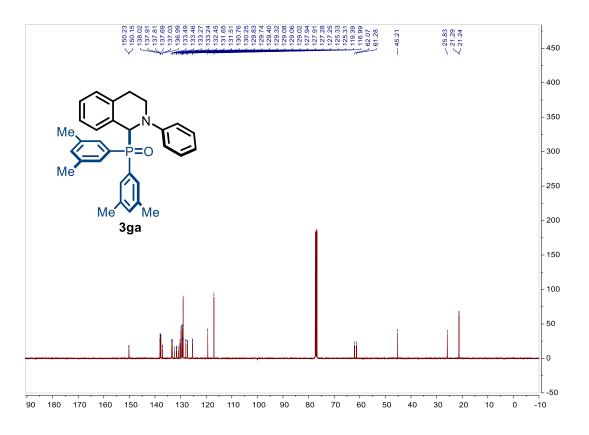

¹³C NMR spectrum of 3ea


³¹P NMR spectrum of 3ea

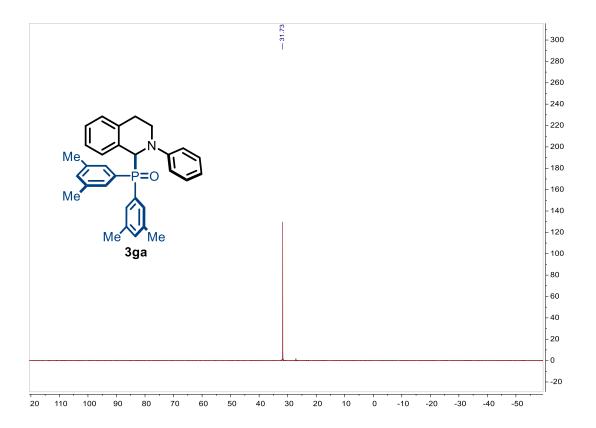

¹H NMR spectrum of 3fa


¹³C NMR spectrum of 3fa

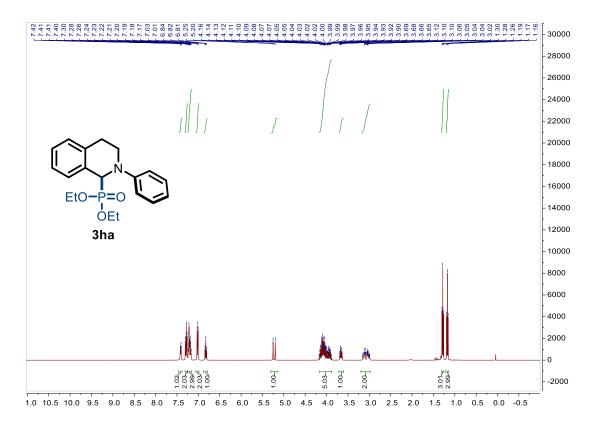
³¹P NMR spectrum of 3fa

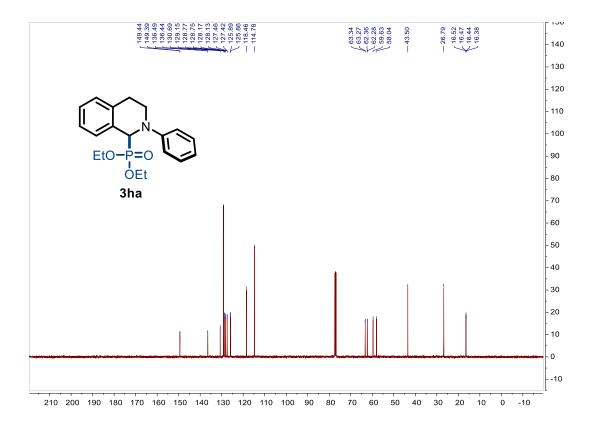


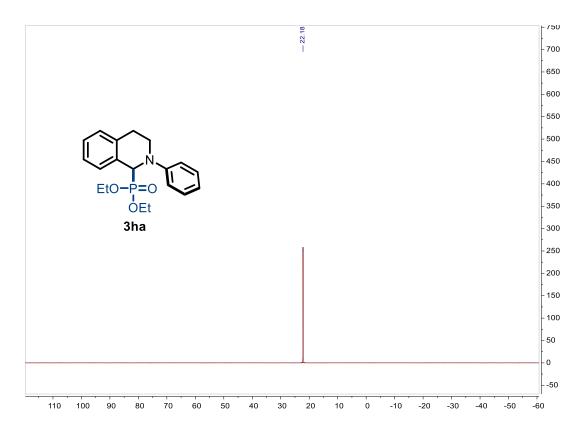
¹H NMR spectrum of 3ga

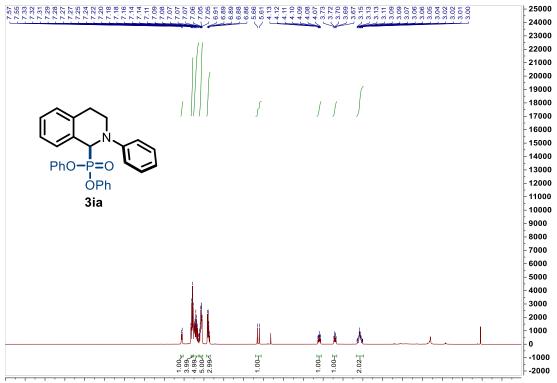


S56

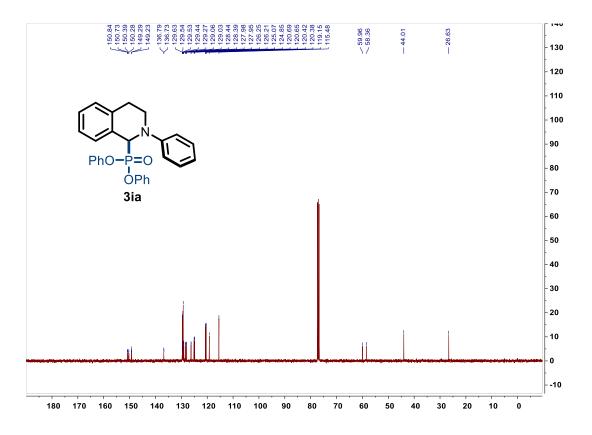

¹³C NMR spectrum of 3ga


³¹P NMR spectrum of 3ga

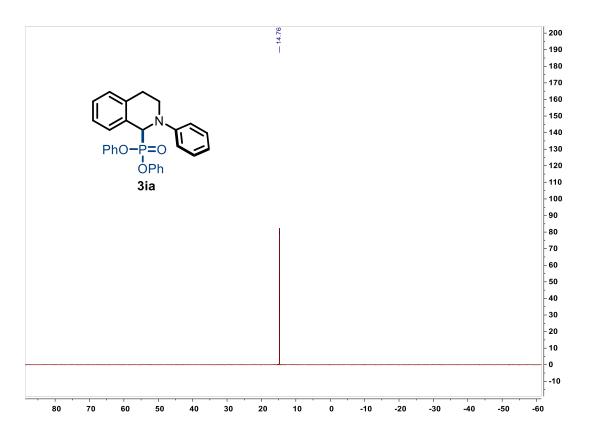

¹H NMR spectrum of 3ha


¹³C NMR spectrum of 3ha

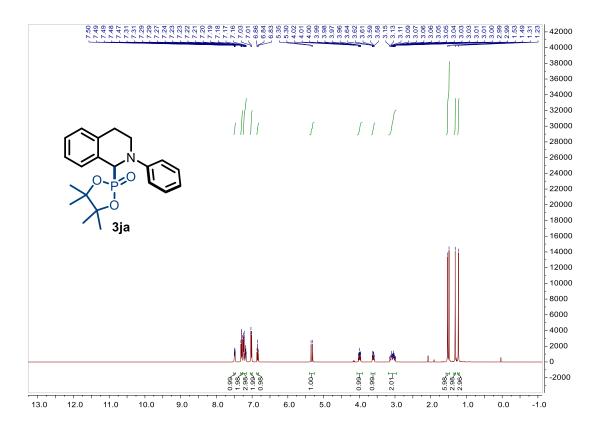
³¹P NMR spectrum of 3ha

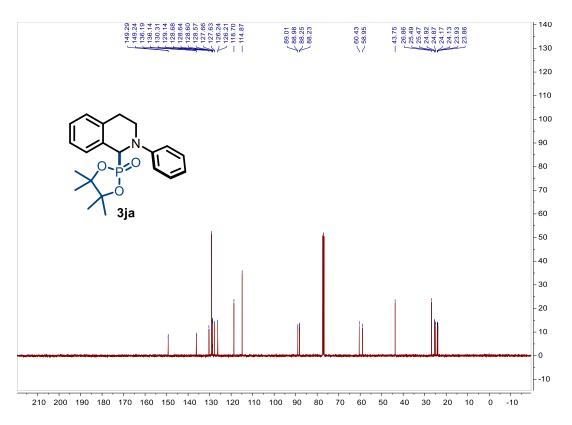


¹H NMR spectrum of 3ia

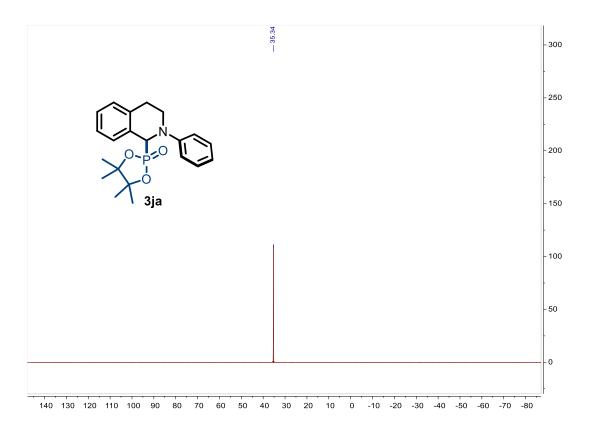


2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

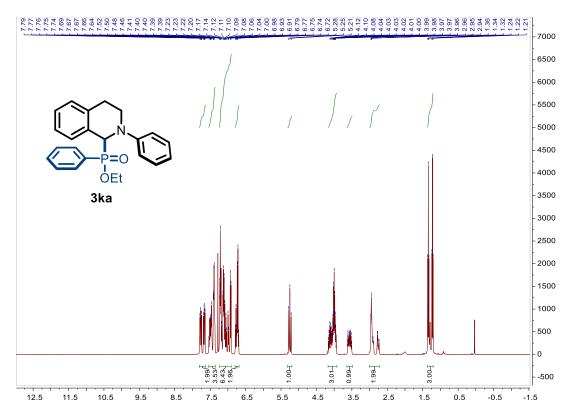

¹³C NMR spectrum of 3ia


³¹P NMR spectrum of 3ia

¹H NMR spectrum of 3ja

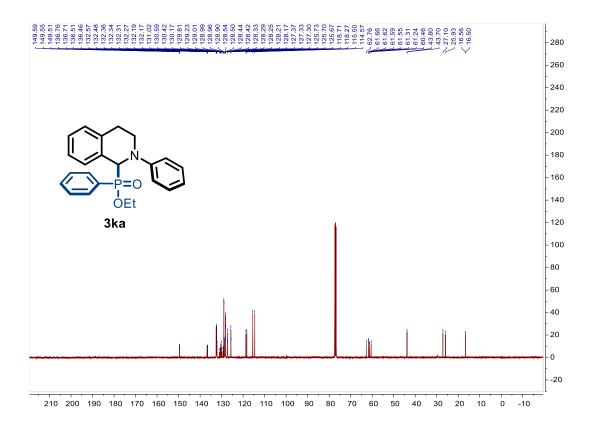


¹³C NMR spectrum of 3ja



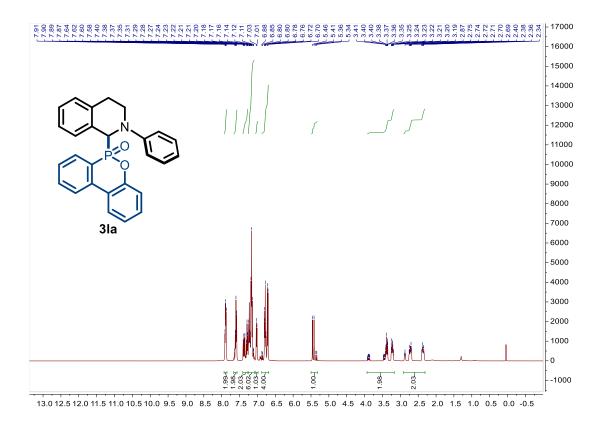
S61

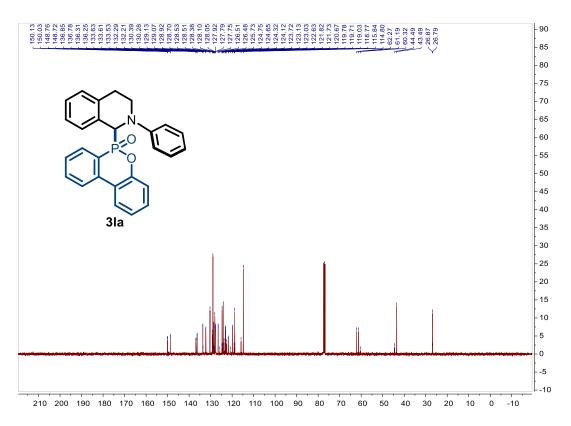
³¹P NMR spectrum of 3ja



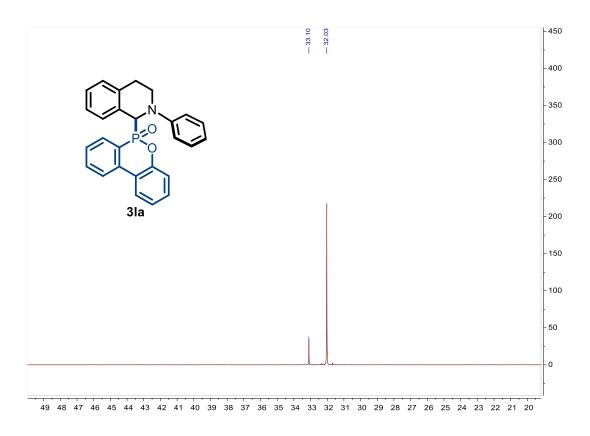
¹H NMR spectrum of 3ka

S62

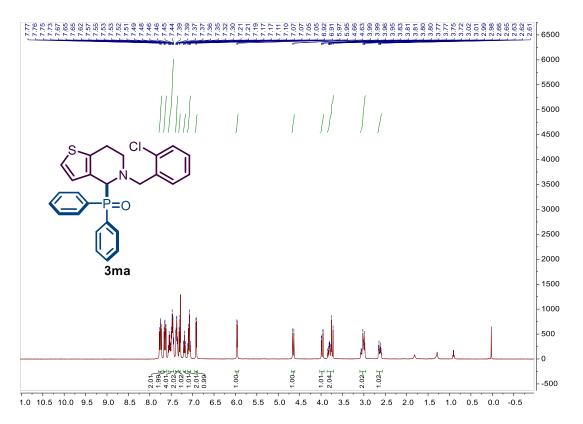

¹³C NMR spectrum of 3ka

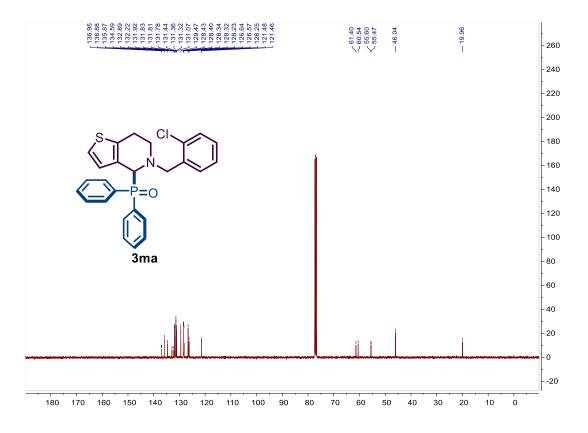

³¹P NMR spectrum of 3ka

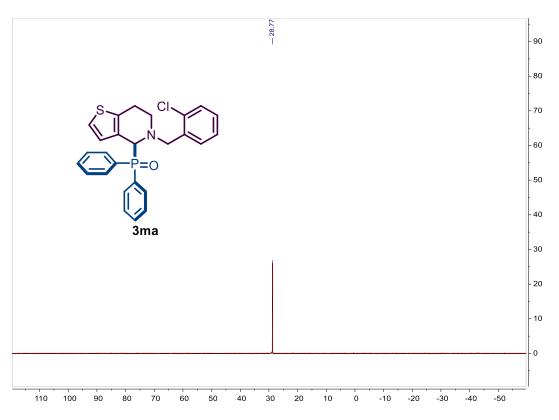
¹H NMR spectrum of 3la

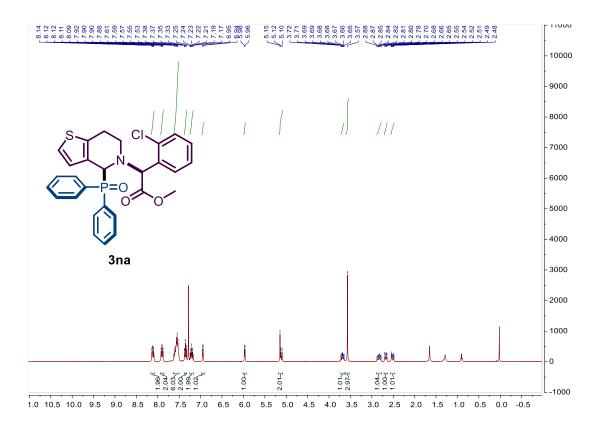


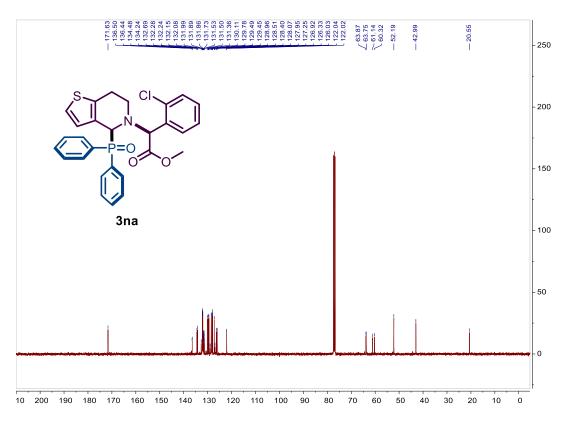
¹³C NMR spectrum of 3la

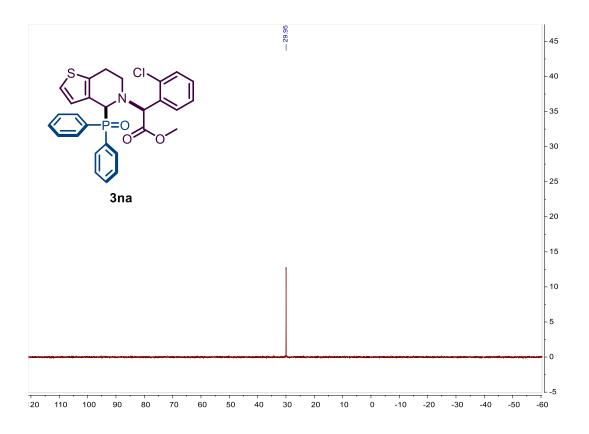


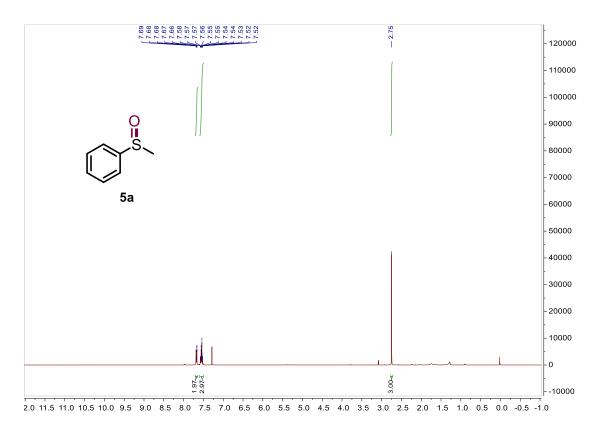

³¹P NMR spectrum of 3la


¹H NMR spectrum of 3ma

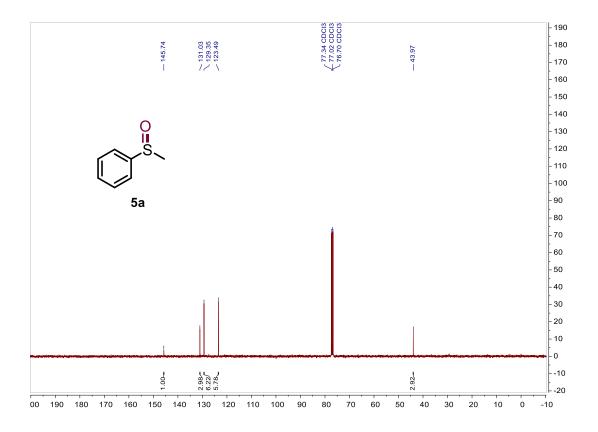

¹³C NMR spectrum of 3ma


³¹P NMR spectrum of 3ma

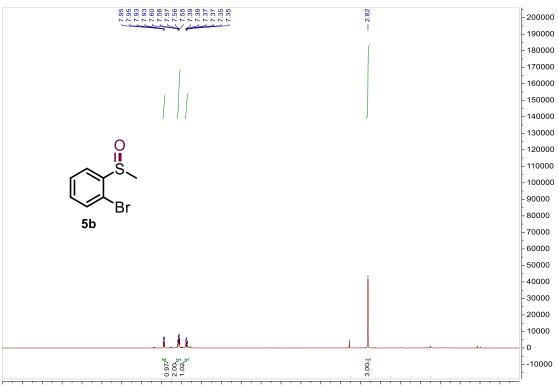

¹H NMR spectrum of 3na


¹³C NMR spectrum of 3na

³¹P NMR spectrum of 3na

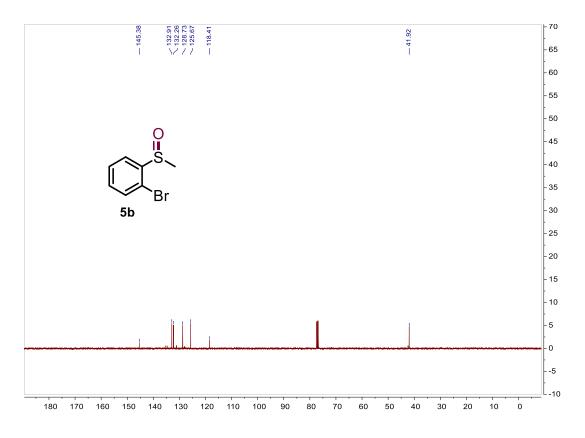


¹H NMR spectrum of 5a

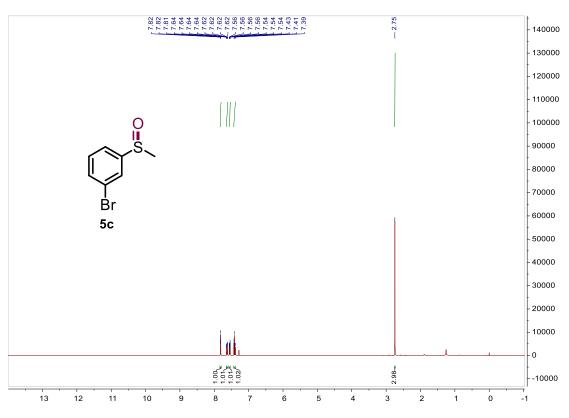


S68

¹³C NMR spectrum of 5a

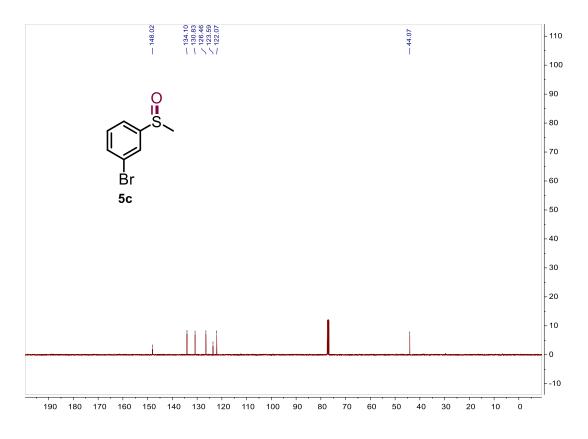


¹H NMR spectrum of 5b

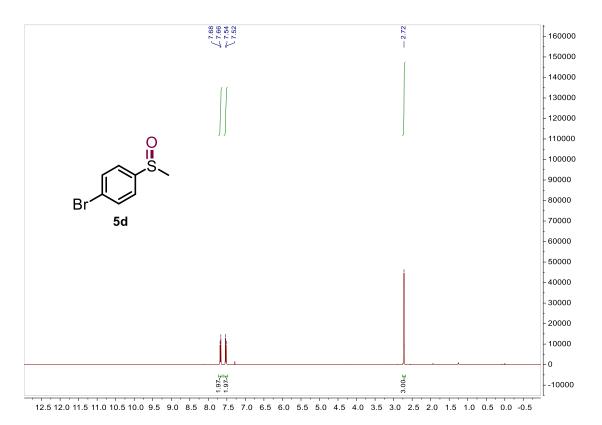


2.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5

¹³C NMR spectrum of 5b

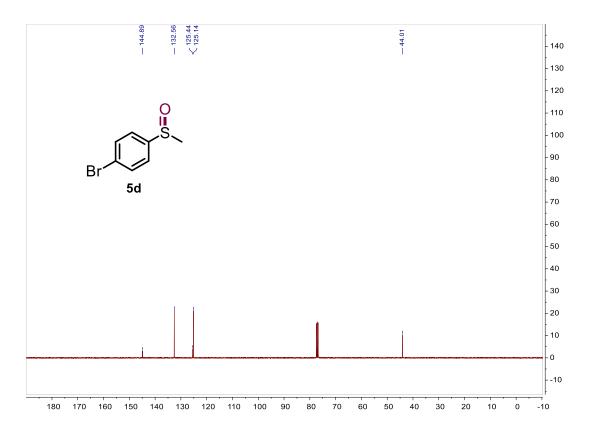


¹H NMR spectrum of 5c

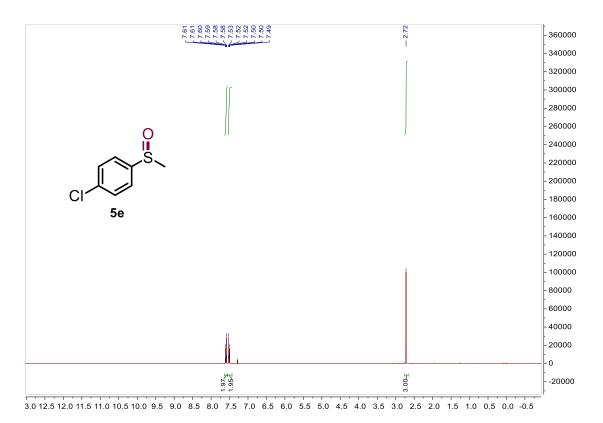


S70

¹³C NMR spectrum of 5c

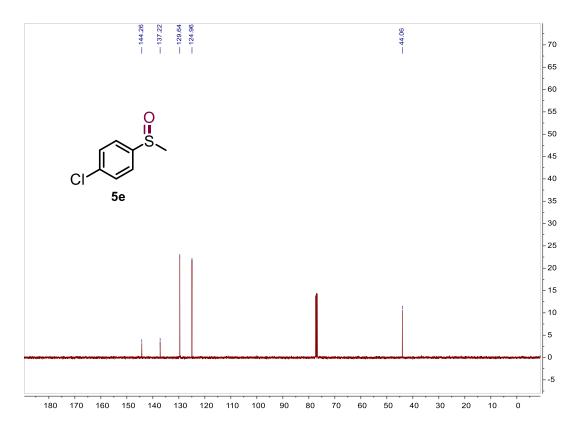


¹H NMR spectrum of 5d

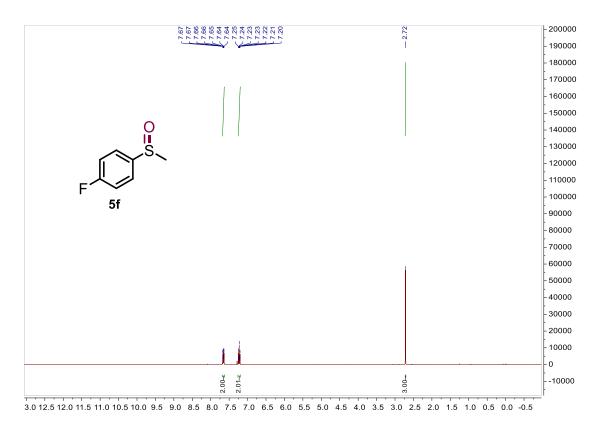


S71

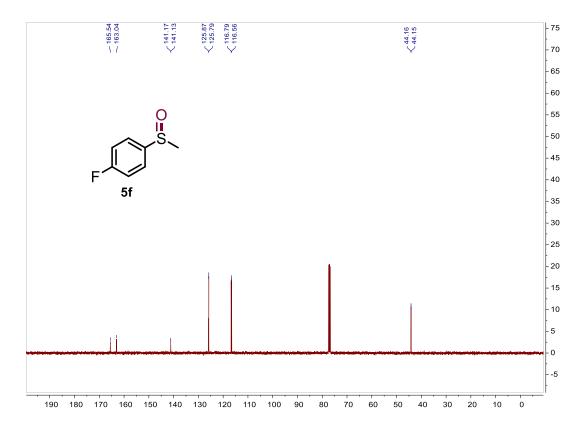
¹³C NMR spectrum of 5d

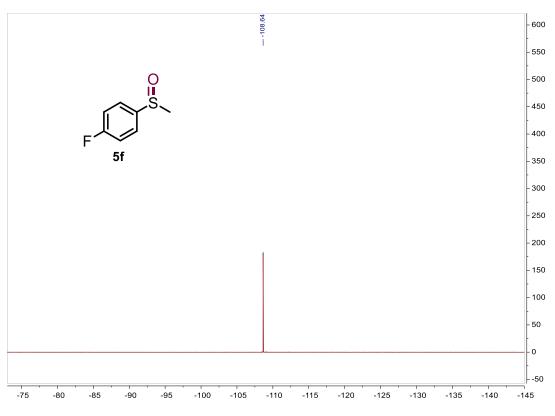


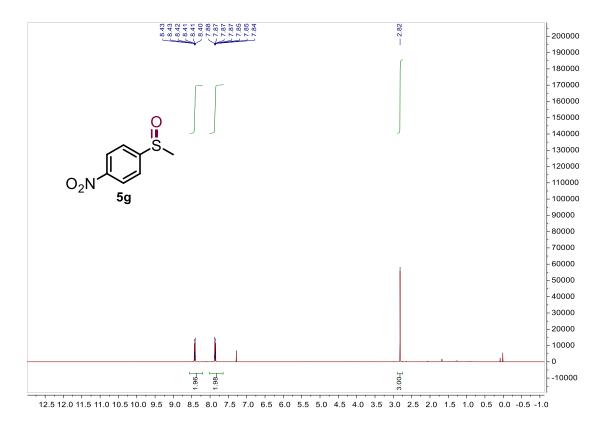
¹H NMR spectrum of 5e

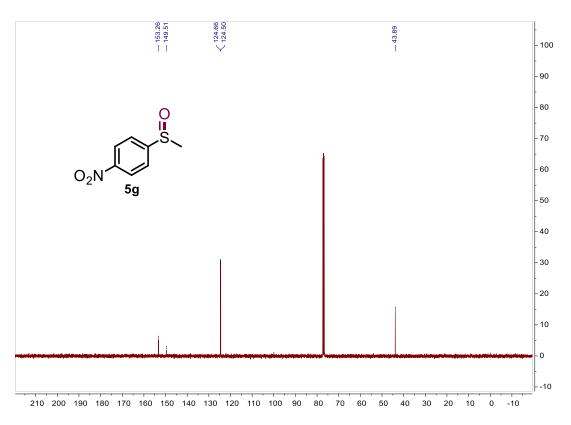


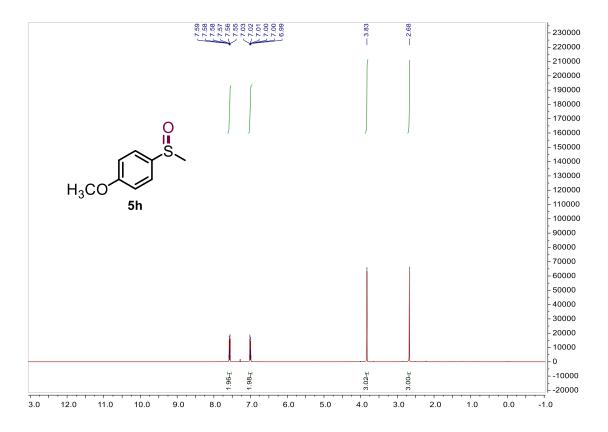
S72

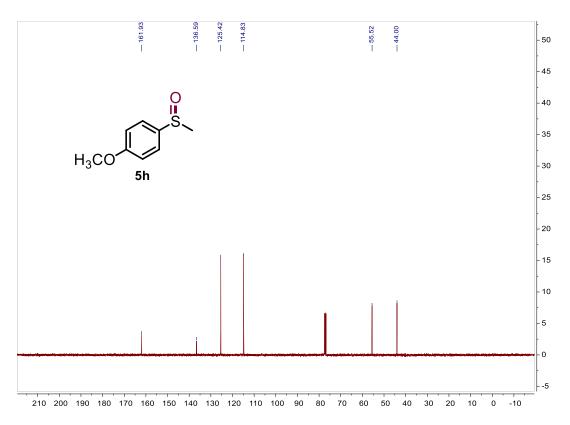

¹³C NMR spectrum of 5e

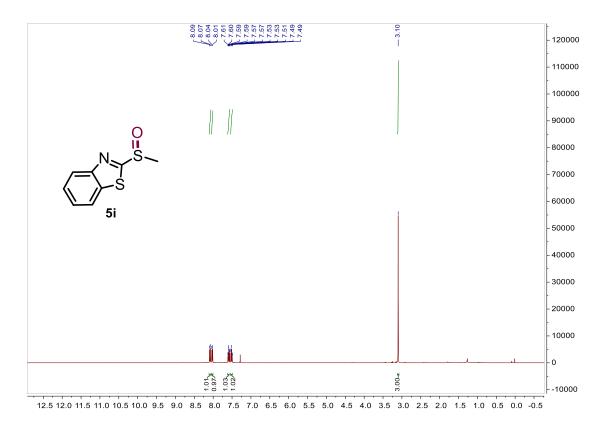

¹H NMR spectrum of 5f

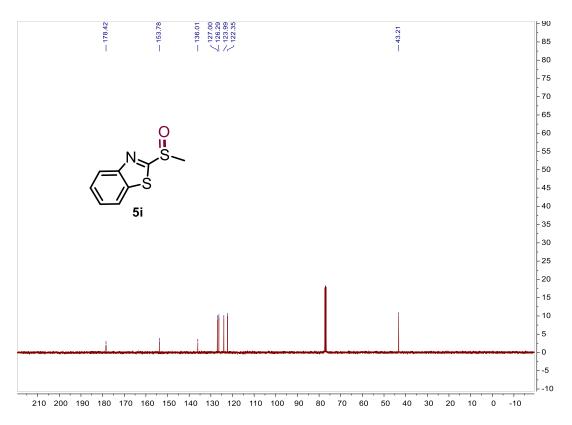

¹³C NMR spectrum of 5f

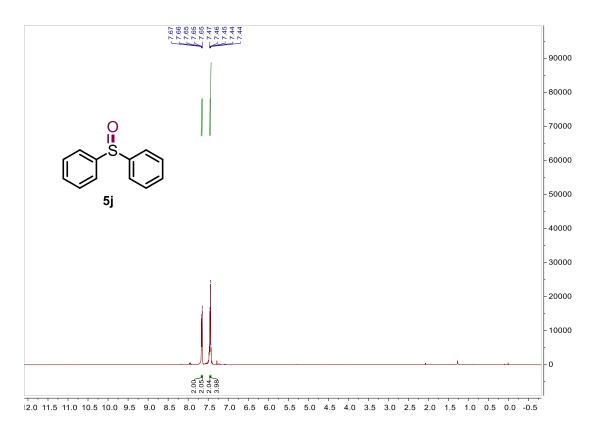

¹⁹F NMR spectrum of 5f

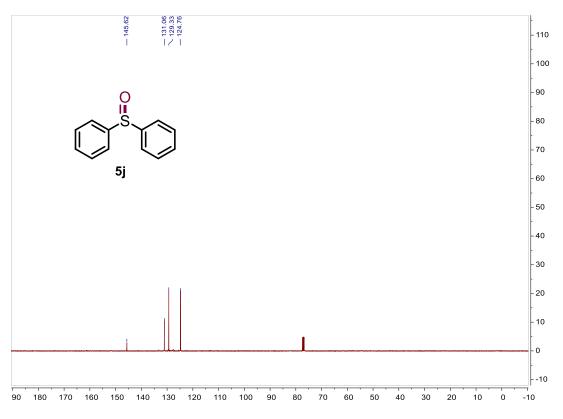

¹H NMR spectrum of 5g

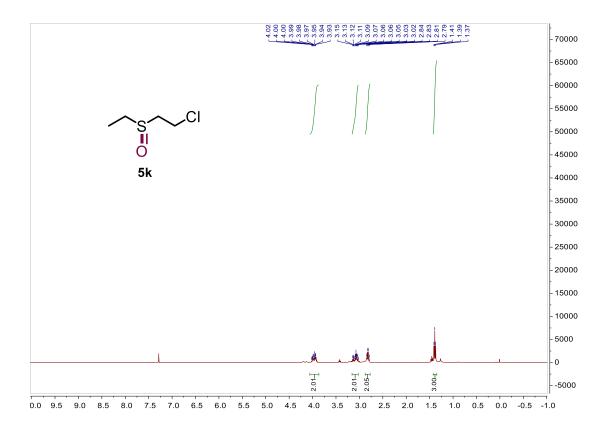

¹³C NMR spectrum of 5g

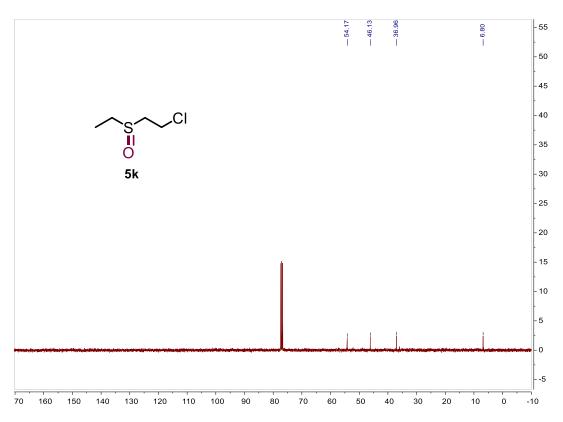

¹H NMR spectrum of 5h


¹³C NMR spectrum of 5h


¹H NMR spectrum of 5i


¹³C NMR spectrum of 5i


¹H NMR spectrum of 5j


¹³C NMR spectrum of 5j

¹H NMR spectrum of 5k

¹³C NMR spectrum of 5k

S79

5. References

- 1. A. L. Berger, K. Donabauer and B. König, Chem. Sci., 2019, 10, 10991-10996.
- 2. J. Xie, H. Li, Q. Xue, Y. Cheng and C. Zhu, Adv. Synth. Catal., 2012, 354, 1646-1650.
- 3. W.-J. Yoo and S. Kobayashi, Green Chem., 2014, 16, 2438-2442.
- 4. S.-S. Zhu, Y. Liu, X.-L. Chen, L.-B. Qu and B. Yu, ACS Catal., 2022, 12, 126-134.
- 5. X. Liang, Z. Guo, H. Wei, X. Liu, H. Lv and H. Xing, Chem. Commun., 2018, 54, 13002-13005.
- X.-N. Zou, D. Zhang, T.-X. Luan, Q. Li, L. Li, P.-Z. Li and Y. Zhao, ACS Appl. Mater. Inter., 2021, 13, 20137-20144.
- Y. Chen, S. Chang, H. An, Y. Li, Q. Zhu, H. Luo and Y. Huang, ACS Sustainable Chem. Eng., 2021, 9, 15683-15693.
- 8. S. Zhu, C. Yu, W. Shi and X. Zhou, Tetrahedron, 2021, 90, 132203.