Red-Light-Induced Highly Efficient Aerobic Oxidation of Organoboron Compounds Using Spinach as

Photocatalyst

Peng Yan,^{‡a,b} Rong Zeng,^{‡b} Bo Bao,^b Xiu-Ming Yang,^b Lei Zhu,^b Bin Pan,^b Sheng-Li Niu,^b Xiao-Wei Qi,^{*c} Yu-Long Li,^{*a} and Qin Ouyang^{*b}

^{*a.*} College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China.

^{b.} Department of Medicinal Chemistry, Third Military Medical University, Shapingba, Chongqing 400038 China.

^{*c.*} Breast and Thyroid Surgery, Southwest Hospital, Third Military Medical University, Shapingba, Chongqing 400038 China.

[‡]These authors contributed equally.

E-mail: ouyangq@tmmu.edu.cn, yu_longli@suse.edu.cn, qxw9908@foxmail.com

Supporting Information

1. General methods	2
2. General procedure for extraction of chlorophyll	2
3. General procedure for preparation of organoborons	2
4. General procedure for photooxidation of organoborons	3
5. Larger Scale Reaction	23
6. Evaluation of green chemistry metrics	23
7. Experiment using kitchen things	35
8. Mechanistic studies	36
9. References	44
10. NMR (¹ H and ¹³ C) Spectra	47
11. Computational data	96

1. General methods

¹H NMR or ¹³C NMR spectra were recorded on Agilent 600 or 150 MHz NMR spectrometer, respectively (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, td = triple doublet, dt = double triplet, m = multiplet, and coupling constants (*J*) are reported in Hertz (Hz). ESI-HRMS was recorded on a Waters SYNAPT G2. Column chromatography was performed on silica gel (300-400 mesh) eluting with ethyl acetate and petroleum ether or dichloromethane (CH₂Cl₂)/methanol (MeOH). TLC was performed on glass-backed silica plates. UV light, I₂, cerium molybdate, phosphomolybdic acid and KMnO₄ were used to visualize products or the starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether (60–90 °C) was redistilled. Unless otherwise noted, all reactions were carried out under ambient atmosphere.

2. General procedure for extraction of chlorophyll

Fresh spinach leaves was simply removed from the excess water, and was chopped into the wall breaker along with a small amount of calcium carbonate. Added an appropriate amount of ethanol, and then turned on the wall breaker for juice extraction. Added petroleum ether to extract the spinach juice and filtered to remove the residue. The crude extract was then quickly passed through the column with 100-200 mesh silica gel to collect the dark green band, which was subsequently concentrated to obtain chlorophyll as photocatalyst.

3. General procedure for preparation of organoborons

Most of the arylboronic acid reported in this paper was commercially available from bidepharmatech[®]. Other substrates were prepared according to reported methods.¹⁻⁴ ¹H and ¹³C NMR spectra data for the reported ones showed good agreement with the literature data. Belows are summarized characterization data for the newly synthesized organoboron.

(E)-2-(3,7-dimethylocta-2,6-dien-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

¹H NMR (600 MHz, CDCl₃) δ 5.26–5.19 (t, 1H), 5.07 (td, J = 6.1, 5.4, 3.4 Hz, 1H), 2.03 (t, J = 7.2 Hz, 2H), 1.97 (dd, J = 9.1, 6.2 Hz, 2H), 1.64 (d, J = 1.8 Hz, 3H), 1.60–1.51 (m, 8H), 1.21 (s, 12H). ¹³C NMR (150 MHz, CDCl₃) δ 134.9, 130.9, 124.4, 118.5, 82.9, 39.7, 26.8, 25.6, 24.7, 17.6, 15.8.

4. General procedure for photooxidation of organoborons

General procedure (GP): Organoborons (0.2 mmol, 1.0 equiv), chlorophyll (0.004 mmol, 2.0 mol%) and Et_3N (0.2 mmol, 1.0 equiv) were dissolved with anhydrous ethanol (2.0 mL) in a transparent reaction tube. Then, the reaction mixture was stirred and irradiated by 30 W red LEDs at room temperature under air atmosphere for 12-24 h (Figure S1). After completion, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel to afford the products.

Figure S1 Reaction setup (30 W red LEDs)

Phenylmethanol

According to **GP** with 2-benzyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (43.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the

desired product 2 as yellow oil (21.3 mg, 99%).

According to **GP** with potassium benzyltrifluoroborate (39.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **2** as yellow oil (5.1 mg, 70%). ¹H NMR (600 MHz, CDCl₃) δ 7.39–7.34 (m, 4H), 7.32–7.28 (m, 1H), 4.64 (s, 2H), 2.37 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 140.9, 128.5, 127.6, 127.0, 65.2. This characterization data are in accordance with the reported literature.²

Phenol

According to **GP** with phenylboronic acid (24.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **3** as white solid (17.1 mg, 91%).

According to **GP** with potassium trifluoro(phenyl)borate (36.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **3** as white solid (17.8 mg, 95%). ¹H NMR (600 MHz, CDCl₃) δ 7.28–7.22 (m, 2H), 6.95 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 7.7 Hz, 2H), 5.00 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 155.4, 129.7, 129.7, 129.7, 120.9, 115.3. This characterization data are in accordance with the reported literature.²

4-Methoxyphenol

According to **GP** with (4-methoxyphenyl)boronic acid (30.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 15/1) to afford the desired product **4** as white solid (23.5 mg, 95%). ¹H NMR (600 MHz, CDCl₃) δ 6.83–6.74 (m, 4H), 4.69 (s,

1H), 3.77 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 153.7, 149.4, 116.0, 114.8, 55.7. This characterization data are in accordance with the reported literature.⁵

4-Fluorophenol

According to **GP** with (4-fluorophenyl)boronic acid (28 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 20/1) to afford the desired product **5** as yellow oil (22.1 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 6.93 (t, *J* = 8.6 Hz, 2H), 6.80–6.73 (m, 2H), 4.91 (d, *J* = 30.8 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 157.2 (d, ¹*J*_{C-F} = 238.0 Hz), 151.4, 116.2 (d, ³*J*_{C-F} = 8.1 Hz), 115.9 (d, ²*J*_{C-F} = 23.4 Hz). This characterization data are in accordance with the reported literature.⁶

4-Chlorophenol

According to **GP** with (4-chlorophenyl)boronic acid (31.2 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 20/1) to afford the desired product **6** as yellow oil (22.7 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 7.19 (d, *J* = 8.8 Hz, 2H), 6.77 (d, *J* = 8.9 Hz, 2H), 5.32 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.1, 129.4, 125.6, 116.6. This characterization data are in accordance with the reported literature.⁷

4-Bromophenol

According to **GP** with (4-bromophenyl)boronic acid (40.0 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 20/1) to afford the desired product **7** as

yellow oil (32.6 mg, 95%). ¹H NMR (600 MHz, CDCl₃) δ 7.33 (d, *J* = 8.9 Hz, 2H), 6.72 (d, *J* = 8.9 Hz, 2H), 4.99 (s, 1H).¹³C NMR (150 MHz, CDCl₃) δ 154.6, 132.4, 117.1, 112.8. This characterization data are in accordance with the reported literature.⁸

4-Hydroxybenzonitrile

According to **GP** with (4-cyanophenyl)boronic acid (29.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **8** as white solid (23.0 mg, 97%). ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 2.2 Hz, 2H), 7.06 (s, 1H), 6.93 (d, *J* = 2.2 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 160.3, 134.2, 119.2, 116.4, 102.7. This characterization data are in accordance with the reported literature.⁹

4-Hydroxybenzaldehyde

According to **GP** with (4-formylphenyl)boronic acid (30 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **9** as yellow solid (24.1 mg, 99%). ¹H NMR (600 MHz, DMSO- d^6) δ 10.60 (s, 1H), 9.79 (s, 1H), 7.76 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.5 Hz, 2H). ¹³C NMR (150 MHz, DMSO- d^6) δ 191.4, 163.8, 132.6, 128.9, 116.3. This characterization data are in accordance with the reported literature.²

4-hydroxybenzoic acid

According to **GP** with 4-boronobenzoic acid (33.2 mg, 0.2 mmol, 1.0 equiv), Chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et_3N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **10** as white solid (25.4 mg, 92%). ¹H NMR (600 MHz, DMSO-d6) δ 12.46 (s, 1H), 10.25 (s, 1H), 7.79 (d, J = 8.8 Hz, 2H), 6.82 (d, J = 8.8 Hz, 2H). ¹³C NMR (150 MHz, DMSO-d6) δ 167.6, 162.0, 131.9, 121.7, 115.5. This characterization data are in accordance with the reported literature.¹⁰

4-(trifluoromethyl)phenol

According to **GP** with (4-(trifluoromethyl)phenyl)boronic acid (38 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **11** as yellow solid (32 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 8.4 Hz, 2H), 6.90 (d, *J* = 8.3 Hz, 2H), 5.25 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 158.1, 127.1 (q, ³*J*_{C-F} = 3.6 Hz), 124.3 (q, ¹*J*_{C-F} = 271.1 Hz), 123.2 (q, ²*J*_{C-F} = 32.7 Hz), 115.4. This characterization data are in accordance with the reported literature.¹¹

[1,1'-biphenyl]-4-ol

According to **GP** with [1,1'-biphenyl]-4-ylboronic acid (39.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **10** as white solid (33.6 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 7.54 (d, *J* = 7.0 Hz, 2H), 7.48 (d, *J* = 8.7 Hz, 2H), 7.41 (t, *J* = 7.8 Hz, 2H), 7.31 (t, *J* = 7.4 Hz, 1H), 6.91 (d, *J* = 8.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 155.0, 140.7, 134.0, 128.7, 128.3, 126.7, 115.6. This characterization data are in accordance with the reported literature.¹⁰

4-phenoxyphenol

According to **GP** with (4-(phenylthio)phenyl)boronic acid (46 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **13** as white solid (39.6 mg, 98%). ¹H NMR (600 MHz, CDCl₃) δ 7.34–7.29 (m, 2H), 7.06 (t, J = 7.9 Hz, 1H), 6.99–6.92 (m, 4H), 6.83 (d, J = 9.0 Hz, 2H), 5.19 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 158.3, 151.6, 150.2, 129.6, 122.5, 121.0, 117.6, 116.3. This characterization data are in accordance with the reported literature.¹⁰

ethyl 4-hydroxybenzoate

According to **GP** with (4-(ethoxycarbonyl)phenyl)boronic acid (38.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **14** as white solid (32 mg, 98%).

According to **GP** with ethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (55.2 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **14** as white solid (32 mg, 98%). ¹H NMR (600 MHz, CDCl₃) δ 7.95 (d, *J* = 8.6 Hz, 2H), 7.47 (s, 1H), 6.91 (d, *J* = 8.6 Hz, 2H), 4.36 (q, *J* = 7.1 Hz, 2H), 1.38 (t, *J* = 7.1 Hz, 3H).¹³C NMR (150 MHz, CDCl₃) δ 167.4, 160.7, 131.9, 122.0, 115.3, 61.1, 14.2. This characterization data are in accordance with the reported literature.¹²

3-bromophenol

According to **GP** with (3-bromophenyl)boronic acid (39.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **15** as white solid (28.2 mg, 82%). ¹H NMR (600 MHz, CDCl₃) δ 7.09 (dt, *J* = 16.4, 8.1 Hz, 2H), 7.03–7.01 (m, 1H), 6.77 (d, *J* = 9.1 Hz, 1H), 5.29 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 156.3, 130.7, 123.9, 122.7, 118.7, 114.2. This characterization data are in accordance with the reported literature.¹²

3-hydroxybenzonitrile

According to **GP** with (3-cyanophenyl)boronic acid (29.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **16** as white solid (22.3 mg, 94%). ¹H NMR (600 MHz, CDCl₃) δ 7.32 (t, *J* = 8.0 Hz, 1H), 7.23–7.19 (m, 1H), 7.16–7.13 (m, 1H), 7.10 (ddd, *J* = 8.3, 2.5, 0.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 156.3, 130.6, 124.4, 120.8, 118.7, 118.6, 112.6. This characterization data are in accordance with the reported literature.¹⁰

3-nitrophenol

According to **GP** with (3-nitrophenyl)boronic acid (33.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **17** as

white solid (26.1 mg, 94%). ¹H NMR (600 MHz, CDCl₃) δ 7.81 (ddd, J = 8.1, 2.1, 0.9 Hz, 1H), 7.70 (t, J = 2.3 Hz, 1H), 7.41 (t, J = 8.1 Hz, 1H), 7.18 (ddd, J = 8.2, 2.5, 0.8 Hz, 1H), 5.71 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 156.3, 149.1, 130.2, 121.9, 115.8, 110.5. This characterization data are in accordance with the reported literature.¹¹

m-cresol

According to **GP** with m-tolylboronic acid (27.2 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **18** as white solid (19.4 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 7.16 (t, *J* = 7.7 Hz, 1H), 6.80 (d, *J* = 7.5 Hz, 1H), 6.70 (d, *J* = 11.9 Hz, 2H), 5.68 (s, 1H), 2.33 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 155.2, 139.9, 129.5, 121.7, 116.1, 112.3, 21.3. This characterization data are in accordance with the reported literature.¹³

3-methoxyphenol

According to **GP** with (3-methoxyphenyl)boronic acid (30.4mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **19** as white solid (22.5 mg, 91%). ¹H NMR (600 MHz, CDCl₃) δ 7.14 (t, *J* = 8.1 Hz, 1H), 6.51 (ddd, *J* = 8.3, 2.3, 0.9 Hz, 1H), 6.46–6.42 (m, 2H), 5.52 (s, 1H), 3.78 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.8, 156.6, 130.1, 107.8, 106.4, 101.5, 55.2. This characterization data are in accordance with the reported literature.¹¹

According to **GP** with (2-hydroxyphenyl)boronic acid (27.6mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2% mol), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **20** as white solid (15.4 mg, 70%). ¹H NMR (600 MHz, DMSO- d^6) δ 8.83 (s, 2H), 6.74 (dt, *J* = 7.4, 3.7 Hz, 2H), 6.60 (dq, *J* = 7.3, 3.7 Hz, 2H). ¹³C NMR (150 MHz, DMSO- d^6) δ 150.4, 124.5, 120.9. This characterization data are in accordance with the reported literature.¹⁴

2-methoxyphenol

According to **GP** with (2-methoxyphenyl)boronic acid (30.4mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **21** as white solid (17.3 mg, 70%).¹H NMR (600 MHz, CDCl₃) δ 6.95 (d, *J* = 6.8 Hz, 1H), 6.88 (d, *J* = 7.2 Hz, 3H), 5.69 (s, 1H), 3.89 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 146.6, 145.6, 121.4, 120.2, 114.5, 110.7, 77.3, 77.1, 76.8, 55.9. This characterization data are in accordance with the reported literature.¹¹

o-cresol

According to **GP** with o-tolylboronic acid (27.2mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **22** as white solid (21.5 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 7.15 (d, *J* = 7.4 Hz, 1H), 7.11 (t, *J* = 7.7 Hz, 1H), 6.88 (t, *J* = 7.4 Hz, 1H), 6.79 (d, *J* = 8.0 Hz, 1H), 4.96 (s, 1H), 2.28 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 153.7, 131.0, 127.1, 123.8, 120.7, 114.9, 15.7. This characterization data are in accordance with the reported literature.⁹

2-fluoro-4-hydroxybenzaldehyde

According to **GP** with (3-fluoro-4-formylphenyl)boronic acid (33.6mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **23** as white solid (19.3 mg, 69%). ¹H NMR (600 MHz, DMSO- d^6) δ 9.98 (s, 1H), 7.67 (t, *J* = 8.5 Hz, 1H), 6.74 (dd, *J* = 8.7, 2.2 Hz, 1H), 6.64 (dd, *J* = 12.9, 2.3 Hz, 1H). ¹³C NMR (150 MHz, DMSO- d^6) δ 186.2 (d, ⁵*J*_{C-F} = 4.5 Hz), 165.7 (d, ¹*J*_{C-F} = 255.0 Hz), 165.8 (d, ³*J*_{C-F} = 13.5 Hz), 131.4 (d, ^{3'}*J*_{C-F} = 4.5 Hz), 116.4 (d, ^{2'}*J*_{C-F} = 7.5 Hz), 113.2 (d, ⁴*J*_{C-F} = 3.0 Hz), 103.2 (d, ²*J*_{C-F} = 22.5 Hz). This characterization data are in accordance with the reported literature.¹⁵

naphthalen-2-ol

According to **GP** with naphthalen-2-ylboronic acid (34.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et_3N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **24** as white solid (22.3 mg, 74%).

According to **GP** with 4,4,5,5-tetramethyl-2-(naphthalen-2-yl)-1,3,2-dioxaborolane (50.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **24** as white solid (21 mg, 73%). ¹H NMR (600 MHz, CDCl₃) δ 7.80–7.74 (m, 2H), 7.69 (d, J = 8.2 Hz, 1H), 7.44 (t, J = 7.8 Hz, 1H), 7.37–7.31 (m, 1H), 7.17–7.14 (m, 1H), 7.11 (dd, J = 8.8, 2.5 Hz, 1H), 5.05 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 153.3, 134.5, 129.8, 128.9, 127.7, 126.5, 126.3, 123.6, 117.7, 109.4. This characterization data are in accordance with the reported literature.¹³

dibenzo[b,d]furan-4-ol

According to **GP** with dibenzo[*b*,*d*]furan-4-ylboronic acid (42.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **25** as white solid (25 mg, 68%). ¹H NMR (600 MHz, CDCl₃) δ 7.94 (d, *J* = 7.7 Hz, 1H), 7.59 (d, *J* = 8.2 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 1H), 7.36 (t, *J* = 7.4 Hz, 1H), 7.23 (t, *J* = 7.8 Hz, 1H), 7.03 (d, *J* = 7.8 Hz, 1H), 5.47 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 156.0, 144.0, 141.1, 127.2, 125.7, 124.5, 123.6, 122.9, 121.0, 113.5, 112.8, 111.7. This characterization data are in accordance with the reported literature.²

26

6,10-dihydropyren-1-ol

According to **GP** with (6,10-dihydropyren-1-yl)boronic acid (49.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **26** as white solid (43.1 mg, 98%). ¹H NMR (600 MHz, DMSO-d6) δ 10.65 (s, 1H), 8.34 (d, J = 9.1 Hz, 1H), 8.12 (t, J = 7.3 Hz, 3H), 8.02 (dd, J = 18.3, 9.0 Hz, 2H), 7.96 (t, J = 7.6 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 8.3 Hz, 1H). ¹³C NMR (150 MHz, DMSO-d6) δ 152.1, 131.3, 131.2, 127.3, 126.1, 126.1, 125.4, 125.4, 124.4, 123.8, 123.7, 123.5, 123.5, 121.3, 118.0, 113.2. This characterization data are in accordance with the reported literature.¹⁶

9,9-dihexyl-9H-fluorene-2,7-diol

According to **GP** with (9,9-dihexyl-9*H*-fluorene-2,7-diyl)diboronic acid (84.4 mg, 0.2 mmol, 1.0 equiv), The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **27** as white solid (68 mg, 93%). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2H), 6.80–6.72 (m, 4H), 4.81 (s, 2H), 1.89–1.83 (m, 4H), 1.12 (q, *J* = 7.0 Hz, 4H), 1.08–1.00 (m, 8H), 0.77 (t, *J* = 7.3 Hz, 6H), 0.63 (dtd, *J* = 14.2, 7.1, 4.1 Hz, 4H). ¹³C NMR (150 MHz, CDCl₃) δ 154.4, 152.3, 134.2, 119.5, 113.7, 110.0, 54.9, 40.6, 31.52, 29.7, 23.6, 22.5, 13.9.HRMS (ESI) calculated for C₂₅H₃₄O₂ [M+K]⁺ m/z 389.2451, found 389.2449.

2-Phenylethanol

According to **GP** with 4,4,5,5-tetramethyl-2-phenethyl-1,3,2-dioxaborolane (46.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **28** as yellow oil (21.9 mg, 90%).

According to **GP** with phenethylboronic acid (30.0 mg, 0.2mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **28** as white solid (21.9 mg, 90%).

According to **GP** with potassium trifluoro(phenethyl)borate (42.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **28** as yellow oil (19.5 mg, 80%). ¹H NMR (600 MHz, CDCl₃) δ 7.34–7.30 (m, 2H), 7.26–7.22 (m, 3H), 3.87 (t, *J* = 6.6 Hz, 2H), 2.88 (t, *J* = 6.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 138.4, 129.0, 128.5, 126.4, 63.6, 39.1. This characterization data are in accordance with the reported literature.²

Cyclohexylmethanol

According to **GP** with (cyclohexylmethyl)boronic acid (28.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **29** as white solid (21.9 mg, 96%). ¹H NMR (600 MHz, CDCl₃) δ 3.43 (d, *J* = 6.4 Hz, 2H), 1.74 (ddt, *J* = 16.7, 10.9, 2.5 Hz, 4H), 1.67 (dddt, *J* = 12.1, 5.4, 3.6, 1.9 Hz, 1H), 1.52–1.43 (m, 2H), 1.24 (qt, *J* = 12.3, 3.6 Hz, 2H), 1.19–1.12 (m, 1H), 0.92 (qd, *J* = 13.5, 12.7, 3.9 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 68.7, 40.4, 29.5, 26.5, 25.8. This characterization data are in accordance with the reported literature.¹⁷

tert-butyl 2-hydroxypyrrolidine-1-carboxylate

According to **GP** with (1-(*tert*-butoxycarbonyl)pyrrolidin-2-yl)boronic acid (43 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **30** as white solid (28 mg, 75%). Compound **30** is a mixture of two isomers with a *dr* value of 1:0.6. **Isomer 1**: ¹H NMR (600 MHz, CDCl₃) δ 5.47 (dt, *J* = 5.0, 2.3 Hz, 1H), 3.71 (s, 1H), 3.47 (dt, *J* = 7.4, 4.0 Hz, 1H), 3.27–3.21 (m, 1H), 2.02–2.05 (m, 2H), 1.99–1.91 (m, 2H), 1.46 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 155.11, 81.73, 80.02, 45.91, 32.64, 28.43, 22.71. **Isomer 2**: ¹H NMR (600 MHz, CDCl₃) δ 5.42–5.33 (m, 1H), 3.53 (ddd, *J* = 10.8, 7.9, 3.1 Hz, 1H), 3.33–3.28 (m, 1H), 2.90 (s, 1H), 1.90–1.84 (m, 2H), 1.83–.80 (m, 2H), 1.49 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 153.5, 81.4, 80.3, 45.7, 33.4, 28.5, 22.0. This characterization data are in accordance with the reported literature.¹⁸

31

5-bromopentan-1-ol

According to **GP** with (5-bromopentyl)boronic acid (38.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **31** as

white solid (17.3mg, 52%). ¹H NMR (600 MHz, CDCl₃) δ 3.66 (t, *J* = 6.4 Hz, 2H), 3.42 (t, *J* = 6.8 Hz, 2H), 1.89 (dt, *J* = 14.3, 6.8 Hz, 2H), 1.59 (dt, *J* = 13.6, 6.6 Hz, 2H), 1.55–1.48 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 62.5, 33.7, 32.4, 31.7, 24.4. This characterization data are in accordance with the reported literature.¹⁹

hex-5-en-1-ol

According to **GP** with hex-5-en-1-ylboronic acid (25.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **32** as white solid (10.8 mg, 54%). ¹H NMR (600 MHz, CD₃OD) δ 5.77 (ddt, *J* = 17.0, 10.2, 6.7 Hz, 1H), 4.95 (dd, *J* = 17.1, 1.7 Hz, 1H), 4.90–4.85 (m, 1H), 3.49 (t, *J* = 6.6 Hz, 2H), 2.02 (q, *J* = 7.2 Hz, 2H), 1.52–1.46 (m, 2H), 1.43–1.37 (m, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 138.4, 113.5, 61.3, 33.2, 31.6, 24.8. This characterization data are in accordance with the reported literature.²

dodecan-1-ol

According to **GP** with dodecylboronic acid (42.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **33** as white solid (30.4 mg, 76%). ¹H NMR (600 MHz, CDCl₃) δ 3.62 (t, *J* = 6.7 Hz, 2H), 1.59–1.51 (m, 2H), 1.46 (s, 1H), 1.36–1.19 (m, 18H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 63.0, 32.7, 31.8, 29.6, 29.6, 29.5, 29.4, 29.3, 25.7, 22.6, 14.0. This characterization data are in accordance with the reported literature.²⁰

p-cresol

According to **GP** with 4,4,5,5-tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane (43.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N

(28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **34** as white solid (17.2 mg, 80%).

According to **GP** with 5,5-dimethyl-2-(*p*-tolyl)-1,3,2-dioxaborinane (40.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **34** as white solid (17.2 mg, 80%). ¹H NMR (600 MHz, CDCl₃) δ 7.05 (d, *J* = 8.1 Hz, 2H), 6.75 (d, *J* = 8.4 Hz, 2H), 5.04 (s, 1H), 2.29 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 153.1, 130.0, 130.0, 115.0, 20.4. The characterization data are in accordance with the reported literature.¹⁰

9,9'-spirobi[fluoren]-2-ol

According GP with to 2-(9,9'-spirobi[fluoren]-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (88.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **35** as white solid (59.7 mg, 90%). ¹H NMR (600 MHz, CDCl₃) δ 7.84 (dt, J = 7.7, 0.9 Hz, 2H), 7.74 (dt, J = 7.8, 0.9 Hz, 1H), 7.70 (d, J = 8.3 Hz, 1H), 7.35 (dtd, J = 20.6, 7.5, 1.1 Hz, 3H), 7.12 (td, J = 7.5, 1.1 Hz, 2H), 7.04 (td, J = 7.5, 1.1 Hz, 1H), 6.84 (dd, *J* = 8.3, 2.4 Hz, 1H), 6.76 (dt, *J* = 7.6, 0.9 Hz, 2H), 6.70 (dt, *J* = 7.6, 0.9 Hz, 1H), 6.17 (d, J = 2.4 Hz, 1H), 4.71 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 155.6, 150.8, 148.8, 148.1, 141.6, 141.6, 134.7, 127.8, 127.7, 127.7, 126.6, 124.1, 123.8, 120.9, 119.9, 119.1, 115.0, 111.0, 65.7. The characterization data are in accordance with the reported literature.²¹

9-phenyl-9H-carbazol-2-ol

According to **GP** with 9-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9*H*-carbazole (73.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **36** as white solid (44.8 mg, 81%). ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 7.7 Hz, 1H), 7.97 (d, *J* = 8.4 Hz, 1H), 7.58 (t, *J* = 7.7 Hz, 2H), 7.54 (d, *J* = 7.1 Hz, 2H), 7.45 (t, *J* = 7.3 Hz, 1H), 7.36 (d, *J* = 6.3 Hz, 2H), 7.31–7.25 (m, 1H), 6.85 (d, *J* = 2.1 Hz, 1H), 6.80 (dd, *J* = 8.3, 2.2 Hz, 1H), 5.16 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 154.7, 142.3, 141.0, 137.5, 129.8, 127.5, 127.0, 124.7, 123.5, 121.2, 120.0, 119.4, 117.4, 109.5, 109.0, 96.1. This characterization data are in accordance with the reported literature.²²

(4-Methoxyphenyl)methanol

According to **GP** with 2-(4-methoxybenzyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (49.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified byflash silica gel column chromatography (petroleum ether/EtOAc = 5/1) to afford the desired product **37** as colorless oil (27 mg, 98%). ¹H NMR (600 MHz, CDCl₃) δ 7.25 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 4.56 (s, 2H), 3.78 (s, 3H), 2.08 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 133.1, 128.6, 113.9, 64.8, 55.2. This characterization data are in accordance with the reported literature.²

decan-1-ol

According to **GP** with 9-phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-9H-carbazole (53.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **38** as white solid (29 mg, 92%). ¹H NMR (600 MHz, CDCl₃) δ 3.63 (t, *J* = 6.7 Hz, 2H), 1.55 (dt, *J* = 8.2, 6.6 Hz, 2H), 1.44–1.16 (m, 16H), 0.87 (t, *J* = 7.0 Hz, 3H). 13C NMR (150 MHz, CDCl₃) δ 63.0, 32.7, 31.8, 29.5, 29.5, 29.4, 29.3, 25.7, 22.6, 14.0. This characterization data are in accordance with the reported literature.²²

2-(4-chlorophenyl)ethan-1-ol

According to **GP** with 2-(4-chlorophenethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (53.2 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **39** as yellow oil (30.8 mg, 99%). ¹H NMR (600 MHz, CDCl₃) δ 7.28 (d, *J* = 8.4 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 3.83 (t, *J* = 6.6 Hz, 2H), 2.83 (t, *J* = 6.5 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 137.0, 132.2, 130.3, 128.6, 63.4, 38.4. This characterization data are in accordance with the reported literature.²³

2,3-dihydro-1*H*-inden-2-ol

GP

with

to

According

2-(2,3-dihydro-1*H*-inden-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (28.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **40** as white solid (26.2 mg, 98%). ¹H NMR (600 MHz, CDCl₃) δ 7.28–7.23 (m, 2H), 7.18 (dd, J = 5.4, 3.2 Hz, 2H), 4.70 (tt, J = 6.0, 3.2 Hz, 1H), 3.22 (dd, J = 16.3, 5.9 Hz, 2H), 2.92 (dd, J = 16.2, 3.1 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 140.7, 126.6,

125.0, 73.2, 42.6. This characterization data are in accordance with the reported literature.²

1,4-dioxaspiro[4.5]decan-8-ol

According to **GP** with 4,4,5,5-tetramethyl-2-(1,4-dioxaspiro[4.5]decan-8-yl)-1,3,2-dioxaborolane (53.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **41** as white solid (28.1 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 3.99–3.90 (m, 4H), 3.79 (tt, *J* = 8.3, 3.7 Hz, 1H), 1.87 (dqd, *J* = 11.9, 3.9, 2.0 Hz, 2H), 1.80 (ddd, *J* = 14.9, 5.9, 3.0 Hz, 2H), 1.64 (tdd, *J* = 12.2, 8.3, 3.5 Hz, 2H), 1.56 (ddd, *J* = 13.7, 10.3, 4.1 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 108.2, 68.1, 64.2, 64.2, 31.9, 31.5. This characterization data are in accordance with the reported literature.²⁴

adamantan-1-ol

According to **GP** with 2-(adamantan-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (49.4 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **42** as white solid (26.8 mg, 88%). ¹H NMR (600 MHz, CDCl₃) δ 2.12 (t, *J* = 3.5 Hz, 3H), 1.69 (d, *J* = 2.5 Hz, 6H), 1.62–1.54 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 45.3, 36.0, 30.6. This characterization data are in accordance with the reported literature.²

(E)-3-phenylprop-2-en-1-ol

According to **GP** with 2-cinnamyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (48.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **43** as white solid (11.2 mg, 42%). ¹H NMR (600 MHz, CDCl₃) δ 7.37 (d, *J* = 7.7 Hz, 2H), 7.31 (t, *J* = 7.6 Hz, 2H), 7.25 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 15.9 Hz, 1H), 6.34 (dt, *J* = 15.9, 5.7 Hz, 1H), 4.29 (dd, *J* = 5.7, 1.5 Hz, 2H), 2.72 (s, 1H). ¹³C NMR (150 MHz, Chloroform-d) δ 136.7, 130.9, 128.6, 128.6, 127.6, 126.5, 63.4. This characterization data are in accordance with the reported literature.¹⁷

(E)-3,7-dimethylocta-2,6-dien-1-ol

According to **GP** with (E)-2-(3,7-dimethylocta-2,6-dien-1-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (52.8 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2% mol), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **44** as white solid (14.4 mg, 47%). ¹H NMR (600 MHz, CDCl₃) δ 5.40 (t, *J* = 7.5 Hz, 1H), 5.08 (t, *J* = 6.2 Hz, 1H), 4.14 (d, *J* = 7.0 Hz, 2H), 2.09 (q, *J* = 7.0 Hz, 2H), 2.06–1.98 (m, 2H), 1.67 (d, *J* = 4.4 Hz, 6H), 1.59 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 139.6, 131.6, 123.8, 123.3, 59.3, 39.5, 26.3, 25.6, 17.6, 16.2. This characterization data are in accordance with the reported literature.²⁵

3-phenylpropan-1-ol

According to **GP** with potassium trifluoro(3-phenylpropyl)borate (45.2 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2% mol), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **45** as white solid (26.1 mg, 96%). ¹H NMR (600 MHz, CDCl₃) δ 7.29 (dd, *J* = 8.2, 7.0 Hz, 2H), 7.23–7.17 (m, 3H), 3.68 (t, *J* = 6.4 Hz, 2H), 2.75–2.68 (m, 2H), 1.94–1.87 (m, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 141.8, 128.4, 128.4, 125.8, 62.2, 34.2, 32.0. This characterization data are in accordance with the reported literature.²

2-((tetrahydro-2H-pyran-2-yl)oxy)ethan-1-ol

According to **GP** with potassium trifluoro(2-((tetrahydro-2*H*-pyran-2-yl)oxy)ethyl)borate (47.2 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2% mol), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **46** as white solid (28 mg, 96%). ¹H NMR (600 MHz, CD₃OD) δ 4.59 (dd, *J* = 4.5, 2.8 Hz, 1H), 3.85 (ddd, *J* = 11.6, 8.3, 3.2 Hz, 1H), 3.73 (dt, *J* = 10.8, 4.8 Hz, 1H), 3.68–3.60 (m, 2H), 3.50–3.44 (m, 2H), 1.81 (td, *J* = 8.3, 7.8, 3.7 Hz, 1H), 1.72–1.64 (m, 1H), 1.60–1.43 (m, 4H). ¹³C NMR (150 MHz, CD₃OD) δ 99.1, 68.8, 61.9, 60.9, 30.2, 25.1, 19.1. This characterization data are in accordance with the reported literature.²⁶

1,2,3,4-tetrahydronaphthalen-1-ol

According to **GP** with potassium trifluoro(1,2,3,4-tetrahydronaphthalen-1-yl)borate (47.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2% mol), and Et₃N (28.0 µL, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **47** as white solid (26.1 mg, 88%). ¹H NMR (300 MHz, CDCl3) δ 7.46–7.41 (m, 1H), 7.23–7.18 (m, 2H), 7.14–7.09 (m, 1H), 4.78 (d, *J* = 5.0 Hz, 1H), 2.83 (dt, *J* = 16.7, 5.6 Hz, 1H), 2.73 (ddd, *J* = 16.5, 8.1, 5.5 Hz, 1H), 1.98 (dddd, *J* = 17.6, 12.6, 8.0, 4.0 Hz, 2H), 1.94–1.88 (m, 1H), 1.85 (d, *J* = 5.7 Hz, 1H), 1.82–1.75 (m, 1H). ¹³C NMR (75 MHz, CDCl3) δ 138.7, 137.0, 128.9, 128.6, 127.5, 126.1, 68.1, 32.2, 29.1, 18.7.This characterization data are in accordance with the reported literature.²

Benzyl (2-hydroxyethyl)carbamate

According to **GP** with potassium (2-(((benzyloxy)carbonyl)amino)ethyl)trifluoroborate (57 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2% mol), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **48** as white solid (37 mg, 95%). ¹H NMR (600 MHz, CD₃OD) δ 7.32 (d, *J* = 6.9 Hz, 4H), 7.29–7.25 (m, 1H), 5.05 (s, 2H), 3.56 (t, *J* = 5.9 Hz, 2H), 3.21 (t, *J* = 5.9 Hz, 2H). ¹³C NMR (150 MHz, CD₃OD) δ 157.6, 136.9, 128.0, 127.5, 127.4, 66.0, 60.4, 42.8. This characterization data are in accordance with the reported literature.²⁷

2-hydroxybenzonitrile

According to **GP** with 2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)benzonitrile (43 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2% mol), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **49** as white solid (20.9 mg,88%). ¹H NMR (600 MHz, CDCl₃) δ 7.50 (d, *J* = 7.8 Hz, 1H), 7.46 (t, *J* = 7.9 Hz, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 158.8, 134.8, 133.0, 120.7, 116.6, 116.5, 99.2. This characterization data are in accordance with the reported literature.²

5. Larger Scale Reaction

4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (1.38 g, 5.0 mmol, 1.0 equiv), chlorophyll (100 mg, 0.1 mmol, 2.0 mol%), and Et₃N (750 μ L, 5.0 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **14** as white solid (772 mg, 93%).

6. Evaluation of green chemistry metrics

In order to explore the greater potential of chlorophyll, its equivalent was further reduced to 1.0 % mmol. Surprisingly, the reaction still proceeded well, and based on this, the green chemistry parameters were calculated.

According to **GP** with ethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate (276 mg, 1 mmol, 1.0 equiv), chlorophyll (2.0 mg, 0.002 mmol, 0.2 mol%), and Et₃N (140 μ L, 1.0 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10/1) to afford the desired product **14** as white solid (154.8 mg, 93%).

Based on the above advanced reaction, green chemistry metrics were calculated as follows.

6.1 Green chemistry metrics

The green chemistry metrics including Effective Mass Yield (EMY), Atom Economy (AE), Atom Efficiency (AEf), Reaction Mass Efficiency (RME), Optimum Efficiency (OE), Process Mass Intensity (PMI), Mass Intensity (MI), Mass Productivity (MP), E-factor, Solvent Intensity (SI) and Water Intensity (WI), Turnover Number (TON), and Turnover Frequency (TOF) were calculated according to the reported method.¹⁰ EcoScale was calculated according to the reported method.²⁸

6.2 Calculations of green chemistry metrics for this method

EMY (%) = $\frac{\text{Mass of product}}{\text{Mass of non - benign reagents}} \times 100 = \frac{0.155 \text{ g}}{0.276 \text{ g} + 0.101 \text{ g} + 0.002 \text{ g}} \times 100 = 40.8\%$
AE (%) = $\frac{\text{Molecular weight of product}}{\text{Total molecular weight of reagents}} \times 100 = \frac{166.1}{276.2 + 101.2 + 878.5 \times 0.002} \times 100 = 43.8\%$
$AEf(\%) = AE \times Yield\% = 43.8 \times 93.2\% = 40.8\%$
RME (%) = $\frac{\text{Mass of isolated product}}{\text{Total mass of reagents}} \times 100 = \frac{0.155 \ g}{0.276 \ g + 0.101 \ g + 0.032 \ g + 0.002 \ g} \times 100 = 37.7\%$
0E (%) = $\frac{RME}{AE} \times 100 = \frac{37.7\%}{43.8\%} \times 100 = 85.9\%$
Total mass of input material in the whole process (including solvents)
Mass of products
$-\frac{0.276 g + 0.101 g + 0.032 g + 0.002 g + 3.9 g}{-281}$
= 0.155 g $=$ 20.1

$$MI = \frac{\text{Total mass of input material in the whole process (excluding water)}}{\text{Mass of products}}$$
$$= \frac{0.276 \ g + 0.101 \ g + 0.032 \ g + 0.002 \ g + 3.9 \ g}{0.155 \ g} = 28.1$$
$$MP (\%) = \frac{1}{\text{MI}} \times 100 = \frac{1}{28.1} \times 100 = 3.6\%$$
$$E - \text{factor} = \frac{\text{Total mass of waste}}{\text{Mass of products}} = \frac{0.276 \ g + 0.101 \ g + 0.032 \ g + 0.002 \ g + 3.9 \ g - 0.155 \ g}{0.155 \ g} = 27.1$$
$$\text{TON} = \frac{Amout \ of \ desired \ product \ (mmol \ scale))}{Amout \ of \ catalyst \ used \ (mmol \ scale))} = \frac{0.932}{0.002} = 466$$
$$\text{TOF} = \frac{TON}{\text{Time (hour)}} = \frac{466}{24 \ h} = 19.4/h$$

6.3 Comparison of metrics with the same type of reaction

In order to further demonstrate the advantages of this method in green chemistry, the relevant parameters of the same type of reactions were also calculated and compared to ours. The comparative examples were selected from the similar photooxidation processes and were listed below.^{2, 10, 22, 29-37} The detailed calculation parameters were summarized **Table S1**. The comparison of each metric sees **Figure S2-S12**.

Except for Optimum Efficiency (OE), all other metrics of this method are at the upstream level. The use of low doses of catalysts and additives, accompanied by less waste losses, results in a high Effective Mass Yield (EMY), Atom Economy (AE), and Reaction Mass Efficiency (RME), while at the same time the Process Mass Intensity (PMI), Mass Intensity (MI) and E-factor are at a lower level. Low dosage of catalyst and less reaction time result in satisfactory TON and TOF, indicating that chlorophyll has a very high catalytic efficiency for the photooxidation of organoborons.

6.4 Calculations of EcoScale

EcoScale was calculated according to the reported method and summarized at Table S3.²⁸ The score drops significantly due to the use of the toxic reagent triethylamine, but it is still an acceptable green synthesis method. And the EcoScale of this method (70.6) is also better than that of the Ref 10 (61).

In conclusion, this method can be regarded as an efficient green synthesis method through green chemistry metrics calculations and horizontal comparison.

Instry This 1 2 3 4 5 6 7 8 9 10 11 12 13 Reference ait air air air air air 0.2 <th0< th=""> 0.2</th0<>	Table S1. Calculated green metrics																
Heference This 10 29 29 30 22 31 32 33 34 35 2 36 37 Momsplere air air air air air air air air air 02 02 02 02 02 03 air	Entry		This	1	2	3	4	5	6	7	8	9	10	11	12	13	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Reference		This	10	29	29	30	22	31	32	33	34	35	2	36	37	
Borides M mmol 1 3 0.5 0.5 7 20 10 0.6 0.5 10.5 0.5 10.0 0.5 Borides MW gimmol 276.2 178.04 151.96 198.03 156.37 198.03 139.92 149.94 121.93 121.93 121.93 121.93 121.93 121.93 121.93 121.93 121.93 121.93 121.93 129.25	Aton	nsphere		air	air	air	air	O ₂	O ₂	O ₂	O ₂	O ₂	O ₂	air	air	air	air
Borides MW g/mmol 276.2 178.04 151.96 151.96 198.03 156.37 198.03 189.92 149.94 121.93 121.93 120.31 156.37 161.1 MW g/mmol 101.2 129.25 129.25 129.25 129.25 129.25 129.25 129.25 129.25 129.25 129.25 129.25 129.25 129.25 101.19 0 129.23 O2 MW g/mmol 32		М	mmol	1	3	0.5	0.5	7	20	10	0.6	0.5	0.6	12.3	0.5	10	0.5
Weight mg 276.2 53.4.1 76 76 1386.2 3127.4 1980.3 84 75 73.2 1499.71 61 1563.71 61 Mdditive Weight mg 101.2 129.25	Borides	MW	g/mmol	276.2	178.04	151.96	151.96	198.03	156.37	198.03	139.92	149.94	121.93	121.93	121.93	156.37	121.93
Additive MW grmnol 101.2 129.25 <th></th> <th>Weight</th> <th>mg</th> <th>276.2</th> <th>534.1</th> <th>76</th> <th>76</th> <th>1386.2</th> <th>3127.4</th> <th>1980.3</th> <th>84</th> <th>75</th> <th>73.2</th> <th>1499.71</th> <th>61</th> <th>1563.71</th> <th>61</th>		Weight	mg	276.2	534.1	76	76	1386.2	3127.4	1980.3	84	75	73.2	1499.71	61	1563.71	61
Additive Weight mg 101.2 1357.1 129.3 129.3 1809.5 4006.4 2585 581.6 323.1 387.8 3179.6 20.2 0 129.3 O2 MiW gimmol 32	Additivo	MW	g/mmol	101.2	129.25	129.25	129.25	129.25	100.16	129.25	129.25	129.25	129.25	129.25	101.19	0	129.25
O2 MW g/mmol 32 <th< th=""><th>Additive</th><th>Weight</th><th>mg</th><th>101.2</th><th>1357.1</th><th>129.3</th><th>129.3</th><th>1809.5</th><th>4006.4</th><th>2585</th><th>581.6</th><th>323.1</th><th>387.8</th><th>3179.6</th><th>20.2</th><th>0</th><th>129.3</th></th<>	Additive	Weight	mg	101.2	1357.1	129.3	129.3	1809.5	4006.4	2585	581.6	323.1	387.8	3179.6	20.2	0	129.3
O2 Weight mg 32 96 16 16 224 640 320 19.2 16 19.2 393.6 16 320 16 Catalyst M mmol 0.002 0.003 0.01 0.01 0.14 0.0 0.05 0.015 0.006 0.0123 0.025 0.05 0.01 Catalyst MW grmmol 878.5 440.35 7.48.62 691.86 840.77 256.3 209.25 319.85 262.33 973.67 242.66 544.44 Weight mg 1.757 1.3 7.5 6.9 112 60 4.2 30.8 1 1.9 3.2 24.3 121.3 5.4 Solvent BOH DMF DMF DMF DMF CHC13 McC13 McC10 780 786 1070 787 78.6 1070 780 78.6 1070 780 78.6 167.2 123.3 167 5 700	0	MW	g/mmol	32	32	32	32	32	32	32	32	32	32	32	32	32	32
M mmol 0.002 0.003 0.01 0.14 0.14 0.12 0.005 0.006 0.0123 0.025 0.55 0.01 MW g/mmol 878.5 440.35 748.62 691.86 840.77 256.3 209.25 319.85 262.33 973.67 242.66 544.44 Weight mg 1.75 6.9 112 60 4.2 30.8 1 1.9 3.23 24.3 121.3 5.4 Solvent(not water) Densty mg/ml. 789 944 944 944 889 1490 - 786 1070 789 786 944 Volume ml 5 5 700 2202 298000 0 0 6288 131610 2367 131262 4720 Weight mg 0 5000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <th< th=""><th><math>0_2</math></th><th>Weight</th><th>mg</th><th>32</th><th>96</th><th>16</th><th>16</th><th>224</th><th>640</th><th>320</th><th>19.2</th><th>16</th><th>19.2</th><th>393.6</th><th>16</th><th>320</th><th>16</th></th<>	0_2	Weight	mg	32	96	16	16	224	640	320	19.2	16	19.2	393.6	16	320	16
MW g/mmol 878.5 440.35 748.62 691.86 840.77 256.3 209.25 319.85 262.33 973.67 242.66 544.44 Weight mg 1.757 1.3 7.5 6.9 112 60 4.2 30.8 1 1.9 3.2 24.3 121.3 5.4 Solvent Densty mg/mL 789 944 944 944 889 1490 786 1007 789 786 944 Volume mL 5 5 5 700 250 200 8 123 3 167 5 Weight mg 3945 0 4720 660800 22250 29800 0 <td< th=""><th></th><th>М</th><th>mmol</th><th>0.002</th><th>0.003</th><th>0.01</th><th>0.01</th><th>0.14</th><th>0.1</th><th>0.005</th><th>0.12</th><th>0.005</th><th>0.006</th><th>0.0123</th><th>0.025</th><th>0.5</th><th>0.01</th></td<>		М	mmol	0.002	0.003	0.01	0.01	0.14	0.1	0.005	0.12	0.005	0.006	0.0123	0.025	0.5	0.01
Weight mg 1.757 1.3 7.5 6.9 112 60 4.2 30.8 1 1.9 3.2 24.3 121.3 5.4 Solvent EOH DMF DMF DMF DMF CHCB McCN DMC EOH PrOH DMF Solvent(not water) Densty mg/mL 789 944 944 944 889 1490 786 1070 789 786 944 Weight mg 3945 0 4720 660800 22250 298000 0 0 668800 22250 298000 0 </th <th>Catalyst</th> <th>MW</th> <th>g/mmol</th> <th>878.5</th> <th>440.35</th> <th>748.62</th> <th>691.86</th> <th></th> <th></th> <th>840.77</th> <th>256.3</th> <th>209.25</th> <th>319.85</th> <th>262.33</th> <th>973.67</th> <th>242.66</th> <th>544.44</th>	Catalyst	MW	g/mmol	878.5	440.35	748.62	691.86			840.77	256.3	209.25	319.85	262.33	973.67	242.66	544.44
Solvent(not water) Solvent EiOH DMF DMF DMF THF CHCl3 MecN DMC EiOH iPrOH DMF Solvent(not water) Densty mg/mL 789 944 944 944 889 1490 786 1070 789 786 944 Volume mL 5 5 5 700 250 200 8 123 3 167 5 Weight mg 3945 0 4720 660800 22250 298000 0 0 2367 131262 4720 Water Weight mg 0 5000 0		Weight	mg	1.757	1.3	7.5	6.9	112	60	4.2	30.8	1	1.9	3.2	24.3	121.3	5.4
Solvent(not water) Densty mg/mL 789 944 944 984 944 889 1490 786 1070 789 786 944 Volume mL 5 5 5 700 250 200 8 123 3 167 5 Weight mg 3945 0 4720 4720 660800 222250 298000 0 0 6288 131610 2367 131262 4720 Weight mg 0 5000 <		Solvent		EtOH		DMF	DMF	DMF	THF	CHCl3			MeCN	DMC	EtOH	iPrOH	DMF
Solution Volume mL 5 5 5 700 250 200 8 123 3 167 5 Weight mg 3945 0 4720 4720 660800 222250 298000 0 0 6288 131610 2367 131262 4720 Water Weight mg 0 5000 0 <th0< th=""><th>Solvent(not water)</th><th>Densty</th><th>mg/mL</th><th>789</th><th></th><th>944</th><th>944</th><th>944</th><th>889</th><th>1490</th><th></th><th></th><th>786</th><th>1070</th><th>789</th><th>786</th><th>944</th></th0<>	Solvent(not water)	Densty	mg/mL	789		944	944	944	889	1490			786	1070	789	786	944
Weight mg 3945 0 4720 4720 660800 222250 298000 0 0 6288 131610 2367 131262 4720 Water Weight mg 0 5000 0 <th>Solvent(not water)</th> <th>Volume</th> <th>mL</th> <th>5</th> <th></th> <th>5</th> <th>5</th> <th>700</th> <th>250</th> <th>200</th> <th></th> <th></th> <th>8</th> <th>123</th> <th>3</th> <th>167</th> <th>5</th>	Solvent(not water)	Volume	mL	5		5	5	700	250	200			8	123	3	167	5
Water Weight mg 0 5000 0		Weight	mg	3945	0	4720	4720	660800	222250	298000	0	0	6288	131610	2367	131262	4720
Co-solvent Weight mg 0 0 0 0 7282 0	Water	Weight	mg	0	5000	0	0	0	0	0	1000	5000	2000	0	0	0	0
MW g/mmol 166.1 150.22 124.14 124.14 170.21 128.56 170.21 112.1 122.12 94.11 94.11 94.11 128.56 94.11 M mmol 0.932 2.46 0.465 0.465 6.93 18.6 9.1 0.342 0.49 0.564 10.701 0.485 9.1 0.415 AW mg 154.8 369.5 57.7 55.9 1179.6 2391.2 1548.9 38.3 59.8 53.1 1007.1 45.6 1169.9 39.1 Yield 93.20% 82% 93% 90% 99% 93% 91% 57% 98% 94% 87% 97% 91% 83% U Effective Mass Yield EMY 40.80% 19.53% 27.14% 26.33% 35.66% 33.24% 33.90% 5.51% 14.99% 11.47% 21.51% 43.25% 69.43% 19.96% Atom Economy AE 43.80% 22.68% 28.06%<	Co-solvent	Weight	mg			0	0	0	0	7282	0	0	0	0	0	0	0
MW g/mmol 166.1 150.22 124.14 170.21 128.56 170.21 112.1 122.12 94.11 94.11 128.56 94.11 M mmol 0.932 2.46 0.465 0.465 6.93 18.6 9.1 0.342 0.49 0.564 10.701 0.485 9.1 0.415 AW mg 154.8 369.5 57.7 55.9 1179.6 2391.2 1548.9 38.3 59.8 53.1 1007.1 45.6 1169.9 39.1 Yield 93.20% 82% 93% 90% 99% 93% 91% 57% 98% 94% 87% 97% 91% 83% Effective Mass Yield EMY 40.80% 19.53% 27.14% 26.33% 35.66% 33.24% 33.90% 5.51% 14.99% 11.47% 21.51% 43.25% 69.43% 19.96% Atom Efficiency AE 43.80% 26.60% 28.80% 34.84% 30.76% <t< th=""><th colspan="10"></th></t<>																	
M mmol 0.932 2.46 0.465 6.93 18.6 9.1 0.342 0.49 0.564 10.701 0.485 9.1 0.415 AW mg 154.8 369.5 57.7 55.9 1179.6 2391.2 1548.9 38.3 59.8 53.1 1007.1 45.6 1169.9 39.1 Yield 93.20% 82% 93% 90% 99% 93% 91% 57% 98% 94% 87% 97% 91% 83% Effective Mass Yield EMY 40.80% 19.53% 27.14% 26.33% 35.66% 33.24% 33.90% 5.51% 14.99% 11.47% 21.51% 43.25% 69.43% 19.96% Atom Economy AE 43.80% 22.68% 28.06% 28.06% 34.84% 33.08% 34.84% 9.82% 14.75% 11.76% 22.82% 48.41% 68.25% 22.82% Atom Efficiency AEF 43.80% 18.60% 26.09% 25.25% <th></th> <th>MW</th> <th>g/mmol</th> <th>166.1</th> <th>150.22</th> <th>124.14</th> <th>124.14</th> <th>170.21</th> <th>128.56</th> <th>170.21</th> <th>112.1</th> <th>122.12</th> <th>94.11</th> <th>94.11</th> <th>94.11</th> <th>128.56</th> <th>94.11</th>		MW	g/mmol	166.1	150.22	124.14	124.14	170.21	128.56	170.21	112.1	122.12	94.11	94.11	94.11	128.56	94.11
AW mg 154.8 369.5 57.7 55.9 1179.6 2391.2 1548.9 38.3 59.8 53.1 1007.1 45.6 1169.9 39.1 Yield 93.20% 82% 93% 90% 99% 93% 91% 57% 98% 94% 87% 97% 91% 83% Effective Mass Yield EMY 40.80% 19.53% 27.14% 26.33% 35.66% 33.24% 33.90% 5.51% 14.99% 11.47% 21.51% 43.25% 69.43% 19.96% Atom Economy AE 43.80% 22.68% 28.06% 28.06% 34.84% 33.08% 34.84% 9.82% 14.75% 11.76% 22.82% 48.41% 68.25% 22.82% Atom Efficiency AEF 43.80% 18.60% 26.09% 25.25% 34.49% 30.76% 31.71% 5.60% 14.45% 11.06% 19.85% 46.96% 62.11% 18.94% Meation Mass Efficiency RME 37.65%	Product	М	mmol	0.932	2.46	0.465	0.465	6.93	18.6	9.1	0.342	0.49	0.564	10.701	0.485	9.1	0.415
Yield 93.20% 82% 93% 90% 99% 93% 91% 57% 98% 94% 87% 97% 91% 83% Effective Mass Yield EMY 40.80% 19.53% 27.14% 26.33% 35.66% 33.24% 33.90% 5.51% 14.99% 11.47% 21.51% 43.25% 69.43% 19.96% Atom Economy AE 43.80% 22.68% 28.06% 28.06% 34.84% 33.08% 34.84% 9.82% 14.75% 11.76% 22.82% 48.41% 68.25% 22.82% Atom Efficiency AEF 43.80% 18.60% 26.09% 25.25% 34.49% 30.76% 31.71% 5.60% 14.45% 11.06% 19.85% 46.96% 62.11% 18.94% Reaction Mass Efficiency RME 37.65% 18.58% 25.24% 24.49% 33.40% 30.52% 31.68% 5.36% 14.41% 11.01% 19.84% 37.55% 58.35% 18.45% 0ptimum Efficiency 0E	Tiouact	AW	mg	154.8	369.5	57.7	55.9	1179.6	2391.2	1548.9	38.3	59.8	53.1	1007.1	45.6	1169.9	39.1
Effective Mass Yield EMY 40.80% 19.53% 27.14% 26.33% 35.66% 33.24% 33.90% 5.51% 14.99% 11.47% 21.51% 43.25% 69.43% 19.96% Atom Economy AE 43.80% 22.68% 28.06% 28.06% 34.84% 33.08% 34.84% 9.82% 14.75% 11.76% 22.82% 48.41% 68.25% 22.82% Atom Efficiency AEF 43.80% 18.60% 26.09% 25.25% 34.49% 30.76% 31.71% 5.60% 14.45% 11.06% 19.85% 46.96% 62.11% 18.94% Reaction Mass Efficiency RME 37.65% 18.58% 25.24% 24.49% 33.40% 30.52% 31.68% 5.36% 14.41% 11.01% 19.84% 37.55% 58.35% 18.45% Optimum Efficiency OE 85.94% 81.95% 89.96% 87.27% 95.86% 92.29% 90.92% 54.55% 97.75% 93.63% 86.94% 77.57% 85.49% 80.87%		Yield		93.20%	82%	93%	90%	99%	93%	91%	57%	98%	94%	87%	97%	91%	83%
Effective Mass Yield EMY 40.80% 19.53% 27.14% 26.33% 35.66% 33.24% 33.90% 5.51% 14.99% 11.47% 21.51% 43.25% 69.43% 19.96% Atom Economy AE 43.80% 22.68% 28.06% 28.06% 34.84% 33.08% 34.84% 9.82% 14.75% 11.76% 22.82% 48.41% 68.25% 22.82% Atom Efficiency AEF 43.80% 18.60% 26.09% 25.25% 34.49% 30.76% 31.71% 5.60% 14.45% 11.06% 19.85% 46.96% 62.11% 18.94% Reaction Mass Efficiency RME 37.65% 18.58% 25.24% 24.49% 33.40% 30.52% 31.68% 5.36% 14.41% 11.01% 19.84% 37.55% 58.35% 18.45% Optimum Efficiency OE 85.94% 81.95% 89.96% 87.27% 95.86% 92.29% 90.92% 54.55% 97.75% 93.63% 86.94% 77.57% 85.49% 80.87% Optimum Efficiency OE 85.94% 81.95% 89.96% 87.2																	
Atom Economy AE 43.80% 22.68% 28.06% 34.84% 33.08% 34.84% 9.82% 14.75% 11.76% 22.82% 48.41% 68.25% 22.82% Atom Efficiency AEF 43.80% 18.60% 26.09% 25.25% 34.49% 30.76% 31.71% 5.60% 14.45% 11.06% 19.85% 46.96% 62.11% 18.94% Reaction Mass Efficiency RME 37.65% 18.58% 25.24% 24.49% 33.40% 30.52% 31.68% 5.36% 14.41% 11.01% 19.84% 37.55% 58.35% 18.45% Optimum Efficiency OE 85.94% 81.95% 89.96% 87.27% 95.86% 92.29% 90.92% 54.55% 97.75% 93.63% 86.94% 77.57% 85.49% 80.87% Process Mass Intensty PML 28.14 18.91 85.73 88.58 563.21 96.22 200.25 44.75 90.5 165.23 135.73 54.52 113.01 126.27	Effective Mass	s Yield	EMY	40.80%	19.53%	27.14%	26.33%	35.66%	33.24%	33.90%	5.51%	14.99%	11.47%	21.51%	43.25%	69.43%	19.96%
Atom Efficiency AEF 43.80% 18.60% 26.09% 25.25% 34.49% 30.76% 31.71% 5.60% 14.45% 11.06% 19.85% 46.96% 62.11% 18.94% Reaction Mass Efficiency RME 37.65% 18.58% 25.24% 24.49% 33.40% 30.52% 31.68% 5.36% 14.41% 11.01% 19.84% 37.55% 58.35% 18.45% Optimum Efficiency OE 85.94% 81.95% 89.96% 87.27% 95.86% 92.29% 90.92% 54.55% 97.75% 83.69% 77.57% 85.49% 80.87% Process Mass Intensity PML 28.14 18.91 85.73 88.58 563.21 96.22 200.25 44.75 90.5 165.23 135.73 54.52 113.01 126.27	Atom Econo	omy	AE	43.80%	22.68%	28.06%	28.06%	34.84%	33.08%	34.84%	9.82%	14.75%	11.76%	22.82%	48.41%	68.25%	22.82%
Reaction Mass Endency RME 37.05% 18.58% 25.24% 24.49% 33.40% 30.52% 31.68% 5.36% 14.41% 11.01% 19.84% 57.35% 58.35% 18.45% Optimum Efficiency OE 85.94% 81.95% 89.96% 87.27% 95.86% 92.29% 90.92% 54.55% 97.75% 93.63% 86.94% 77.57% 85.49% 80.87% Process Mass Interesty PML 28.14 18.91 85.73 88.58 563.21 96.22 200.25 44.75 90.5 165.23 135.73 54.52 113.01 126.27	Atom Efficie	ency	AEF	43.80%	18.60%	26.09%	25.25%	34.49%	30.76%	31.71%	5.60%	14.45%	11.06%	19.85%	46.96%	62.11%	18.94%
Opumum Enciency OE 85.94% 81.95% 89.96% 87.27% 95.86% 92.29% 90.92% 54.55% 97.75% 93.63% 86.94% 77.57% 85.49% 80.87% Process Mass Interety DMI 28.14 18.01 85.73 563.21 96.22 200.25 44.75 90.5 165.23 135.73 54.52 113.01 126.27	Reaction Mass F		RME	37.65%	18.58%	25.24%	24.49%	33.40%	30.52%	31.68%	5.36%	14.41%	11.01%	19.84%	37.55%	58.35%	18.45%
Privess moss monstry $Prive Prive Prive$			OE	85.94%	81.95%	89.96%	87.27%	95.86%	92.29%	90.92%	54.55%	97.75%	93.63%	86.94%	77.57%	85.49%	80.87%
Modes Mi 20.12 5.20 95.75 90.75 100.25 105.75 105.75 120.27 Modes Letavilia Mi 20.12 5.20 95.75 100.25 105.75 155.75 54.52 113.11 120.27	Process Mass I Maga Inter	ntensty	PMI	28.14	18.91	85.73	88.58	563.21	96.22	200.25	44.75	90.5	105.23	135.73	54.52	113.91	126.27
INTERS HIGHSING INI 28.13 3.38 85.75 88.38 205.21 90.22 200.25 18.06 0.94 127.55 135.73 54.52 113.91 126.27 Mage Deschortivity IND 2550 1170 1120 0.190 1.040 0.500 5.200 14.410 0.700 0.740 1.020 0.900 0.700	Mass Broductivity MD		28.13	5.58	85./5	88.58	0.199/	90.22	200.25	18.00	0.94	127.55	155./5	34.52	0.889/	120.27	
Intass fromuchving IVIP 5.55% 18.58% 1.17% 1.15% U.18% 1.04% U.50% 54.41% U.14% U.14% U.16% U.16% <thu.16%< th=""> U.16% <thu.16%< th="" thu<=""><th colspan="2">F foctor</th><th>3.35%</th><th>18.58%</th><th>1.1/%</th><th>1.15%</th><th>0.18%</th><th>1.04%</th><th>0.50%</th><th>5.30%</th><th>14.41%</th><th>0.78%</th><th>0.74%</th><th>1.85%</th><th>0.88%</th><th>0.79%</th></thu.16%<></thu.16%<>	F foctor		3.35%	18.58%	1.1/%	1.15%	0.18%	1.04%	0.50%	5.30%	14.41%	0.78%	0.74%	1.85%	0.88%	0.79%	
L-ratum 21.13 11.91 04.73 01.36 302.21 95.22 199.25 45.75 69.3 104.25 134.73 53.52 112.91 125.27 Solvent Intervity SI 25.49 0 81.77 84.40 560.21 02.04 107.00 0 119.47 120.60 51.96 112.2 120.95	E-lactor Solvent Intensity		27.13	17.91	04./3	07.38	560.21	93.22	199.23	45.75	09.5	104.23	134./3	51.96	112.91	123.27	
Solvent inclusity 51 23.40 0 61.77 64.49 300.21 92.94 197.09 0 0 118.47 130.09 51.80 112.2 120.85 Turnovar Number TON 466 920 465 45 405 196 1920 2.85 0.9 0.4 970 10.4 1920 41.5	Solvent Intensity SI		23.48	820	01.//	04.49 45	40.5	92.94	197.09	2.95	08	04	870	10.4	112.2	120.83	
Reaction time b 24 36 28 06 26 2 40 70 70 10 100 100 24.05 96 94 6/0 19.4 18.2 41.5	Reaction ti	me	L ION	400	020 26	40.5	43	49.0	2	1020	2.83	90 36	74	0/0	19.4	10.2	41.3
Turnover Frequency /h 19.41 22.778 1.66 0.47 1.38 6200 37.92 0.04 2.72 13.43 06.67 1.62 0.16 1.73	Turmover Fred	menev	11 /h	19.41	22 778	20 1.66	90	1 38	5 6200	40 37.92	0.04	2 72	13.43	96.67	1.62	0.16	1 73

Figure S2. The comparison of Effective Mass Yield

Figure S3. The comparison of Atom Economy

Figure S4. The comparison of Reaction Mass Efficiency

Figure S5. The comparison of Optimum Efficiency

Figure S6. The comparison of Process Mass Intensity

Figure S8. The comparison of Mass Productivity

Figure S9. The comparison of E-factor

Figure S10. The comparison of Turnover Number

Figure S11. The comparison of Turnover Frequency **Table S2**. The summary of green chemistry metrics

Photo-	EMY	AE	RME	OE	PMI	MI	MP	E-factor	TON	TOF
catalysts										
This	40.8%	43.8%	37.3%	85.9%	28.1	28.1	3.6%	27.1	466	19.40
1	19.5%	22.7%	18.6%	82.0%	18.9	5.4	18.6%	17.9	820	22.78
2	27.1%	28.1%	25.2%	90.0%	85.7	85.7	1.2%	84.7	47	1.66
3	26.3%	28.1%	24.5%	87.3%	88.6	88.6	1.1%	87.6	45	0.47
4	35.7%	34.8%	33.4%	95.9%	563.2	563.2	0.2%	562.2	50	1.38
5	33.2%	33.1%	30.5%	92.3%	96.2	96.2	1.0%	95.2	186	62.00
6	33.9%	34.8%	31.7%	90.9%	200.3	200.3	0.5%	199.3	1820	37.92
7	5.5%	9.8%	5.4%	54.6%	44.8	18.7	5.4%	43.8	3	0.04
8	15.0%	14.8%	14.4%	97.8%	90.5	6.9	14.4%	89.5	98	2.72
9	11.5%	11.8%	11.0%	93.6%	165.2	127.6	0.8%	164.2	94	13.43
10	21.5%	22.8%	19.8%	86.9%	135.7	135.7	0.7%	134.7	870	96.67
11	43.3%	48.4%	37.6%	77.6%	54.5	54.5	1.8%	53.5	19	1.62
12	69.4%	68.3%	58.4%	85.5%	113.9	113.9	0.9%	112.9	18	0.16
13	20.0%	22.8%	18.5%	80.9%	126.3	126.3	0.8%	125.3	42	1.73

Table S3. The calculation of EcoScale						
EcoScale = 100- Sum of individual penalties						
Score on EcoScale: > 75, Excellent; >50, Acceptable; <50, Inadequate						
A) Calculation of penalty poi	nts:					
Parameters	Penalty					
		points				
1. Yield	(100-100*yield)/2 = (100-93.2)/2 = 3.4	3.4				
	(a) Substrate $X = 2.96 \text{ g} < \$30$					
2. Price of reaction	(b) $PC = 2.0 \text{ mg} < \$1$					
components (To obtain 10	(c) $Et_3N = 1.09 g < \$1$					
mmol of end product)	Total price < \$ 32					
	Expensive (> \$10 and < \$50)	3				
	Et ₃ N					
3. Safety	Toxic (T)	5				
	Highly flammable (F)	5				
	Inconventional activation technique					
4. Technical Setup	(Photochemical reaction)	2				
5. Temperature and time	Room temperature and < 24h	1				
6. Workup and purification	Classical chromatography	10				
Total Penalty Points	29.4					
B) EcoScale calculation:						
EcoScale	= 100- Total Penalty Points	70.6				

Figure S12. The summary of the green chemistry metrics

7. Experiment using kitchen things

Interestingly, the reaction can be carried out entirely with kitchen equipment and ingredients. 200 g fresh spinach leaves with 50 ml edible alcohol (52% Vol), crushed with a juicer. Then, substrate **50** (276 mg) and baking soda (312 mg) were added to the filtered spinach juice. The juice was exposed to sunlight for 5 hours. Egg-whisk can be used as an alternative to a magnetic stirrer during the reaction. Finally, 60% of the arylboronic acid **50** was converted to phenol **14** by ¹H-NMR detection.

Figure S13. Experiment using kitchen things

8. Mechanistic studies8.1 Control experiments

	Br	Chlorophy bin Et ₃ N (ll (2.0 mo (1.0 eq.)	l%) ─►		н
		EtOH rt. 30 W R	, air, 20 h ed LEDs			
entry	visible light	chlorophyll	air	Et ₃ N	Yield (%)	NOTE
1	yes	yes	yes	yes	97	
2	no	yes	yes	yes	0	
3	yes	no	yes	yes	0	
4	yes	yes	no	yes	0	
5	yes	yes	yes	no	15	
6	no	no	yes	yes	0	
7	yes	no	yes	no	0	
8	no	yes	yes	yes	0	heated to 50 $^{\circ}C$

The above control experiments showed that the photocatalyst, amine, air, and visible light are all necessary for the success of this transformation. And the thermal effect of red light is irrelevant to the reaction

8.2 Control experiments with quenchers

	Chlor E Bpin	ophyll (2.0 m Et ₃ N (1.0 eq. quenchers	nol%)) ОН
	EtC	0H rt, air, 20 Red LEDs	h
Quenchers	equivalents	yields/%	note
CuCl ₂	1.0/5.0	31/6	electron scav.
Benzoquinone	1.0/5.0/10.0	90/42/12	superoxide radical anion scav.
Catalase	100 mg	84%	peroxide radical scav.

2-benzyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (43.6 mg, 0.2 mmol, 1.0 equiv), chlorophyll (4.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (28.0 μ L, 0.2 mmol, 1.0 equiv) and different kind of quenchers were placed in a 10 mL Schlenk tube. Then EtOH (2.0 mL) was added with a syringe. The reaction mixture was stirred and irradiated by using 30 W Red LEDs at room temperature under air atmosphere for 20 h. After completion of the reaction, the solvent was removed under reduced pressure and yield by ¹H NMR. The above results suggest that single-electron transfer, and superoxide anion radicals are closely related to the reaction.
8.3 Kinetic curve determination

12 sets of reactions were carried out in parallel, each of which was used 2-benzyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (43.6 mg, 0.2mmol, 1.0 equiv) as substrate through the general procedure. Then, the ¹H NMR yields were measured by sampling at 0 h, 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 15 h, 18 h, 21 h and 24 h.

Figure S14. Kinetic experiments

8.4 Light "on/off" experiments

2-benzyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (21.8 mg, 0.1 mmol, 1.0 equiv), chlorophyll (2.0 mg, 0.004 mmol, 2.0 mol%), and Et₃N (14 μ L, 0.1 mmol, 1.0 equiv) were placed in a NMR tubes. 1,3,5-Trimethoxybenzene (8.4 mg, 0.05 mmol) was added as internal standard add, and CD₃OD (0.5ml) was added as solvent. Then the NMR tubes was irradiated by using 30 W Red LEDs at the appropriate time under room temperature. The ¹H NMR yields were measured at a specific time interval.

Figure S15. Light on-off experiment

8.5. Fluorescence Quenching Experiments

Fluorescence spectra were collected on Hitachi F-7000 Fluorescence Spectrophotometer. All chlorophyll solutions were excited at 610 nm and the emission intensity was collected at 686 nm. Photocatalyst chlorophyll (44.7 mg) was dissolved in EtOH (50 mL) to give a 1.0 mM solution. Et₃N (101 mg, 138.7 μ L, 1.0 mmol) was dissolved in EtOH (1.0 mL) to give a 1.0 M solution. Bn-Bpin (218 mg, 1.0 mmol) was dissolved in EtOH (1.0 mL) to give a 1.0 M solution. A quartz cuvette was charged with 4.0 mL chlorophyll solution (1.0 mM). Then different concentration solution (2.0 μ L, 4.0 μ L, 8.0 μ L, 12.0 μ L, 16.0 μ L, 20.0 μ L, 40.0 μ L Et₃N (1.0 mM); 2.0 μ L, 4.0 μ L, 8.0 μ L, 12.0 μ L, 16.0 μ L, 20.0 μ L, 40.0 μ L Et₃N (1.0 mM); and 2.0 μ L, 4.0 μ L, 8.0 μ L, 12.0 μ L, 16.0 μ L, 20.0 μ L, 40.0 μ L Et₃N (1.0 mM); the solution to investigate the quenching effect. Oxygen was bubbled into the solution to investigate the quenching effect of chlorophyll fluorescence. The emission spectra of the samples were collected, respectively.

(a) Chlorophyll quenched by O_2 in EtOH.

(b) Chlorophyll quenched by Et_3N in EtOH.

Figure S17. Chlorophyll quenched by Et₃N in EtOH

(c) Chlorophyll quenched by Bn-Bpin in EtOH.

Figure S18. Chlorophyll quenched by Bn-Bpin in EtOH (d) Chlorophyll quenched by Et₃N + Bn-Bpin in EtOH.

Figure S19. Chlorophyll quenched by $Et_3N + Bn$ -Bpin in EtOH (e) Chlorophyll quenched by $O_2 + Et_3N + Bn$ -Bpin in EtOH.

Figure S20. Chlorophyll quenched by $O_2 + Et_3N + Bn$ -Bpin in EtOH

8.6 EPR spectrum

Electron paramagnetic resonance spectroscopy spectra were measured on Chinainstru&Quantumtech (Hefei) EPR200-Plus with continues-wave X band frequency. The EPR spectrum was measured by sampling after ten minutes of light irradiation. When a mixture of chlorophyll and DMPO in MeOH was irradiated with red LED under air atmosphere, the corresponding EPR spectrum exhibited a new triplet signal with a few detectable hyperfine splitting, which proved the existence of free radicals in reaction. In addition, the EPR signal of excited chlorophyll and air disappeared only in the presence of Et₃N. It has been reported that the excited chlorophyll could undergo oxidative quenching readily by donating electron to substrate, resulting in *pi*-radical cation of chlorophyll Chl⁺⁺. Considering that the organoborons does not appear to have a direct interaction with chlorophyll (derived from fluorescence quenching experiments and EPR studies), the presence of superoxide anion is a relatively plausible explanation based on existing experiments, even though the EPR signal is not captured due to its very short duration.

Figure S21. The EPR spectrum

8.7 DFT calculation

In this section, all calculations were performed by Gaussian 09 software packages.^[38] The conformations of intermediates were generated by SYBYL-X 2.0 GA Conf. search module and manual adjustment.^[39] The recently developed M06-2X functional^[40] together with the standard 6-31+G(d) basis set,^[41] were used for optimizing the geometry of all the minima and transition states. The optimized structures or transition structures were confirmed by normal vibrational mode analysis. The optimized structures were no imaginary frequency but transition structure had only one imaginary frequency. Considering the influence of solvation effect, SMD implicit solvent model^[42] was used at M06-2X/6-311++G (2d, p) theoretical level^[43] to obtain high accuracy single point energy in EtOH. This method has been applied successfully to investigate the mechanisms of several organic reaction, which is generally considered to be more accurate for energetic. Solution-phase single-point energies corrected by the gas-phase Gibbs free energy corrections were used to describe all the reaction energetics.

The reaction process after the formation of superoxide anion radical was studied by DFT calculation to prove the rationality of the speculated mechanism. First, superoxide anion radicals (O_2^{\bullet}) attacked phenylboronic acid (PhB(OH)₂) to give **INT1** *via* **TS1**. Due to the high activity of O_2^{\bullet} , the energy barrier of **TS1** is only 6.3 kcal/mol. Next, **INT1** abstracted the **H**[•] from triethylamine cation radical (**Et₃N**^{+•}) to obtain **INT2** and imine cation. Then **INT2** underwent intramolecular oxygen transfer rearrangement to give **INT3** *via* **TS2** with the energy barrier of 25.6 kcal/mol. The final hydroxylated product was obtained by hydrolysis, which was a process that has been reported in many literatures before. The above calculation results demonstrate that the reaction process mediated by O_2^{-} is thermodynamically feasible.

Figure S22.Computed potential energy profiles. Relative Gibbs free energies were computed at the M06-2X/6-311++G(2d,p) // M06-2X/6-31+G(d) level of theory with unit in kcal/mol.

9. References

1. L. Wu, Q. Shao, G. Yang and W. Zhang, Chem. Eur. J., 2018, 24, 1241-1245.

2. W.-Z. Weng, H. Liang and B. Zhang, Org. Lett., 2018, 20, 4979-4983.

3. Y. Cheng, C. Mück-Lichtenfeld and A. Studer, *Angew. Chem. Int. Ed.*, 2018, **57**, 16832-16836.

4. C.-T. Yang, Z.-Q. Zhang, H. Tajuddin, C.-C. Wu, J. Liang, J.-H. Liu, Y. Fu, M. Czyzewska, P. G. Steel, T. B. Marder and L. Liu, *Angew. Chem. Int. Ed.*, 2012, **51**, 528-532.

5. F. A. Meece, C. Jayasinghe, G. Histand and D. H. Burns, *J. Org. Chem.*, 2009, **74**, 3156-3159.

6. T. Furuya, H. M. Kaiser and T. Ritter, Angew. Chem. Int. Ed., 2008, 47, 5993-5996.

7. P. Bovonsombat, R. Ali, C. Khan, J. Leykajarakul, K. Pla-on, S. Aphimanchindakul, N. Pungcharoenpong, N. Timsuea, A. Arunrat and N. Punpongjareorn, *Tetrahedron*, 2010, **66**, 6928-6935.

8. V. Kavala, S. Naik and B. K. Patel, J. Org. Chem., 2005, 70, 4267-4271.

9. K. Inamoto, K. Nozawa, M. Yonemoto and Y. Kondo, *Chem. Commun.*, 2011, **47**, 11775-11777.

10. L. Wei, J. Zhang and L. Xu, ACS Sustainable Chem. Eng., 2020, 8, 13894-13899.

11. G. A. Molander and L. N. Cavalcanti, J. Org. Chem., 2011, 76, 623-630.

12. J. Magano, M. H. Chen, J. D. Clark and T. Nussbaumer, *J. Org. Chem.*, 2006, **71**, 7103-7105.

13. M. H. Muhammad, X.-L. Chen, Y. Liu, T. Shi, Y. Peng, L. Qu and B. Yu, ACS Sustainable Chem. Eng., 2020, **8**, 2682-2687.

14. R. Bernini, A. Coratti, G. Provenzano, G. Fabrizi and D. Tofani, *Tetrahedron*, 2005, **61**, 1821-1825.

15. V. Sadhasivam, M. Harikrishnan, G. Elamathi, R. Balasaravanan, S. Murugesan and A. Siva, *New J. Chem.*, 2020, **44**, 6222-6231.

16. P.-F. Wei, M.-Z. Qi, Z.-P. Wang, S.-Y. Ding, W. Yu, Q. Liu, L.-K. Wang, H.-Z. Wang, W.-K. An and W. Wang, *J. Am. Chem. Soc.*, 2018, **140**, 4623-4631.

17. N. S. Shaikh, K. Junge and M. Beller, Org. Lett., 2007, 9, 5429-5432.

18. C. G. Kokotos and V. K. Aggarwal, *Chem. Commun.*, 2006, DOI: 10.1039/B602226J, 2156-2158.

19. O. Tetsuo, K. Masahiro, N. Mami, K. Keisuke and F. Isao, Bull. Chem. Soc. Jpn.,

2005, 78, 1856-1861.

20. B. S. Bodnar and P. F. Vogt, *The Journal of Organic Chemistry*, 2009, 74, 2598-2600.

21. D. Liu, J. Y. Wei, W. W. Tian, W. Jiang, Y. M. Sun, Z. Zhao and B. Z. Tang, *Chem. Sci.*, 2020, **11**, 7194-7203.

22. D.-P. Luo, Y.-F. Huang, X.-Y. Hong, D. Chen, G.-X. Li, X.-B. Huang, W.-X. Gao,

- M.-C. Liu, Y.-B. Zhou and H.-Y. Wu, Adv. Synth. Catal., 2019, 361, 961-964.
- 23. M. Vayer, S. Zhang, J. Moran and D. Lebœuf, ACS Catal., 2022, 12, 3309-3316.
- 24. D. J. Dibble, J. W. Ziller and K. A. Woerpel, J. Org. Chem., 2011, 76, 7706-7719.

25. T. Iwasaki, K. Agura, Y. Maegawa, Y. Hayashi, T. Ohshima and K. Mashima, *Chem. Eur. J.*, 2010, **16**, 11567-11571.

26. F. Beuerle and A. Hirsch, Chem. Eur. J., 2009, 15, 7434-7446.

27. D. J. Miller, M. Bashir-Uddin Surfraz, M. Akhtar, D. Gani and R. K. Allemann, *Org. Biomol. Chem.*, 2004, **2**, 671-688.

28. K. Van Aken, L. Strekowski and L. Patiny, Beilstein J. Org. Chem., 2006, 2, 3.

29. Y.-Q. Zou, J.-R. Chen, X.-P. Liu, L.-Q. Lu, R. L. Davis, K. A. Jørgensen and W.-J. Xiao, *Angew. Chem. Int. Ed.*, 2012, **51**, 784-788.

30. H.-M. Yang, M.-L. Liu, J.-W. Tu, E. Miura-Stempel, M. G. Campbell and G. J. Chuang, J. Org. Chem., 2020, **85**, 2040-2047.

31. I. Kumar, R. Sharma, R. Kumar, R. Kumar and U. Sharma, *Adv. Synth. Catal.*, 2018, **360**, 2013-2019.

32. I. K. Sideri, E. Voutyritsa and C. G. Kokotos, Synlett, 2018, 29, 1324-1328.

33. H.-Y. Xie, L.-S. Han, S. Huang, X. Lei, Y. Cheng, W. Zhao, H. Sun, X. Wen and Q.-L. Xu, *J. Org. Chem.*, 2017, **82**, 5236-5241.

34. S. P. Pitre, C. D. McTiernan, H. Ismaili and J. C. Scaiano, *J. Am. Chem. Soc.*, 2013, **135**, 13286-13289.

35. A. Ding, Y. Zhang, Y. Chen, R. Rios, J. Hu and H. Guo, *Tetrahedron Lett.*, 2019, **60**, 660-663.

36. K. Matsui, T. Ishigami, T. Yamaguchi, E. Yamaguchi, N. Tada, T. Miura and A. Itoh, *Synlett*, 2014, **25**, 2613-2616.

37. L. Mei, J. M. Veleta and T. L. Gianetti, J. Am. Chem. Soc., 2020, 142, 12056-12061.

38. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B.Mennucci, G. A. Petersson, H. Nakatsuji, M.

Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, Fukuda, R. J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M.Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G.Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V.Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Gaussian, Inc.: Wallingford, CT, USA, 2009.

- 39. Tripos International. Sybyl-X 2.0, Tripos International, St. Louis, MO, US, 2012.
- 40. Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.
- 41. Koseki, S.; Schmidt, M. W.; Gordon, M. S. J. Phys. Chem., 42. Marenich, A. V.;
- Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B, 2009, 113, 4538
- 43. Andersson, M. P.; Uvdal, P. J. Phys. Chem. A, 2005, 109, 2937.

10. NMR (¹H and ¹³C) Spectra

¹H NMR spectrum of compound **2**

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3 (600 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

140 130 120 110 100 f1 (ppm) 70. ò 210. 200

6 (600 MHz, CDCl₃)

-4.99

∠Br HO

7 (600 MHz, CDCl₃)

52

8 (600 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 50 20 10 0 -10. f1 (spen)

54

230 220 210 200 190 180 170 160 150 140 130 120 110 100 50 60 70 60 50 40 30 20 10 0 -10.

 $\begin{array}{c} 7,7,3,2\\ 7,7,3,3,3\\ 7,7,3,3,3\\ 7,7,3,3,3\\ 7,7,3,3,3\\ 7,7,3,3,3,3\\ 7,7,3,3,3,3$

13 (600 MHz, CDCl₃)

€^{1.39} 1.38

110 100 f1 (ppm)

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.; ¹³C NMR spectrum of compound **15** -130.78 -123.96 -112.78 -118.79 -114.23 -156.3277.22 77.01 76.79 HO Β̈́r **15** (150 MHz, CDCl₃) 140 130 120 110 100 f1 (ppm) 70 60 10 0. -1 210 80 200 190 150. 90 50 40 30 20 180 170 160

1.5 1.0 0.5 0.0 -0.5

2.0

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

O₂N OH

17 (600 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 r1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

24 (600 MHz, CDCl₃)

25 (600 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

`ОН

28 (600 MHz, CDCl₃)

150 140 130 120 110 100 f1 (ppm) -10 220 210

 $\begin{array}{c} 5.5 \\$

СОН

32 (600 MHz, CD₃OD)

7.2.8 7.2.8 7.2.8 7.2.8 7.2.8 7.2.8 7.2.8 7.7.7.7 7.7.

35 (600 MHz, CDCl₃)

8.05 8.8

36 (600 MHz, CDCl₃)

¹³C NMR spectrum of compound **36**

61	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	201
54.	224.12 224.12 2009.00 00 00 00 00 00 00 00 00 00 00 00 00	7.2
-		NNN
1	VI SVILLE	Y

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

38 (600 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

40 (600 MHz, CDCI₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7.25 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.92 3.3.77 3.77 3

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

43 (600 MHz, CDCl₃)

7.31 7.29 7.29 7.29 7.28 7.28 7.28 7.28 7.20 7.20 7.18 -3.68 -3.67 -1.92 -1.92 -1.92 -1.92 -1.92 -1.92 -1.92 -1.93 -1.92 -1.93 -1.92 -1.93 -1.92 -1.93 -1.92 -1.93 -1.92 -1.93

OH

45 (600 MHz, CDCl₃)

OH С O.

46 (600 MHz, CD₃OD)

7.44 1.44 1.45 1.4

90 80 fl (ppm)

7.50 77.48 77.46 77.46 77.46 77.46 77.46 77.04 6.98 6.98

11. Computational data

Phenylboronic acid

Zero-point c	orrection=	0.126016 (Hartree/Particle)	
Thermal cor	rection to Energy=	0.133844	
Thermal cor	rection to Enthalpy	/=	0.134788
Thermal cor	rection to Gibbs Fi	ree Energy=	0.093330
E(solvent) =	-408.255484663	A.U.	
С	2.637979	0.000007	0.000015
С	1.940702	1.208365	0.000081
С	0.547395	1.204750	0.000029
С	-0.169445	-0.000012	-0.000012
С	0.547397	-1.204769	-0.000041
С	1.940693	-1.208360	-0.000073
Н	3.724496	-0.000005	0.000032
Н	2.483597	2.149238	0.000121
Н	0.001360	2.144591	-0.000016
Н	0.001364	-2.144616	-0.000044
Н	2.483603	-2.149224	-0.000117
В	-1.731223	-0.000014	-0.000048
0	-2.376461	1.211310	-0.000088
Н	-3.341428	1.190006	-0.000072
Ο	-2.376505	-1.211318	0.000099
Н	-3.341477	-1.189730	0.000258

Superoxide anions

Zero-point co	rrection=			0.002926 (Hartree/Particle)
Thermal corre	ection to Energ	y=		0.005298
Thermal correction to Enthalpy=			(0.006243
Thermal correction to Gibbs Free Energy=			-0.0	016838
E(solvent) =	-150.4490322			
0	0.000000	-0.000000	0.663126	
0	0.000000	-0.000000	-0.663126	

TS1

Zero-point correction=	
Thermal correction to Energy=	

0.129109 (Hartree/Particle) 0.139074 Thermal correction to Enthalpy=

Thermal correction to Gibbs Free Energy=

0.140018

0.091865

E(solvent) =	-558.709829699	A.U.	
С	3.043649	-0.529628	0.069491
С	2.063076	-1.392112	-0.426573
С	0.746790	-0.952725	-0.555090
С	0.372224	0.348276	-0.191241
С	1.369166	1.195506	0.309834
С	2.692443	0.768302	0.439864
Н	4.072262	-0.869463	0.170469
Н	2.327669	-2.409464	-0.706928
Н	-0.019676	-1.629347	-0.926229
Н	1.093144	2.205865	0.603427
Н	3.449248	1.445175	0.831617
В	-1.128994	0.839614	-0.372548
О	-1.384114	2.129923	0.088634
Н	-2.316239	2.312488	-0.093752
О	-2.040724	0.219029	-1.172450
Н	-2.307396	-0.678603	-0.721316
О	-1.891014	-0.854233	1.276668
0	-2.481414	-1.644774	0.410616

INT1

Zero-point con	rrection=		0.130295	(Hartree/Particle)
Thermal corre	ction to Energy	y=	0.140831	
Thermal corre	ction to Enthal	py=	0.141775	
Thermal corre	ction to Gibbs	Free Energy=	0.092575	
E(solvent) =	-558.7230393	21 A.U.		
С	-3.211372	0.000008	-0.236402	
С	-2.513295	-1.204594	-0.134350	
С	-1.131136	-1.196268	0.064668	
С	-0.407434	-0.000025	0.167176	
С	-1.131101	1.196225	0.064655	
С	-2.513277	1.204582	-0.134361	
Н	-4.288635	-0.000000	-0.391013	
Н	-3.049574	-2.149220	-0.208836	
Н	-0.586184	-2.133746	0.153462	
Н	-0.586152	2.133703	0.153436	
Н	-3.049509	2.149234	-0.208856	
В	1.196834	0.000019	0.362647	

0	1.648785	1.235005	0.971885
Н	2.604215	1.298433	0.831802
0	1.648867	-1.234783	0.972200
Н	2.604289	-1.298196	0.832039
0	1.810477	-0.000132	-1.112142
0	3.118505	-0.000072	-1.047391

∙+ Et₃N

Zero-point co	rrection=		0.208190 (Hartree/Particle)
Thermal correction to Energy=			0.217849
Thermal corre	ection to Enthalpy	y=	0.218793
Thermal corre	ection to Gibbs Fr	ree Energy=	0.173062
E(solvent) =	-292.166365209	9 A.U.	
Ν	0.137537	0.041562	0.107740
С	-0.329451	1.401000	0.320942
Н	-0.347521	1.571821	1.405422
Н	0.394036	2.080915	-0.132856
С	-1.732079	1.608808	-0.270074
Н	-2.011661	2.653508	-0.116795
Н	-1.739465	1.402095	-1.343207
Н	-2.476889	0.982572	0.226630
С	-0.550267	-1.075910	0.731356
Н	0.219032	-1.718048	1.177989
Н	-1.190784	-0.682513	1.523600
С	-1.367482	-1.875022	-0.299201
Н	-1.851354	-2.703382	0.223336
Н	-2.139384	-1.254351	-0.758290
Н	-0.730664	-2.292413	-1.082337
С	1.328425	-0.199466	-0.685337
Н	1.328939	-1.245793	-0.997133
Н	1.279548	0.444893	-1.569686
С	2.584204	0.121800	0.147808
Н	3.461819	-0.074955	-0.472072
Н	2.604943	1.170626	0.452734
Н	2.636561	-0.513177	1.035525

+ Et₂N=CHCH₃

Zero-point correction=			0.198305 (Hartree/Particle)
Thermal corre	ection to Energy=	0.207511	
Thermal corre	ection to Enthalpy=	0.208455	
Thermal corre	ection to Gibbs Fre	e Energy=	0.164524
E(solvent) =	-291.609285935	A.U.	
Ν	0.117445	-0.144362	0.105733
С	-0.566440	-1.215900	0.285442
Н	-0.072609	-1.999176	0.860941
С	-1.938594	-1.484936	-0.205061
Н	-1.911573	-2.373774	-0.846810
Н	-2.567131	-1.746171	0.654393
Н	-2.395776	-0.658381	-0.745845
С	-0.395720	1.041336	-0.627823
Н	0.481968	1.578474	-0.991073
Н	-0.953629	0.695091	-1.498750
С	-1.238484	1.918934	0.291048
Н	-1.564702	2.804560	-0.259213
Н	-2.126998	1.389395	0.645800
Н	-0.662526	2.253101	1.158427
С	1.493706	-0.017607	0.652316
Н	1.571629	0.992930	1.062663
Н	1.588428	-0.727521	1.476317
С	2.537682	-0.272776	-0.427284
Н	3.532845	-0.147421	0.006042
Н	2.458458	-1.292640	-0.813342
Н	2.446595	0.427754	-1.261510

INT2

Zero-point correction=			0.140773 (Hartree/Particle)
Thermal corre	ction to Energy=	0.150753	
Thermal corre	ction to Enthalpy=	0.151697	
Thermal corre	ction to Gibbs Fre	e Energy=	0.104582
E(solvent) =	-559.357732432	A.U.	
С	3.253955	0.000074	0.255830
С	2.555623	-1.204550	0.150831
С	1.173882	-1.195671	-0.053642
С	0.449615	-0.000029	-0.160547
С	1.173816	1.195666	-0.053782
С	2.555556	1.204646	0.150691
Н	4.330959	0.000113	0.414133

Н	3.092114	-2.149362	0.227156
Н	0.626688	-2.131654	-0.145741
Н	0.626570	2.131608	-0.145990
Н	3.091995	2.149498	0.226906
В	-1.164080	-0.000085	-0.359763
0	-1.588727	1.234543	-1.029739
Н	-2.517081	1.382469	-0.804469
0	-1.588673	-1.234813	-1.029593
Н	-2.516984	-1.382819	-0.804199
0	-1.715760	-0.000021	1.062667
0	-3.165155	0.000230	0.904077
Н	-3.422040	0.000237	1.835433

TS2

Zero-point co	rrection=	0.138340 (Hartree/Partie	cle)	
Thermal corre	ection to Energy=	0.149536		
Thermal corre	ection to Enthalpy=	0.150480		
Thermal corre	ection to Gibbs Free	e Energy=	0.101326	
E(solvent) =	-559.313766520	A.U.		
С	3.200054	-0.089029	0.136371	
С	2.439555	-1.257132	0.040116	
С	1.047632	-1.186018	-0.009826	
С	0.394022	0.049486	0.007942	
С	1.162300	1.211078	0.118011	
С	2.554838	1.148473	0.178581	
Н	4.285189	-0.142885	0.181470	
Н	2.936147	-2.225115	0.007575	
Н	0.447310	-2.089409	-0.086728	
Н	0.668255	2.180616	0.165561	
Н	3.138680	2.063207	0.262363	
В	-1.393005	0.021381	-0.536996	
Ο	-1.694673	1.147924	-1.348937	
Н	-1.408770	1.944151	-0.884463	
0	-1.835370	-1.208431	-1.060622	
Н	-2.313041	-1.599499	-0.309628	
0	-1.246557	0.126053	0.844902	
0	-3.002468	-0.097736	1.482014	
Н	-3.346603	0.758400	1.182808	

INT3

Zero-point correction=			0.143136 (Hartree/Particle)	
Thermal corre	ection to Energy=	0.153632 0.154576		
Thermal corre	ection to Enthalpy=			
Thermal correction to Gibbs Free Energy=			0.107095	
E(solvent) =	-559.503384774	A.U.		
С	3.225925	0.400650	-0.000005	
С	2.187467	1.336448	0.000003	
С	0.850746	0.948523	0.000024	
С	0.511149	-0.423487	0.000046	
С	1.565421	-1.362489	0.000020	
С	2.895631	-0.956449	0.000003	
Н	4.264524	0.721175	-0.000008	
Н	2.423019	2.399352	-0.000017	
Н	0.051023	1.679204	0.000021	
Н	1.298277	-2.416006	0.000022	
Н	3.682939	-1.708458	-0.000008	
В	-1.949410	0.014531	-0.000034	
0	-1.963926	0.889761	1.167815	
Н	-1.972975	0.319897	1.946620	
0	-1.963638	0.889788	-1.167781	
Н	-1.972705	0.320091	-1.946695	
0	-0.726981	-0.889750	0.000063	
0	-3.043978	-0.965142	-0.000139	
Н	-3.856903	-0.444335	0.000036	