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Equivalent electrical scheme and resistivity calculations

FIG. S1. (a) Equivalent scheme of the plasma systems; (b) pin-to-liquid system with denoting water 
column geometry used to calculate resistivity.

Figure S1a shows the equivalent electrical scheme of the plasma systems in pin-to-pin (PP) and pin-to-
liquid (PL) configurations where  and  denote a variable resistivity of the discharge gap and a  𝑅1 𝑅2

ballast that restricts the current, respectively. In the case of the PL discharge, the water column 
between the ground connection and the plasma/liquid interface shown in Figure S1b is considered as 
the ballast ( ) and was estimated as follows: 𝑅2

𝑅𝑃𝐿
2 = 𝜌 ∙

ℎ

𝜋𝑟2
, 𝜌 =

1

550 ∙ 10 ‒ 6
(Ω ∙ 𝑐𝑚);ℎ = 1.1 (𝑐𝑚);𝑟 = 0.115 (𝑐𝑚)

where  is the resistivity of the medium,  is the height of the water column, and r is the radius of the 𝜌 ℎ

water channel. In the PP configuration, a 50 kΩ resistor ( ) was used to create two similar plasmas.𝑅2
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Optical emission spectroscopy (OES)

FIG. S2. (a) Schematic representation of the optical emission collection system. (b) Wide-range optical 
emission spectra taken at a power of 12 W measured using an Ocean Optics S2000 spectrometer (SPS 
– second positive system of N2; FNS – first negative system of N2). (c) An example of the fitted spectrum 
using massiveOES software in pin-to-pin setup configuration using a power of 4 W.

Ion chromatography: analysis and calibration procedures

Nitrites ( ) and nitrates ( ) in the liquid phase were measured with a Metrohm 940 ProfIC  Vario 𝑁𝑂 ‒
2 𝑁𝑂 ‒

3

14 ion chromatograph equipped with a Metrosep A Supp 5 column (4 x 100 mm), an MSMS-A Rotor 
suppressor, and a conductivity detector. The eluent was a solution of 3.2 mM  and 1 mM 𝑁𝑎2𝐶𝑂3

 with a flow rate of 0.4 mL/min. The column conductivity was 3.71 μS/cm. The temperature 𝑁𝑎𝐻𝐶𝑂3

was set at 30oC and the pressure at 3.72 MPa. The calibration curves for  and  species were 𝑁𝑂 ‒
2 𝑁𝑂 ‒

3

made with standard solutions of  (Sigma Aldrich ≥97%) and  (Sigma Aldrich ≥99%), 𝑁𝑎𝑁𝑂2 𝑁𝑎𝑁𝑂3

respectively. The retention time for  and  species was ~8.1 min and 11.1 min, respectively. 𝑁𝑂 ‒
2 𝑁𝑂 ‒

3

To ensure accurate quantification of  species, the calibration curves were obtained for low and 𝑁𝑂 ‒
2

high concentration ranges, as shown in Figures S2a and S2b.  quantification was performed 𝑁𝑂 ‒
3

according to the calibration curve presented in Figure S2c.



FIG. S3. Calibration curves for ion chromatography: (a)  in the lower concentration range of 2.9 𝑁𝑂 ‒
2

μM ≤ [ ] ≤ 0.14 mM, (b)  in the higher concentration range of 0.14 mM < [ ] ≤ 2.9 mM, (c) 𝑁𝑂 ‒
2 𝑁𝑂 ‒

2 𝑁𝑂 ‒
2

 in the concentration range of 2.35 μM ≤ [ ] ≤ 0.12 mM. The deviation interval of the 𝑁𝑂 ‒
3 𝑁𝑂 ‒

3

measurements is < 1%.



Plasma visualization via a photomultiplier tube (PMT)

FIG. S4. Power waveform and PMT signals recorded with a time response of 5 ns (PMT-50Ω) and 500 
ns (PMT-5kΩ).

The plasma temperatures at different gas flow rates

FIG. S5. Effect of the gas flow on the gas temperatures in the pin-to-pin system.

The energy efficiency of the N-fixation process

The production energy efficiency ( ) of component  in the gas phase was determined assuming 𝐸𝐸 𝑋

linear behavior of the measured species with power as:

𝐸𝐸 = ∑
𝑋

𝐶𝑋 ∙ 10 ‒ 6 ∙
𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒

𝑉𝑚𝑜𝑙𝑎𝑟
∙ 𝑀(𝑋) ∙

1
𝑃𝑜𝑤𝑒𝑟

  [𝑔 ∙ 𝑘𝑊ℎ ‒ 1],

where  is the concentration of component  ( , , , ) in ,  is the molar volume 𝐶 𝑋 𝑁𝑂 𝑁𝑂2 𝑁2𝑂 𝐻𝑁𝑂2 𝑝𝑝𝑚 𝑉𝑚𝑜𝑙𝑎𝑟

in , the gas flow is in ,  is the molar mass of component  in  , and the  is 𝑙 𝑚𝑜𝑙 ‒ 1 𝑙 ℎ ‒ 1 𝑀 𝑋 𝑔 𝑚𝑜𝑙 ‒ 1 𝑃𝑜𝑤𝑒𝑟

expressed in .𝑘𝑊

The energy efficiency (EE) of  in the liquid phase was obtained as follows:𝑁𝑂 ‒
𝑥
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𝑡 ∙ 𝑃𝑜𝑤𝑒𝑟
 [𝑔 ∙ 𝑘𝑊ℎ ‒ 1],

where  is the concentration of component  ( , ) in the liquid in ,  is the volume of 𝐶 𝑁𝑂 ‒
𝑥 𝑁𝑂 ‒

2 𝑁𝑂 ‒
3 𝑝𝑝𝑚  𝑉

the liquid in ,  is water density in ,  is the molar mass in , and  is the treatment 𝑙 𝜌𝐻2𝑂 𝑔 𝑙 ‒ 1 𝑀 𝑔 𝑚𝑜𝑙 ‒ 1 𝑡

time in . ℎ

The energy efficiencies averaged over the power range from 4 to 20 W are presented in FIG. 8. An 
example of an energy efficiency calculation is shown below for the PLb system using a gas flow rate of 
1 slm. The rest of the experimental sets were used similarly to obtain the corresponding energy 
efficiencies.

Constants: 

1slm
Constants:
Gas flow rate, l/h 60
Vmolar, l/mol 22.4
M(NO), g/mol 30
M(NO2), g/mol 46
M(NO3), g/mol 62
M(N2O), g/mol 44
M(HNO2), g/mol 47
Volume, l 0.5
Trin. Time, h 0.166667



Gas phase concentrations to EE:



Liquid phase concentrations to EE:

Negative concentrations indicate that the formation processes at low plasma power differ and do not 
follow the linear trend.


