Electronic Supplementary Material (ESI) for Green Chemistry. This journal is © The Royal Society of Chemistry 2022

Substituent-Controlled Selective Synthesis of 1,2-Diketones and Internal Alkynes from Terminal Alkynes with Arylboronic Acids via α-Stilbene Radicals by Heteroleptic Cu(I) Complexes Under Visible-Light

Nalladhambi Neerathilingam, Kesavan Prasanth, and Ramasamy Anandhan*

*Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai-600 025, Tamil Nadu, India. Email: ananthanramasamy@gmail.com

<u>S.No</u>	Table of contents	Pages
1	General considerations	S1
2	Preparation of substarte and Catalysts	S2
2.1	Procedure A for synthesis of 1,2-diketones	S2
2.2	Procedure B for synthesis of PC-1-4.	S3
2.3	UV-visible absorption spectra of PC-1-4	S3
3	Preliminary Mechanistic study	S4
3.1	Intermediate-trapping experiments and by-products.	S4-S5
3.2	Radical-trapping experiment.	S5-S6
3.3	Stern-Volmer experiments	S7
4	Characterization data for the products	S8-S22
5	References	S23
6	Copies of ¹ H, ¹⁹ F, and ¹³ C NMR spectra	S24-S63

1. General considerations:

The ¹H, ¹³C and ¹⁹F NMR spectra were recorded in CDCl₃ on Bruker spectrometers 300 MHz and 400 MHz NMR spectrometer with TMS as an internal standard. Mass spectra were recorded on Xevo G2S Q-TOF spectrometer. The light source for photochemical reactions was Kessil 456nm Blue LED (model number: KSPR160L-456-EU). Reaction tubes made of borosilicate glass were used as reaction vessels. The distance between the light source and the reaction vessel was 8 cm. TLC was performed on using Merck pre-coated TLC plates (Merck 60 F254) and detected under UV light. Column chromatographic separation was carried out with silica gel (100-200 mesh). Reagents and solvents were purified as per standard procedures and used.

Figure S1: Reaction setup with Kessil PR160L-456nm Blue LED

2. Preparation of Substrates and Catalyst.

2.1 Procedure A for synthesis of 1,2-diketones.

Reaction tube was charged with alkynes 1 (0.78 mmol), boronic acid 2 (1.56 mmol), PC (5 mol%) and triethylamine (1.17 mmol) in MeOH (10 mL). The reaction mixture was irradiated with blue LED under O_2 atmosphere about 12h. After completion of the reaction mixture, solvent was evaporated under reduced pressure. The crude products was purified by column chromatography using EtOAc/Hexanes (1:9) as eluent to furnish the corresponding 1,2-diketones.

2.2 Procedure B for synthesis of copper (I) catalysts.

2.2.1 Synthesis of [Cu(phen)(Xantphos)]BF4 PC-11

[Cu(CH₃CN)₄]BF₄ (500mg, 1.6 mmol) and Xantphos (0.920 mg, 1.6 mmol) were dissolved in 20 mL THF and allowed to stir at room temperature for 1h. A solution of 1,10-phenanthroline (286 mg, 1.6 mmol) in THF (10 mL) was added in one portion and stirred for 1h. The solvent was evaporator under reduced pressure. The crude complex was precipitated by dissolving DCM (5mL) solvent followed by addition of pentane. It was filtered, washed several times with water and dried under vacuum (1.15 g, 88% yield) and characterized by NMR and UV-visible spectra.

PC-1

2.2.2 Synthesis of Copper (I) catalysts PC-2, PC-3and PC-4¹

PC-2, PC-3 and PC-4 catalysts were prepared following procedure B.

2.3. UV-visible absorption spectra of PC-1, PC-2, PC-3 and PC-4.

UV-Visible absorption studies were investigated for the PC-1-4 and shown figure S2. Absorption maximum for PC-1, PC-2, PC-3 and PC-4 shows at 378nm, 383nm, 380 nm, and 382 nm respectively.

Figure S2: UV-Vis absorption spectra of PC-1-4

3. Preliminary mechanistic study

3.1 Intermediate-trapping experiments and by-products.

Reaction tube was charged with alkynes 1a (0.78 mmol), boronic acid 2a (1.56 mmol), PC-1 (5 mol%) and triethylamine (1.17 mmol). The reaction mixture was irradiated with blue LED under O₂ atmosphere about 6h. The formation of the product 3a (Figure S3) and by-product stilbene 6 (Figure S4). Stilbene 6 was confirmed by HRMS.

Figure S3: Analysis of reaction mixture by HRMS

Figure S4: Analysis of reaction mixture by HRMS

3.2 Radical-trapping experiment.

Reaction tube was charged with alkynes 1a (0.78 mmol), boronic acid 2a (1.56 mmol), PC-1 (5 mol%) and triethylamine (1.17 mmol). To this reaction mixture, 2,2,6,6-tetramethylpiperidineoxy (TEMPO) (1.63 mmol) as radical scavenger were added. The reaction mixture was characterised with HRMS. The formation of phenyl radical-TEMPO 7 (Figure S5) adduct was confirmed by HRMS and isolated in 50% yield.

Figure S5: Analysis of reaction mixture by HRMS

3.3 Stern-Volmer experiments

Stern-Volmer quenching experiment were carried out with freshly prepared solution of 1×10^{-4} M PC-1 and quenched by phenylboronic acid **2a** in MeOH at room temperature. The solutions were excited at 378 nm and luminescence was measured at 450 nm.

Figure S6: Emission spectra of PC-1 at different concentration of 2a

Figure S7: Stern–Volmer plot of PC-1 at different concentration of 2a

4. Characterization data for the products

Benzil 3a²

3a (115 mg) was synthesized from procedure A; Yellow Oily liquid; 70% yield (eluent: EtOAc/Hexanes= 1:9);¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 (d, *J*= 7.5 Hz, 4H), 7.66 (t, *J*= 7.5 Hz, 2H), 7.52 (t, *J*= 7.8 Hz, 4H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 194.4, 134.6, 133.2, 129.8, 128.9.

1-phenyl-2-(o-tolyl)ethane-1,2-dione 3b³

3b (113 mg) was synthesized from procedure A; Yellow Oily liquid; 65% yield (eluent: EtOAc/Hexanes= 1:9);¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 8.00 (d, *J*= 8.1 Hz, 2H), 7.67 (d, *J*= 7.5 Hz, 2H), 7.55-7.527 (m, 3H), 7.36 (d, *J*= 7.8 Hz, 1H), 7.30 (t, *J*= 7.5 Hz, 1H), 2.72 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 196.7, 194.7, 141.3, 134.6, 133.7, 133.2, 132.9, 132.5, 131.9, 129.9, 129.0, 126.0, 21.8.

1-phenyl-2-(m-tolyl)ethane-1,2-dione 3c³

3c (106 mg) was synthesized from procedure A; Yellow Oily liquid; 61% yield (eluent: EtOAc/Hexanes= 1:9);¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 (t, *J*= 7.2 Hz, 2H), 7.69 (t, *J*= 4 Hz, 2H), 7.57-7.53 (m, 1H), 7.43-7.36 (m, 3H), 7.31 (t, *J*= 6.4 Hz, 1H), 2.30 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 194.8, 194.7, 139.0, 135.7, 134.8, 133.07, 133.03, 130.2, 129.9, 129.0, 128.9, 127.2, 21.2.

1-phenyl-2-(p-tolyl)ethane-1,2-dione 3d⁴

3d (119 mg) was synthesized from procedure A; Yellow Oily liquid; 68% yield (eluent: EtOAc/Hexanes= 1:9);¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 (d, *J*= 8.1 Hz, 2H), 7.89 (d, *J*= 7.8 Hz, 2H), 7.68-7.62 (m, 1H), 7.53 (t, *J*= 6.9 Hz, 2H), 7.33-7.27 (*J*= 7.8 Hz, 2H), 2.44 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 194.6, 194.2, 146.1, 134.6, 133.3, 130.8, 130.0, 129.8, 129.7, 128.9, 21.8.

1-(4-(tert-butyl)phenyl)-2-phenylethane-1,2-dione 3e²

3e (155 mg) was synthesized from procedure A; Yellow Oily liquid; 75% yield (eluent: EtOAc/Hexanes= 1:9);¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 8.00 (d, *J*= 8.1 Hz, 2H), 7.94 (t, *J*= 6.9 Hz, 2H), 7.68 (t, *J*= 7.2 Hz, 1H), 7.55-7.49 (m, 4H), 1.35 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 194.7, 194.2, 159.0, 134.6, 133.2, 130.6, 129.9, 128.9, 128.2, 126.0, 35.4, 30.9.

1-(4-methoxyphenyl)-2-phenylethane-1,2-dione 3f²

3f (112 mg) was synthesized from procedure A; Yellow Oily liquid; 60% yield (eluent: EtOAc/Hexanes= 1:9);¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.99 (t, *J*= 6 Hz, 4H), 7.67-7.59 (m, 1H), 7.53 (t, *J*= 7.8 Hz, 2H), 6.99 (d, *J*= 9 Hz, 2H), 3.89 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 194.8, 193.1, 165.0, 134.6, 133.3, 132.3, 129.8, 128.9, 126.1, 114.3, 55.6.

1-(4-chlorophenyl)-2-phenylethane-1,2-dione 3g²

3g (107 mg) was synthesized from procedure A; Yellow Oily liquid; 56% yield (eluent: EtOAc/Hexanes= 1:9);¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.90-7.83 (m, 4H), 7.69-7.57 (m, 1H), 7.46-7.39 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 193.8, 193.0, 141.6, 135.0, 132.8, 131.2, 129.9, 129.4, 129.0.

1-(4-bromophenyl)-2-phenylethane-1,2-dione 3h²

3h (117 mg) was synthesized from procedure A; Yellow Oily liquid; 52% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 (d, *J*= 10.4 Hz, 2H), 7.87 (d, *J*= 8.4 Hz, 2H), 7.68 (t, *J*= 6.9 Hz, 3H), 7.55 (t, *J*= 7.5 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 193.8, 193.3, 135.1, 132.7, 132.4, 131.7, 131.2, 130.5, 129.9, 129.1.

1-(naphthalen-1-yl)-2-phenylethane-1,2-dione 3i²

3i (131 mg) was synthesized from procedure A; Yellow Oily liquid; 65% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 9.23 (d, *J*= 8.7 Hz, 1H), 8.02 (d, *J*= 8.1 Hz, 1H), 7.94 (d, *J*= 7.8 Hz, 2H), 7.84 (t, *J*= 7.5 Hz, 2H), 7.67 (t, *J*= 6.9 Hz, 1H), 7.57-7.49

(q, *J*= 7.2 Hz, 2H), 7.43-7.34 (m, 3H). ¹³C NMR (75 MHz, CDCl₃):δ_C 197.2, 194.6, 136.0, 135.1, 134.7, 134.1, 133.9, 130.9, 130.0, 129.4, 129.0, 128.8, 128.6, 127.1, 125.9, 124.4.

1-(naphthalen-2-yl)-2-phenylethane-1,2-dione 3j⁴

3j (125 mg) was synthesized from procedure A; Yellow Oily liquid; 62% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃):δ_H 8.33 (s, 1H), 8.04 (d, *J*= 8.4 Hz, 1H), 7.96 (t, *J*= 7.8 Hz, 3H), 7.90-7.80 (m, 2H), 7.61-7.54 (q, *J*= 7.5 Hz, 2H), 7.50-7.42 (q, *J*= 8.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃):δ_C 194.6, 136.4, 134.9, 133.5, 133.1, 132.3, 130.3, 130.0, 129.9, 129.5, 129.2, 129.0, 127.9, 127.9, 127.2, 123.6.

1-(phenanthren-9-yl)-2-phenylethane-1,2-dione 3k⁵

3k (178 mg) was synthesized from procedure A; Yellow solid; 74% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃):δ_H 9.35-9.31(m, 1H), 8.76-8.67 (m, 2H), 8.22 (s, 1H), 8.08 (d, *J*= 7.2 Hz, 2H), 7.88 (d, *J*= 8.1 Hz, 1H), 7.82-7.71 (m, 3H), 7.68-7.57(m, 2H), 7.55-7.50 (m, 2H). ¹³C NMR (75 MHz, CDCl₃):δ_C 196.2, 194.2, 138.3, 134.6, 133.6, 133.1, 131.0, 130.7, 130.4, 130.3, 129.6, 129.0, 128.5, 128.3, 127.9, 127.6, 127.2, 126.8, 122.8, 122.7.

1-phenyl-2-(4-propylphenyl)ethane-1,2-dione 31⁶

31 (135 mg) was synthesized from procedure A; Yellow Oily liquid; 69% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.98 (d, *J*= 8 Hz, 2H), 7.89 (d, *J*= 8 Hz, 2H), 7.66 (t, *J*= 7.6 Hz, 1H), 7.52 (t, *J*= 7.6 Hz, 2H), 7.32 (t, *J*= 8 Hz, 2H), 2.68 (t, *J*= 7.2 Hz, 2H), 1.71-1.62 (m, 2H), 0.96 (t, *J*= 7.6 Hz, 3Hz). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 194.7, 194.3, 150.8, 134.7, 133.1, 130.8, 130.0, 129.9, 129.1, 128.9, 38.2, 24.1, 13.7.

1-(4-butylphenyl)-2-phenylethane-1,2-dione 3m⁷

3m (131mg) was synthesized from procedure A; Yellow Oily liquid; 63% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.90 (d, *J*= 7.6 Hz, 2H), 7.82 (d, *J*= 8 Hz, 2H), 7.59 (t, *J*= 7.6 Hz, 1H), 7.44 (t, *J*= 7.6 Hz, 2H), 7.24 (t, *J*= 8 Hz, 2H), 2.62 (t, *J*= 7.6 Hz, 2H), 1.58-1.50 (m, 2H), 1.32-1.25 (m, 2H), 0.86 (d, *J*= 4.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 194.8, 194.3, 151.1, 134.7, 133.1, 130.7, 130.0, 129.9, 129.1, 128.9, 35.9, 33.1, 22.2, 13.8.

1-(4-pentylphenyl)-2-phenylethane-1,2-dione 3n

3n (152 mg) was synthesized from procedure A; Yellow Oily liquid; 70% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 8.01-7.89 (dd, *J*= 7.5 Hz, 8.1 Hz, 4H), 7.69 (t, *J*= 7.2 Hz, 1H), 7.54 (t, *J*= 7.5 Hz, 2H), 7.34-7.28 (t, *J*= 8.1 Hz, 2H), 2.73 (t, *J*= 7.2 Hz, 2H), 1.69 (d, *J*= 6.6 Hz, 2H), 1.36 (t, *J*= 3. Hz, 4H), 0.94 (t, *J*= 6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 194.7, 194.2, 151.1, 134.6, 133.5, 131.0, 130.1, 129.9, 129.1, 128.9, 36.2, 31.4, 30.6, 22.4, 13.9.

1-(3-fluorophenyl)-2-phenylethane-1,2-dione 30⁸

3o (101 mg) was synthesized from procedure A; Yellow Oily liquid; 57% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃):δ_H 7.98 (d, 2H), 7.75-7.66 (q, *J*= 7.5 Hz, 3H), 7.55-7.46 (m, 3H), 7.39-7.33 (m, 1H). ¹³C NMR (75 MHz, CDCl₃):δ_C 193.7, 193.0, 164.5, 161.2, 135.1, 134.9, 132.7, 130.8 (d, *J*= 7.5 Hz), 129.9, 129.1, 128.2, 126.0 (d *J*= 3 Hz), 122.1 (d, *J*= 21.7 Hz), 116.2 (d, *J*= 18.7 Hz). ¹⁹F NMR (471 MHz, CDCl₃): δ_F -110.5 (s, 1F).

1-(4-fluorophenyl)-2-phenylethane-1,2-dione 3p²

3p (119 mg) was synthesized from procedure A; Yellow Oily liquid; 67% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃):δ_H 7.96-7.93 (m, 2H), 7.90 (d, *J*= 5.7 Hz, 2H), 7.61 (t, *J*= 5.7 Hz, 1H), 7.46 (t, *J*= 6 Hz, 2H), 7.13 (t, *J*= 6.6 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃):δ_C 194.0, 192.7, 168.0, 165.5, 135.0, 132.9 (t, *J*= 7.5 Hz), 129.9, 129.8, 129.5, 129.0, 116.5 (d, *J*= 22 Hz).

1-(3-chlorophenyl)-2-phenylethane-1,2-dione 3q⁸

3q (127 mg) was synthesized from procedure A; Yellow Oily liquid; 67% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.90 (d, *J*= 5.1 Hz, 3H), 7.77 (d, *J*= 6 Hz, 1H), 7.62-7.54 (m, 2H), 7.47 (t, *J*= 5.7, 2H), 7.40 (t, *J*= 12 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 193.6, 192.9, 135.4, 135.1, 134.8, 134.5, 132.6, 130.3, 129.9, 129.5, 129.1, 128.1.

1-(3a1,5a1-dihydropyren-1-yl)-2-phenylethane-1,2-dione 3r⁹

3r (215 mg) was synthesized from procedure A; Yellow Solid; 82% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 9.59 (d, *J*= 9.3 Hz, 1H), 8.35-8.26 (m, 4H), 8.21 (d, *J*= 8.7 Hz, 1H), 8.10-8.01(m, 5H), 7.67 (t, *J*= 14 Hz, 1H), 7.53 (t, *J*= 7.2 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 197.3, 194.8, 135.8, 134.5, 133.7, 131.6, 131.2, 131.1, 131.0, 130.9, 130.4, 130.0, 129.0, 127.2, 127.0, 126.6, 125.1, 124.9, 124.7, 124.0, 123.9.

1-([1,1'-biphenyl]-4-yl)-2-phenylethane-1,2-dione 3s⁸

3s (122 mg) was synthesized from procedure A; Yellow solid; 55% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.06 (d, *J*= 8 Hz, 2H), 8.01 (d, *J*= 8 Hz, 2H), 7.74 (d, *J*= 8 Hz, 2H), 7.69-7.61 (m, 3H), 7.54 (t, *J*= 7.6 Hz, 2H), 7.49 (t, J= 7.6 Hz, 2H), 7.49 (t, J= 7.6 Hz), 7.40 (t, J= 7.6 Hz), 7.40

2H), 7.43 (d, *J*= 7.2 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃):δ_C 194.5, 194.1, 147.6, 139.5, 134.8, 133.0, 131.7, 130.5, 129.9, 129.0, 128.6, 127.6, 127.3.

1,2-di-p-tolylethane-1,2-dione 3u⁴

3u (131 mg) was synthesized from procedure A; Yellow Oily liquid; 71% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃):δ_H 7.78 (d, *J*= 8 Hz, 4H), 7.30 (d, *J*= 8 Hz, 4H), 2.34 (s, 6H). ¹³C NMR (75 MHz, CDCl₃):δ_C 194.5, 146.0, 130.7, 130.0, 129.9, 21.9.

1,2-bis(4-(tert-butyl)phenyl)ethane-1,2-dione 3v¹⁰

3v (188 mg) was synthesized from procedure A; Yellow Solid; 75% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.83 (d, *J*= 8 Hz, 4H), 7.44 (d, *J*= 8.4 Hz, 4H), 1.25 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 194.5, 158.8, 130.6, 129.9, 126.0, 35.3, 30.9.

1,2-bis(4-methoxyphenyl)ethane-1,2-dione 3w⁴

3w (126 mg) was synthesized from procedure A; Yellow Oily liquid; 60% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.96 (d, *J*= 8.7 Hz, 4H), 6.98 (d, *J*= 8.7 Hz, 4H), 3.88 (s, 6H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 193.3, 164.8, 132.3, 126.4, 114.3, 55.5.

1-(o-tolyl)-2-(p-tolyl)ethane-1,2-dione 3x³

3x (129 mg) was synthesized from procedure A; Yellow Oily liquid; 70% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.79 (d, *J*= 6 Hz, 2H), 7.56 (d, *J*= 5.7 Hz, 1H), 7.41 (t, *J*= 5.7 Hz, 1H), 7.26 (t, *J*= 6.6 Hz, 3H), 7.17 (t, *J*= 5.4 Hz, 1H), 2.61 (s, 3H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 196.9, 194.6, 146.0, 141.3, 133.7, 133.0, 132.5, 131.9, 130.7, 130.0, 129.7, 126.0, 21.9.

1-(m-tolyl)-2-(p-tolyl)ethane-1,2-dione 3y³

3y (134 mg) was synthesized from procedure A; Yellow Oily liquid; 72% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.87 (d, *J*= 6.3 Hz, 2H), 7.77 (d, *J*= 6.6 Hz, 2H), 7.46 (d, *J*= 5.7 Hz, 1H), 7.40 (d, *J*= 5.4 Hz, 1H), 7.31 (d, *J*= 6 Hz, 2H), 2.43 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 195.0, 194.4, 146.1, 138.9, 135.6, 133.1, 130.6, 130.2, 130.0, 129.7, 128.8, 127.2, 21.9, 21.2.

1-(4-(tert-butyl)phenyl)-2-(o-tolyl)ethane-1,2-dione 3z

3z (159 mg) was synthesized from procedure A; Yellow Oily liquid; 73% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃):δ_H 7.94-7.93 (m, 2H), 7.68 (d, *J*= 7.8 Hz, 1H), 7.56-7.46 (m, 3H), 7.35 (d, *J*= 7.5 Hz, 1H), 7.29 (t, *J*= 6.9 Hz, 1H), 2.71 (s, 3H), 1.38 (t, *J*= 3.3 Hz, 9H). ¹³C NMR (75 MHz, CDCl₃):δ_C 196.9, 194.4, 158.7, 141.1, 133.5, 132.8, 132.4, 132.2, 130.8, 129.9, 126.0, 125.9, 35.3, 31.0, 21.6.

1-(4-(tert-butyl)phenyl)-2-(p-tolyl)ethane-1,2-dione 3aa⁶

3aa (157 mg) was synthesized from procedure A; Yellow Oily liquid; 72% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.93 (t, *J*= 8.7 Hz, 4H), 7.54 (d, *J*= 8.4 Hz, 2H), 7.32 (t, *J*= 8.1 Hz, 2H), 2.44 (s, 3H), 1.36 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 194.3, 158.8, 145.8, 130.9, 130.7, 129.9, 129.8, 129.6, 125.9, 35.3, 30.9, 21.7.

1-(4-(tert-butyl)phenyl)-2-(4-methoxyphenyl)ethane-1,2-dione 3ab²

3ab (140 mg) was synthesized from procedure A; Yellow Oily liquid; 61% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.97-7.90(dd, *J*= 9 Hz, 8.4 Hz, 4H),

7.53 (d, *J*= 8.1 Hz, 2H), 6.99 (d, *J*= 8.7 Hz, 2H), 3.89 (s, 3H), 1.34 (s, 9H). ¹³C NMR (75 MHz, CDCl₃):δ_C 194.5, 193.3, 164.9, 158.8, 132.3, 130.8, 129.8, 126.4, 125.9, 114.3, 55.6, 35.3, 30.9.

1-(4-bromophenyl)-2-(4-(tert-butyl)phenyl)ethane-1,2-dione 3ac

3ac (180 mg) was synthesized from procedure A; Yellow Oily liquid; 67% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.91-7.83 (dd, *J*= 8.4 Hz, 8.4 Hz, 4H), 7.67 (d, *J*= 7.8 Hz, 2H), 7.55 (d, *J*= 8.1 Hz, 2H), 1.35 (s, 9H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 193.3, 159.2, 132.3, 132.0, 131.7, 130.4, 130.2, 129.8, 126.0, 35.3, 30.9.

1-(4-methoxyphenyl)-2-(o-tolyl)ethane-1,2-dione 3ad¹¹

3ad (152 mg) was synthesized from procedure A; Yellow Oily liquid; 77% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.97 (t, *J*= 7.2 Hz, 2H), 7.67 (d, *J*= 7.8 Hz, 1H), 7.50 (t, *J*= 7.5 Hz, 1H), 7.34-7.23 (m, 2H), 7.00 (d, *J*= 9 Hz, 2H), 3.88(s, 3H), 2.70 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 197.0, 193.4, 164.8, 141.1, 133.4, 132.8, 132.4, 132.3, 132.2, 126.3, 125.9, 114.3, 55.5, 21.6.

1-(4-methoxyphenyl)-2-(m-tolyl)ethane-1,2-dione 3ae¹¹

3ae (148 mg) was synthesized from procedure A; Yellow Oily liquid; 75% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.87 (d, *J*= 6.6 Hz, 2H), 7.69 (d, *J*= 6.3 Hz, 2H), 7.38(d, *J*= 5.7 Hz, 1H), 7.32 (t, *J*= 5.4 Hz, 1H), 6.90 (d, *J*= 6.6 Hz, 2H), 3.80 (s, 3H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 195.1, 193.2, 164.9, 138.9, 135.6, 133.2, 132.4, 130.2, 128.8, 127.2, 126.1, 114.3, 55.6, 21.2.

1-(4-methoxyphenyl)-2-(p-tolyl)ethane-1,2-dione 3af⁸

3af (136 mg) was synthesized from general procedure; Yellow Oily liquid; 69% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.94 (d, *J*= 8.7 Hz, 2H), 7.88 (d, *J*= 7.8 Hz, 2H), 7.31 (d, *J*= 7.8 Hz, 2H), 6.98 (d, *J*= 8.7 Hz, 2H), 3.88 (s, 3H), 2.43 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 194.5, 193.2, 164.9, 145.8, 132.3, 131.0, 130.0, 129.6, 126.4, 114.3, 55.6, 21.8.

1-(4-chlorophenyl)-2-(4-methoxyphenyl)ethane-1,2-dione 3ag²

3ag (139 mg) was synthesized from procedure A; Yellow Oily liquid; 65% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.96-7.91 (m, 4H), 7.50 (d, *J*= 8.7 Hz, 2H), 7.00 (d, *J*= 9 Hz, 2H), 3.90 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 193.2, 192.3, 165.1, 141.3, 132.4, 131.7, 131.2, 129.3, 126.0, 114.4, 55.6.

1-nitro-2-(phenylethynyl)benzene 4a¹²

4a (141 mg) was synthesized from procedure A; Yellow Solid; 76% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.06 (d, *J*= 8 Hz, 1H), 7.70 (d, *J*= 7.6 Hz, 1H), 7.59-7.55 (m, 3H), 7.45 (t, *J*= 8 Hz, 1H), 7.37 (d, *J*= 4.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 149.6, 134.5, 132.8, 132.0, 129.2, 128.5, 128.4, 124.7, 122.4, 118.7, 97.1, 84.8.

1-nitro-3-(phenylethynyl)benzene 4b¹³

4b (115 mg) was synthesized from procedure A; Yellow Solid; 62% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 8.24 (s, 1H), 8.06 (d, *J*= 1.2 Hz, 1.2 Hz, 1H), 7.71 (d, *J*= 7.8 Hz, 1H), 7.46-7.340 (m, 3H), 7.28 (d, *J*= 2.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 147.3, 136.0, 130.7, 128.2, 128.0, 127.4, 125.3, 124.2, 121.7, 121.3, 91.0, 85.9.

1-nitro-4-(phenylethynyl)benzene 4c¹²

4c (131 mg) was synthesized from procedure A; Yellow Solid; 71% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 8.21 (d, *J*= 9 Hz, 2H), 7.66 (d, *J*= 8.7

Hz, 2H), 7.56 (t, J= 3.6 Hz, 2H), 7.39 (d, J= 5.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): $\delta_{\rm C}$ 147.0, 132.2, 131.8, 130.2, 129.2, 128.5, 123.6, 122.1, 94.7, 87.5.

4-(phenylethynyl)benzonitrile 4d¹⁴

4d (102 mg) was synthesized from procedure A; White Solid; 60% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.53 (d, *J*= 11.4 Hz, 4H), 7.46 (d, *J*= 3.3 Hz, 2H), 7.30 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 132.0, 131.9, 131.7, 129.0, 128.4, 122.3, 118.3, 111.6, 93.8, 87.7.

2-(phenylethynyl)benzonitrile 4e¹²

4e (120 mg) was synthesized from procedure A; White Solid; 68% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (400 MHz, CDCl₃): $\delta_{\rm H}$ 7.62-7.59 (m, 3H), 7.57-7.56 (m, 3H), 7.47-7.43 (m, 2H), 7.39-7.35 (m, 1H).

phenyl(4-(phenylethynyl)phenyl)methanone 4f¹⁴

4f (180 mg) was synthesized from procedure A; White Solid; 80% yield (eluent: EtOAc/Hexanes= 1:9); ¹H NMR (300 MHz, CDCl₃): $\delta_{\rm H}$ 7.72 (t, *J*= 7.8 Hz, 5H), 7.55-7.48 (m, 5H), 7.42 (d, *J*= 7.5 Hz, 2H), 7.28 (d, *J*= 3 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃): $\delta_{\rm C}$ 195.7, 137.5, 136.8, 131.9, 131.7, 131.3, 129.9, 129.8, 129.8, 128.3, 128.3, 128.3, 122.8, 92.4, 88.6.

[Cu(phen)(Xantphos)]BF₄ PC-1¹

PC-1 was synthesised from Procedure B; Yellow Crystalline Solid; 88% yield; ¹H NMR (300 MHz, CDCl₃):δ_H 8.57 (d, *J*= 7.5 Hz, 2H), 8.45 (s, 2H), 8.05 (s, 2H), 7.70 (d, *J*= 13.5 Hz, 4H), 7.18 (t, *J*= 7.5 Hz, 6H), 7.03 (t, *J*= 6.6 Hz, 7H), 6.89 (s, 9H), 6.58 (s, 2H), 1.78 (s, 6H).

5. References

- 1. P. Xiao, F. Dumur, J. Zhang, D. Gigmes, J. P. Fouassier and J. Lalevée, *Polym. Chem.*, 2014, 5, 6350-6357.
- 2. V. P. Charpe, A. Sagadevan and K. C. Hwang, Green Chem., 2020, 22, 4426-4432.
- 3. T. Matsuda and S. Oyama, Org. Biomol. Chem., 2020, 18, 3679-3683.
- 4. T. Song, X. Zhou, X. Wang, J. Xiao and Y. Yang, *Green Chem.*, 2021, **23**, 1955-1959.
- 5. W. Ren, Y. Xia, S.-J. Ji, Y. Zhang, X. Wan and J. Zhao, *Org. Lett.*, 2009, **11**, 1841-1844.
- 6. J. B. Bharate, S. Abbat, R. Sharma, P. V. Bharatam, R. A. Vishwakarma and S. B. Bharate, *Org. Biomol. Chem.*, 2015, **13**, 5235-5242.
- W.-X. Lv, Y.-F. Zeng, S.-S. Zhang, Q. Li and H. Wang, Org. Lett., 2015, 17, 2972-2975.
- 8. Y. Kumar, Y. Jaiswal and A. Kumar, Eur. J. Org. Chem., 2018, 2018, 494-505.
- 9. H. Yamashita and J. Abe, J. Phys. Chem. A, 2011, 115, 13332-13337.
- 10. E. Cho, A. Jayaraman, J. Lee, K. C. Ko and S. Lee, *Adv. Synth. Catal.*, 2019, **361**, 1846-1858.
- 11. M. Wang, Z. Dai and X. Jiang, Nat. Commun., 2019, 10, 2661.
- 12. M. K. Abderrezak, Z. Kabouche, C. Bruneau and C. Fischmeister, Catalysts, 2017, 7.
- 13. H. Hu, F. Yang and Y. Wu, J. Org. Chem., 2013, 78, 10506-10511.
- 14. Q. Chen, L. Fu and Y. Nishihara, Chem. Commun., 2020, 56, 7977-7980.

6. Copies of ¹H, ¹⁹F and ¹³C NMR spectra

¹H & ¹³C NMR spectra of compound **3a**

 $^1\mathrm{H}$ & $^{13}\mathrm{C}$ NMR spectra of compound $\mathbf{3b}$

¹H & ¹³C NMR spectra of compound **3**c

¹H & ¹³C NMR spectra of compound **3d**

¹H & ¹³C spectra of compound **3e**

¹H & ¹³C spectra of compound **3f**

¹H & ¹³C spectra of compound **3g**

¹H & ¹³C spectra of compound **3h**

 $^1\mathrm{H}$ & $^{13}\mathrm{C}$ spectra of compound 3i

0 ppm

¹H & ¹³C spectra of compound **3**j

¹H & ¹³C spectra of compound **3**k

¹H & ¹³C spectra of compound **3**I

¹H & ¹³C spectra of compound **3m**

¹H & ¹³C spectra of compound **3n**

¹H & ¹³C spectra of compound **30**

¹⁹F spectrum of compound **30**

¹H & ¹³C spectra of compound **3p**

 $^1\mathrm{H}$ & $^{13}\mathrm{C}$ spectra of compound $\boldsymbol{3q}$

 $^1\mathrm{H}$ & $^{13}\mathrm{C}$ spectra of compound 3r

¹H & ¹³C spectra of compound **3s**

¹H & ¹³C spectra of compound **3u**

¹H & ¹³C spectra of compound **3v**

¹H & ¹³C spectra of compound **3**w

¹H & ¹³C spectra of compound 3x

 ^{1}H & ^{13}C spectra of compound **3**y

¹H & ¹³C spectra of compound **3**z

¹H & ¹³C spectra of compound **3aa**

¹H & ¹³C spectra of compound **3ab**

¹H & ¹³C spectra of compound **3ac**

¹H & ¹³C spectra of compound **3ad**

¹H & ¹³C spectra of compound **3ae**

¹H & ¹³C spectra of compound **3af**

¹H & ¹³C spectra of compound **3ag**

¹H & ¹³C spectra of compound **4a**

¹H & ¹³C spectra of compound **4b**

¹H & ¹³C spectra of compound 4c

¹H & ¹³C spectra of compound **4d**

¹H NMR spectrum of compound **4e**

 $^1\mathrm{H}$ & $^{13}\mathrm{C}$ spectra of compound 4f

¹H NMR spectrum of Photocatalyst PC-1