A sustainable waste-to-protein system to maximise waste resource utilisation for developing food- and feed-grade protein solutions: Supplementary Information.

Contents

Abbreviations	1
Supplementary Information 1	3
SI-1.1 Detailed Municipal Solid Waste (MSW) by country	3
SI-1.2 Average MSW by country	3
SI-1.3 Average MSW by region	3
Supplementary Information 2	5
SI-2 Biochemical analysis of agricultural lignocellulosic residues	5
Supplementary Information 3	6
SI-3 Microbial Protein	6
Supplementary Information 4	7
SI-4.1 Amino acid detailed	7
SI-4b.2 Amino acid average	7
Supplementary Information 5	8
SI-5.1 OFMSW-to-insect	8
SI-5.2 Lignocellulosic-to-microbial protein	8
SI-5.3 Food industry-to-biophysicochemical treatment	9
SI-5.4 Input waste streams	9
Supplementary information 6	
SI-6.1 Holometabolous species growth cycles	12
SI-6.2 Hemimetabolous species growth cycles	
SI-6.3 Animal-based protein growth cycles	
Supplementary Information 7	15
SI-7 Novel food and feed safety regulation	15
Supplementary Information 8	
SI-8.1 Life cycle assessment (LCA) and techno-economic analyses (TEA)	
SI-8.2 LCA and TEA of waste-to-protein	24
References	29

Abbreviations

Abbreviation	Definition
ACNF	Advisory committee on novel foods
ANVISA	Brazilian Health Regulatory Agency
CF	Conversion efficiency
CFR	Code of federal regulations
CO_2	Carbon dioxide
DM	Dry mass
DW	Dry weight
EFSA	European food safety authority
DMEU	European Union_Dry mass
FCR	Food conversion ratio
FDA	Food and drug administration
FRESH	Future ready food safety hub
FSA	Food standards agency
FSANZ	Food standards Australia and New Zealand
FSSAI	Food safety and standards authority India
FW	Fresh weight
GRAS	Generally recognized as safe
GWP100	Global warming potential, 100 years
iTOL	Interactive tree of life
LC	Lignocellulosic content
LCA	Life cycle assessment
MSWST	Municipal Solid Waste Supplementary Table
NCBI	National Center for Biotechnology Information
NPV	Net profit value
OFAS	Office of food additive safety
OFMSW	Organic Fraction of Municipal Solid Waste
PC	Protein content
PCD	Protein content dry weight
PDCAAS	Protein digestibility corrected amino acid score
R&D	Research and development
RPR	Residue to product ratio
SCoPAFF	Standing committee on plants, animals, food and feed
SFA	Singapore food agency
SI	Supplementary information
ST	Supplementary Table
TEA	Techno-economic analysis
U.S.C.	United States code
US	United states
USD	United States Dollar

Supplementary Information 1

Protein potential of the organic fraction of municipal solid waste (OFMSW). Corresponding database Supplementary Table ST1.

SI-1.1 Detailed Municipal Solid Waste (MSW) by country

213 countries were clustered into 11 regions: Africa, Caribbean, Central & West Asia, East Asia, Europe, Latin America, North America, Pacific, South Asia, South East Asia. Region, country, MSW collection rate (%), year of record, population, MSW generation (kg/year and kg/capita/day) were derived from online databases and papers and are detailed in Supplementary Table ST1.1 ¹⁻⁴. OFMSW (kg/capita/day) was derived from online databases (kg OFMSW/kg MSW) ^{1, 4}. OFMSW chemical components were estimated including lipid, carbohydrate, and protein content (g/kg OFMSW), where the average chemical composition were derived from previous published studies for summer and winter ⁵. Average annual lipid, carbohydrate and protein content (g/capita/day) were estimated from the mean average of the summer and winter lipid, carbohydrate and protein contents (g/capita/day). Corresponding database Supplementary Table ST1.1

SI-1.2 Average MSW by country

The average, standard deviation, maximum and minimum values for MSW generation (kg/capita/day), OFMSW generation (kg/capita/day), and lipid, carbohydrate and protein content (g/capita/day) were estimated from data collected for each country ¹⁻⁵. Corresponding database Supplementary Table ST1.2.

SI-1.3 Average MSW by region

213 countries were clustered into 11 regions. Region, number of countries included in region, 2016 population, average MSW generation (g/capita/day), average OFMSW generation (g/capita/day), and average summer, winter and annual lipid, carbohydrate and protein content were derived from data collected in ST-1.1¹⁻⁵. The standard deviation is also presented for

each average estimation. Corresponding database Supplementary Table ST1.3.

SI-1.4 OFMSW composition

Regional OFMSW conversion factors (g OFMSW/g MSW) were derived from Kaza et al., (2018). Summer and winter lipid, carbohydrate, and protein contents (g/kg OFMSW) were derived from Esteves and Devlin (2010). Corresponding database Supplementary Table ST1.4

a Average OFMSW generation, kg/capita/day

b Average OFMSW lipid content, g/capita/day

c Average OFMSW carbohydrate content, g/capita/day

d Average OFMSW protein content, g/capita/day

Supplementary Information Figure 1 | Average Organic Fraction Municipal Solid Waste (OFMSW) generation (kg/capita/day) and OFMSW macronutrient composition (g/capita/day) was calculated for each country using data from literature ¹⁻⁴. **a** OFMSW generation was plotted according to a colour gradient scale ranging from low (minimum 0.08 kg/capita/day) to high (maximum 2.56 kg/capita/day). **b** OFMSW lipid content was plotted according to a colour gradient scale ranging from low (minimum 6.37 g/capita/day) to high (maximum 218.87 g/capita/day). **c** OFMSW carbohydrate content was plotted according to a colour gradient scale ranging from low (minimum 14.69 g/capita/day) to high (maximum 504.76 g/capita/day). **d** OFMSW protein content was plotted according to a colour gradient scale ranging from low (minimum 7.16 g/capita/day) to high (maximum 246.00 g/capita/day).

Supplementary Information 2

SI-2 Biochemical analysis of agricultural lignocellulosic residues

Crop products were classified into 11 product categories: brewing, cereal grains, fiber crops, fruits & berries, oil crops, pulses, roots & tubers, seeds & nuts, sugar crops, tobacco, vegetables based on biochemical analysis grouping and product type ^{6, 7}. Annual yields (megatonnes/year) for each crop were analysed by country. Agricultural residue yields (megatonnes/year) were estimated based on the residue to product ratio ($^{RPR}_{r,c}$) ⁶ and crop production $^{Yield}_{c,j}$ (Eq.(S1)). Average cellulose, hemi-cellulose and lignin contents (% dry weight) of agricultural residues were collected from Phyllis database ⁷ to derive lignocellulosic resource potential for each region Lignocellulose_j (Eq.(S1)).

$$Lignocellulose_{j} = \sum_{x,r} \alpha_{x,r} RPR_{r,c} Yield_{c,j}$$
(S1)

Where $RPR_{r,c}$ denotes the ratio of residue r to crop c,. $Lignocellulose_j$ is the lignocellulosic resource potential for region j, measured in megatonnes/year. $\alpha_{x,r}$ represents the biochemical content (% dry weight) of lignocellulosic components x (lignin, hemicelluloses or cellulose) of residue r. Corresponding database Supplementary Table ST2.

Supplementary Information 3

SI-3 Microbial Protein

Reported microbial protein kingdom, genus and species, alternative names, national centre for biotechnology information (NCBI) number, reported protein production (% dry mass), trophic mechanism, and reported substrate were collected from literature. Reported substrates were catagorised into 7 classes: food-grade carbon source, food industry solid waste, food industry wastewater, lignocellulosic resource, petrochemical wastewater, waste gas CO₂, and waste gas methane.

A Newick tree was constructed from taxonomic classifications of species according to NCBI taxonomy database ⁸ and was uploaded to the interactive tree of life (iTOL) programme ⁹. Average protein contents and substrate category were from values compiled from previous studies. Where a range of protein production values was obtained for a microbial species, average protein contents were calculated ¹⁰⁻⁵¹. Corresponding database Supplementary Table ST3.

Supplementary Information 4

SI-4.1 Amino acid detailed

Amino acid content is presented for different waste-to-protein sources and benchmark comparison protein sources. Waste-to-protein sources include 7 orders of feed-grade insect: *Diptera* (true flies), *Hemiptera* (true bugs), *Lepidoptera* (butterflies and moths), *Blattodea* (cockroaches, termite), *Coleoptera* (beetles), *Hymenoptera* (sawflies, wasps, bees, ants), and *Orthoptera* (locusts, crickets and grasshoppers). *Hermetia illucens* and *Tenebrio molitor* were selected as subcategories of *Diptera* and *Coleoptera*, respectively, due to their extensive recent literature. Waste-to-protein sources also include 5 genera of feed-grade mycoprotein: *Pleurotus albidus, Spirulina sp., Auricularia fucosuccinea, Agaricus blazei* and *Fusarium* sp.

Bench mark comparison proteins included 4 feed- and food-grade plant-based proteins (*Glycine max, Cannabis sativa, Pisum sativa,* and *Oryza sativa*), feed- and food-grade *Gallus gallus domesticus*, food-grade egg (https://fdc.nal.usda.gov), food-grade mycoprotein (*Fusarium venenatum*) and the recommended 70kg adult daily intake.

Feed-grade protein sources are highlighted in blue, and food-grade protein sources are highlighted in yellow. Food-certified protein sources are indicated with an asterisk '*'.

Protein source, substrate, crude protein content (g/kg DM) and essential, conditionally essential, non-essential amino acid content for 18 amino acids, excluding aspartate and glutamate (g/kg protein) and protein digestibility-corrected amino acid score (PDCAAS, %) were collected from literature ⁵²⁻¹¹⁶. Corresponding database Supplementary Table ST4.1.

SI-4b.2 Amino acid average

Average amino acid composition (g/kg protein) for 18 essential, conditionally essential, nonessential amino acids (excluding aspartate and glutamate) and protein digestibility corrected amino acid score (PDCAAS) were calculated using data from ST-4.1 for each protein source. Standard deviations are also presented for each protein source, calculated using data from ST4.1. Corresponding database Supplementary Table ST4.2.

Supplementary Information 5

Protein recovery potential of a waste-to-protein system. Corresponding database Supplementary Table ST5.

SI-5.1 OFMSW-to-insect

The global potential of feed-grade OFMSW waste input (megatonnes/year) was estimated based on Eq.(S2). Outputs (megatonnes/year) were determined by waste-to-protein conversion efficiency for three different species of insect (*Hermetia illucens, Archeta domesticus,* and *Tenebrio molitor*), Eq.(S5). Conversion efficiency (g protein/g input) was based on feed conversion ratio (g insect biomass/g OFMSW) and protein contents of insect outputs (g protein/g insect biomass) reported from literature ¹¹⁷.Corresponding database Supplementary Table ST5.1.

SI-5.2 Lignocellulosic-to-microbial protein

The global potential of food-grade lignocellulosic waste (megatonnes/year) was estimated based on Eq.(S3). Output protein (megatonnes/year) was estimated based average cellulose content (g cellulose/g lignocellulosic content), sugar extraction efficiency (g glucose/g

cellulose) and microbial protein content (g protein/g microbial biomass) for three different microbial protein species (*Fusarium venenatum, Candida utilis,* and *Kluvymyces marxianus*) for glucose only and glucose and xylose, Eq.(S6) ^{118, 119}.

Estimates for lignocellulosic waste glucose only, and glucose and xylose were based on sugar extraction coefficients derived from previous published research where glucose was extracted from rice straw using food-grade ionic liquid [Ch][HSO4] in combination with food-grade Celluclast ¹¹⁸. We assumed the same residues and same efficiency as rice straw glucose in our estimation. We assumed the same sugar extraction coefficient of xylose as lignocellulosic glucose i.e. 0.424 (g xylose/g hemicellulose). Conversion efficiency for lignocellulose-derived *F.venenatum* was based from previously published research ¹¹⁸. Corresponding database Supplementary Table ST5.2.

SI-5.3 Food industry-to-biophysicochemical treatment

The global potential input of food industry examples (brewery and fishing) were estimated using Eq.(S4), (megatonnes/year).

Protein outputs (megatonnes/year) were estimated for three different biophysiochemical treatments (2% alcalase enzyme, hydrothermal treatment and sequential alkaline and dilute acid treatment). Conversion efficiencies obtained from literature were applied to estimate the protein contents of food industry waste (Eq.(S7)) ¹²⁰⁻¹²². Corresponding database Supplementary Table ST5.3.

SI-5.4 Input waste streams

Regional waste stream inputs were collected for OFMSW (megatonnes/year) ¹. Regional residue lignocellulosic content (megatonnes/year), lignocellulosic content, and holocellulosic content were derived from literature ^{6,7}. Global food industry waste (megatonnes/year, 2018)

and protein content (g protein/g waste input) for fishing and brewery were based on previously published literature ¹²⁰⁻¹²². Corresponding database Supplementary Table ST5.4.

$$In^{OFMSW} = \sum_{j} OFMSW_{j}$$
(S2)

Where the variable In^{OFMSW} denotes the total global OFMSW potential which is determined by the (megatonnes/year) regional OFMSW $OFMSW_j$ (megatonnes/year) (SI-1) ^{1, 5}. The set j represents the different regions, defined as: Africa, Caribbean, Central and West Asia, East Asia, Europe, Latin America, North America, Pacific, South Asia, and South East Asia.

$$In^{Ligno} = \sum_{j} Lignocellulose_{j}$$
(S3)

Where the variable In^{Ligno} denotes the global potential of lignocellulosic agriculture residues (megatonnes/year) which is dependent on the regional agricultural residue $Lignocellulose_j$ (megatonnes/year) (SI-2)^{6,123}. The set j represents the 11 different regions: Africa, Caribbean, Central and West Asia, East Asia, Europe, Latin America, North America, Pacific, South Asia, and South East Asia.

$$In^{FD} = \sum_{j,FD} W_{j,FD}$$
(S4)

Where the variable In^{FD} denotes the total input from global food and drink industry waste which is determined by the regional sector-specific waste $W_{j,FD}$ (megatonnes/year); set FDand j stand for specific food and drink sector and region, respectively; in Figure 5, FD includes fishing and aquaculture industry ¹²⁴ and brewery industry ¹²⁵.

$$Output_{s} = In^{OFMSW} (FCR_{s} \times PC_{s})$$
(S5)

The variable $Output_s$ represents the food-grade or feed-grade protein output of each insect species s (megatonnes/year) by converting OFMSW; it is determined by the global OFMSW resource availability (In^{OFMSW}) , feed conversion ratio FCR_s , (g insect outputs/kg substrate) and protein content (PC_s) for given species s (g protein/g biomass) In Figure 5, the set s refers to BSFL (*Hermetia illucens*), cricket (*Acheta domesticus*) or mealworm (*Tenebrio molitor*)¹¹⁷.

$$Output_{M} = In^{Ligno} (Sugar extraction \times LC_{M} \times PC_{M})$$
(S6)

The variable $Output_M$ represents the protein output (megatonnes/year) by converting lignocellulosic agriculture residues using different microbial species M; *Sugar extraction* represents the conversion coefficient for sugar extraction from lignocellulosic resources ¹¹⁸, LC_M represents coefficient to convert lignocellulosic sugar to microbial biomass (g biomass/kg substrate) and PC_M denotes protein content (g protein/g biomass) for given microbial species M. In Figure 5, M refers to *Fusarium venenatum*, *Candida utilis*, and *Kluvymyces marxianus* ^{118, 119}.

$$Output_{BC} = \sum_{j,FD} W_{j,FD} \times PC_{FD} \times CF_{BC,FD}$$
(S7)

The variable $Output_{BC}$ denotes the protein output (megatonnes/year) by converting food and drink industry waste using biophysiochemical technologies, which is determined by the regional waste availability $W_{j,FD}$, protein content of regional waste (PC_{FD}) and technology conversion efficiency ($CF_{BC, FD}$). $CF_{BC, FD}$ is a technology dependent conversion efficiency, which is derived from previous published research ^{120, 121}; set *BC* refers to specific biophysicochemical technology including 2% alcalase enzyme treatment, hydrothermal pretreatment, alkaline and dilute acid treatment to derive feed-grade protein from food-industrial waste streams.

Supplementary information 6

Growth cycle information from literature is presented for waste-to-protein holometabolous and hemimetabolous insect species, and *Gallus domesticus* (broiler chicken) and *Bos taurus* as a bench mark comparison. Corresponding database Supplementary Table ST6.

SI-6.1 Holometabolous species growth cycles

Species are sorted by order including: *Diptera* (true flies), *Lepidoptera* (butterflies and moths), *Coleoptera* (beetles) and *Hymenoptera* (sawflies, wasps, bees, ants). Number of larval instars, duration of egg incubation, larval, pupae and adult stages and total life span (days) are collected from literature. Data collected for species within an order were used to estimate a range for each order ¹²⁶⁻¹⁵⁷. Corresponding database Supplementary Table ST6.1.

SI-6.2 Hemimetabolous species growth cycles

Species are sorted by order including: *Hemiptera* (true bugs), *Blattodea* (cockroaches, termite) and *Orthoptera* (locusts, crickets, grasshoppers). Number of larval instars, duration of egg incubation, nymphal, and adult stages and total life span (days) are collected from literature. Data collected for species within an order was used to estimate a range for each order ¹⁵⁸⁻¹⁷⁸. Corresponding database Supplementary Table ST6.2.

SI-6.3 Animal-based protein growth cycles

Life span (days) collected from literature are provided for *Gallus domesticus*, and *Bos taurus* (beef cattle) as a bench mark for comparison with waste-to-protein insect species ¹⁷⁹⁻¹⁸⁴. Corresponding database Supplementary Table ST6.3.

SI-6.4 Insect protein organisations

Insect protein organisations and businesses are listed in a database including: region and country of origin, insect species sold, feed- or food-grade, technology readiness level (TRL). TRL is catagorised as 1 to 3, 4 to 6 or 7 to 9, where 1 to 3 indicate research and development stage, 4 to 6 indicates pilot scale and 7 to 9 indicates commercial status. Notes are also included to indicate if organisations are non-governmental organisation (NGO) or utilising waste-to-protein. Corresponding database Supplementary Table ST6.4.

Supplementary Information 7

SI-7 Novel food and feed safety regulation

Supplementary Information Table 7.1 | Comparison of novel food and feed regulation for 9 different countries and regions including: the European union (EU), Australia, New Zealand, Canada, China, United States (US), India, Brazil, Singapore.

	EU	Australia/New Zealand	Canada	China
Novel food definition	Any food that was not used for human consumption to a significant degree within the Union before 15 May 1997 ¹⁸⁵	Any non-traditional food that requires an assessment of the public health and safety ¹⁸⁶	A substance, including a microorganism that does not yet have a history of safe use as a food; A food that has been manufactured, prepared, preserved, or packaged by a process that has not been previously used for that food, and causes the food to undergo a major change; a major change; a food that is derived from a plant, animal or microorganism that has been genetically modified ¹⁸⁷	Food that has not been consumed traditionally in China, including: Animals, plants, or microorganisms; Substances derived from animals, plants, or microorganisms; Food substances which structure has been altered; Other newly developed food materials, such materials resulting from high-tech production methods (traditional consumption refers to known production and consumption of food material in the last 30 years and mentioned in the Pharmacopoeia of the People's Republic of China) ¹⁸⁸
History of Human Consumption Timeframe	Before 15 May 1997 within the EU; at least 25 years in a third country ¹⁸⁵	2-3 generations; 10-20 years in AU/NZ (guideline) ¹⁸⁶	"a number of generations"; evidence from other countries allowed ¹⁸⁷	In the last 30 years in China ¹⁸⁸
Legislation	Regulation (EU) 2015/2283 ¹⁸⁵	Food Standard 1.5.1. ¹⁸⁶	Food and Drug Regulations (B.28.002) ¹⁸⁷	Food Safety Laws (2015); Administrative Measures for Safety Review of New Food Materials (2013) ¹⁸⁸
Government Organisation for Pre- Dossier Submission Consultancy	Unknown	Advisory Committee on Novel Foods (ACNF) ¹⁸⁹	Unknown	Unknown
Recipient Authority for Dossier Submission	European Commission (Member States informed) ¹⁹⁰	Food Standards Australia New Zealand (FSANZ) ¹⁸⁹	Health Canada's Food Directorate ¹⁹¹	Hygiene Supervision Center of The Health Administration Under the State Council ¹⁸⁸
Official Guidance Document Available?	Yes ¹⁹⁰	Yes ¹⁸⁹	Yes ¹⁹¹	Yes ¹⁸⁸

Authority Responsible for Risk	European Food Safety	Food Standards Australia	Health Canada's Food	The Health Administration Under the
Assessment	Authority (EFSA), open to	New Zealand (FSANZ) ¹⁸⁹	Directorate ¹⁹¹	State Council (Expert Assessment
	public comments ¹⁹⁰			Committee on Novel Foods), open to
				public comments ¹⁸⁸
Authority Responsible for Final	European Commission, upon	Food Standards Australia	Food Rulings Committee ¹⁹¹	The Health Administration Under the
Decision-Making	favourable vote from Member	New Zealand (FSANZ)		State Council ¹⁸⁸
	State representatives of the			
	Standing Committee on Plants,	Request for review can be		
	Animals, Food and Feed	given by Australia and New		
	(SCoPAFF) ¹⁹⁰	Zealand Ministerial Forum		
		on Food Regulation as well		
		as The New Zealand		
		Government ¹⁸⁹		
Estimated Time from Application	7-24 months (within last two	6-18 months ¹⁸⁹	410 days, 90% of the time	2-3 years ¹⁹⁴
Submission to Final Decision	years) ¹⁹²		(Performance Standard) ¹⁹³	

	US	India	Brazil	Singapore
Novel food definition	N/A	Food that: May not have a history of consumption by humans, or may not have a history of consumption in the region/ country of interest; or may not have any history of consumption of any ingredient used in it or the source from which it is derived; or a food or ingredient that is obtained by using new technology and/or innovative engineering process. This procedure may change the size, composition, or structure of the food or its ingredients – which may in turn change its nutritional value, metabolism, properties/ behavior or level of undesirable substances. ¹⁹⁵	Foods with no history of use in the country; foods containing novel ingredients with exceptions; foods containing substances already consumed that may be added or used at levels much higher than those currently observed in the foods that constitute part of a regular diet; and food offered in the form of capsules, pills, tablets and the like ¹⁹⁶	Foods and food ingredients that do not have a history of safe use, where safe use is defined as consumption as an ongoing part of the diet by a significant human population (e.g., the population of a country), for a period of at least 20 years and without reported adverse human health effects. ¹⁹⁷
History of Human Consumption Timeframe	Experience based on common use in food before 1958 for GRAS determination ¹⁹⁸	More than 15 years in India or more than 30 years globally ¹⁹⁹	Unknown	At least 20 years ¹⁹⁷
Legislation	Food additives: 21 U.S.C §342 ²⁰⁰ GRAS: 21 CFR §170.30(b) ¹⁹⁸ ; 21 CFR §170.30(c) ²⁰¹ ; 21 CFR §170.30(f) ²⁰² ;	Food Safety and Standards (Approval of Non-Specified Food and Food Ingredients) Regulations, 2017. ²⁰³	Resolution 16/1999 and Resolution 17/1999 ¹⁹⁶	Singapore Food Agency Act (2019); Sale of Food Act (1973) ¹⁹⁷
Government Organisation for Pre-Dossier Submission Consultancy	FDA's Office of Food Additive Safety (OFAS) ²⁰⁴	Unknown	Unknown	Future Ready Food Safety Hub (FRESH) FSA via monthly Novel Food Virtual Clinics to engage companies at early stages of R&D ¹⁹⁷
Recipient Authority for Dossier Submission	FDA (for food additive petition) ²⁰⁴ Self-determined (for GRAS notification) ²⁰⁵	Food Safety and Standards Authority of India (FSSAI) ¹⁹⁹	Brazilian Health Regulatory Agency (ANVISA) ¹⁹⁶	Singapore Food Agency (SFA) ¹⁹⁷
Official Guidance Document Available?	Yes ^{204, 205}	Yes ¹⁹⁹	Unknown	Yes ¹⁹⁷
Authority Responsible for Risk Assessment	FDA (for food additive petition) ²⁰⁴ GRAS panel consisting of experts to review publicly available scientific evidence ²⁰⁵	Food Safety and Standards Authority of India (FSSAI) ¹⁹⁹	The Brazilian Health Regulatory Agency (ANVISA) ¹⁹⁶	Singapore Food Agency (SFA) ¹⁹⁷
Authority Responsible for Final Decision-Making	FDA (for food additive petition; voluntary GRAS notification can be made) ^{204, 205}	Food Safety and Standards Authority of India (FSSAI) ¹⁹⁹	The Brazilian Health Regulatory Agency (ANVISA) ¹⁹⁶	Singapore Food Agency (SFA) ¹⁹⁷
Estimated Time from Application Submission to Acceptance	Typically, FDA responds to GRAS notification within 180 days; Average of 24 months for food additive petition ¹⁹²	Unknown	Unknown	9-12 months ¹⁹⁷

Supplementary Information 8

SI-8.1 Life cycle assessment (LCA) and techno-economic analyses (TEA)

Based on comprehensive review, data on life cycle assessment (LCA) and techno-economic analyses (TEA) have been collected for different waste-to-protein technologies and benchmark protein sources. Detailed data are presented in Supplementary Table ST-8.

Waste-to-protein covered in Supplementary Table ST-8 include 4 feed-grade insects (*Tenebrio molitor, Musca domestica, Hermetia illucens*, and *Protaetia brevitarsis seulensis*), 7 feedgrade microbial protein sources (Hydrogen-oxidising bacteria sp., Methane-oxidising bacteria sp., *Tetraselmis suecica, Tisochrysis lutea, Arthrospira platensis, Chlorella sp., Ascochloris sp.*) and 4 food-grade microbial protein technologies (*Cupriavidus necator ²⁰⁶, Spirulina platensis ²⁰⁷, Fusarium venenatum A3/5* from lignocellulosic resource and hydrogen-oxidising bacteria sp. Solein® from Solar Foods). It is worth noting that the food-grade microbial proteins listed above are still at the research and development stages.

Bench mark protein sources in Supplementary Table ST-8 cover commercialised or reported insect proteins and microbial proteins cultivated with non-waste substrates. These include 1 feed-grade insect (*Hermetia illucens*), 2 feed-grade microbial proteins (FeedKind® from Calysta, and *Chlorella vulgaris*), and 5 food-grade insects (*Tenebrio molitor, Hermetia illucens, Apis mellifera, Gryllus bimaculatus,* and *Acheta domesticus*). Additionally, traditional plant- and animal-sourced proteins have been also taken into account, involving soybean meal and fish meal as feed-grade proteins, cultured meat, food-certified Quorn[™] Mycoprotein, and 10 food-grade plant-based proteins (soybean, tofu, bean, pea, nut, groundnut, other pulses, maize, rice, wheat), as well as 9 animal-based food proteins (chicken, egg, milk, cheese, beef, lamb, pork, fish, crustacean).

Supplementary Table ST-8 presents data collected for protein contents on a dry weight (%DW) or fresh weight (%FW) basis, oven-dried weight on a %FW basis, LCA system boundary, quantitative LCA and TEA results. 9 life cycle impact categories have been considered i.e. acidification, freshwater eutrophication, marine eutrophication, global warming potential (GWP100), ozone depletion, fossil resource depletion, photochemical oxidant formation, agricultural land occupation, and water use/depletion. To facilitate comparisons, LCA data have been compiled and recalculated on the basis of per kg of protein ²⁰⁶⁻²³⁶. In economic analyses, capital cost, operational cost, total production cost, minimum selling price, and market price have been considered and compared based on per kg of protein ^{234, 237-249}. Minimum selling price is defined as selling price of the protein product for which the net present value (NPV) is zero, which has been used to assess the economic viability of the protein technologies ²³⁴. The total production cost ($^{E}KPI = cost, s$) is derived from Eq.(S8).

$$E_{KPI=cost,s} = CAPEX_s + OPEX_s$$
(S8)

Where the set *s* represents the protein species; the variable $E_{KPI} = cost, s$ denotes the total production costs of a given protein species *s* (USD/unit product), which is determined by of the capital cost, $CAPEX_s$ (USD/unit product) and operational cost, $OPEX_s$ (USD/unit product).

The LCA and TEA comparisons between different protein sources have been based on the equivalent units per kg protein, where the nutritional value (amino acid compositions) of different proteins were not considered. Thus, to facilitate comparison, LCA and TEA results collected from literatures were recalculated following the Eq.(S9).

$$E_{KPI, s}^{*} = \frac{E_{KPI, s}}{PC_{s}/DW_{s}}$$
(S9)

Where the variable $E_{KPI,s}^*$ denotes the comparable LCA or TEA results, based on per kg of protein for given protein species *s*, expressed as the key performance indicator *KPI*. The set *KPI* contains 9 LCA and 3 TEA elements, including acidification, freshwater eutrophication, marine eutrophication, GWP100/global warming, ozone depletion, fossil resource depletion, photochemical oxidant formation, agricultural land occupation, water use/depletion, total production cost, minimum selling price, and market price. $E_{KPI,s}$ is the LCA or TEA data based on fresh weight. PC_s is defined as the protein contents of fresh weight for a given protein species *s*. DW_s stands for the oven-dried weight in % of fresh weight. The PC_s , DW_s , and other key assumptions are summarised in the Supplementary Information Table SI-T-8.1

Supplementary Information Table 8.1 Summary of protein content (${}^{PC}s$, % fresh weight; ${}^{PCD}s$, % dry weight), oven-dried weight (${}^{DW}s$, % fresh weight), and key assumptions.

	Protein source	PC_s (% fresh weight) /	DW _s b	Data source and other key assumptions
		<i>PCD_s</i> (% dry weight) ^a	(% fresh weight)	Data source and other key assumptions
	Insect protein			
	Tenebrio molitor	<i>PC</i> _{s: 18.84%}	37.16%	221, 232
	Musca domestica	<i>PCD</i> _{s: 47.90%} .	NA	Substrate: mixture of poultry manure and house waste ²³⁶
	Musca domestica	<i>PCD</i> _{s: 63.65%} .	NA	Substrate: pig manure, chicken manure, or mixture of sheep waste and fresh ruminant blood ^{221, 223, 224, 246}
	Hermetia illucens (dried, defatted meal)	<i>PCD</i> _{s: 100%}	NA	Substrate: food wastes The protein content of dried, defatted meal is assumed to be 100%. Because this fresh meal mainly consists of water, fat, and protein. ²²⁸
	<i>Hermetia illucens</i> (protein concentrate)	<i>PC</i> _{s: 56.3%}	NA	Substrate: by-products of food industry ²³⁰
	Hermetia illucens (fresh insect puree)	<i>PC</i> _{s: 17%}	NA	Substrate: by-products of food industry ²³⁰
	Hermetia illucens	<i>PC</i> _{s: 48%}	NA	Substrate: food wastes ²²⁵
	Hermetia illucens (prepupae)	<i>PC</i> _{s: 43.9%}	NA	245
	Hermetia illucens	<i>PC</i> _{s: 65%}	NA	Substrate: agricultural by-products from starch manufacture and food by-product ²³⁵
	Hermetia illucens	<i>PC</i> _{s: 45.88%}	NA	Substrate: chicken manure, brewery grains, potato peel, or expired food 213, 221, 223, 246
	Hermetia illucens	<i>PCD</i> _{s: 52.80%}	NA	Substrate: hen diet ²⁰⁸
tein	Hermetia illucens	<i>PCD</i> _{s: 53.40%}	NA	Substrate: maize distillers ²⁰⁸
-prot	Hermetia illucens	<i>PCD</i> _{s: 51.20%}	NA	Substrate: okara ²⁰⁸
te-to	Hermetia illucens	<i>PCD</i> _{s: 54.10%}	NA	Substrate: brewery grains ²⁰⁸
Was	Microbial protein			

	Hydrogen-oxidising bacteria sp.	<i>PC</i> _{s: 65%}	NA	The protein content of this hydrogen-based microbial protein ranges from 50-80%. Therefore, the mid-value (65%) is used as the protein content in fresh weight of this microbial protein. ²⁴²	
	Methane-oxidising bacteria sp.	<i>PC</i> _{s: 20%}	NA	215	
	Arthrospira platensis	PC 52 894	96%	229	
	Chlorella sp.	- 52.870			
	Ascochloris sp. ADW00	<i>PC</i> _{s: 52.25%}	95%	229, 244	
	Fusarium venenatum A3/5	<i>PC</i> _{s: 12.59%}	NA	234	
	Insect protein				
	Tenebrio molitor	<i>PC</i> _{s: 13.5%}	NA	227, 228	
	Apis mellifera	<i>PC</i> _{s: 10%}	NA	226	
	Microbial protein				
uo	Chlorella vulgaris	<i>PC</i> _{s: 52.8%}	96%	229	
ompari	Fusarium venenatum A3/5 (Quorn [™] Mycoprotein)	PC _{s: 11.7%} PCD _{s: 44%}	25%	234 221	
ırk c	Plant-based protein				
ch ma	<i>Glycine max</i> (soybean meal)	<i>PC</i> _{s: 45.55%}	92.20%	245, 246	
Ben	Glycine max (soybean)	<i>PC</i> _{s: 36.49%}	91.46%	221	
	Phaseolus vulgaris (common bean)	<i>PC</i> _{s: 23.58%}	88.25%	221	
	Zea mays (maize)	<i>PC</i> _{s: 3.24%}	24.00%	221	
	Oryza sativa (rice)	$PC_{s: 6.75\%}$	87.40%	221	
	Triticum aestivum (wheat)	<i>PC</i> _{s: 12.15%}	89.06%	221	

Animal-based protein			
Fish meal	<i>PC</i> _{s: 70%}	NA	235
Fish meal	<i>PC</i> _{s: 39.71%}	93.00%	245, 246
Gallus domesticus (chicken)	<i>PC</i> _{s: 17.45%}	34.02%	221
Egg protein concentrate	<i>PC</i> _{s: 68%}	85%	229
Egg	<i>PC</i> _{s: 12.56%}	23.85%	221
Milk	<i>PC</i> _{s: 3.15%}	11.87%	221
Bos taurus (beef)	<i>PC</i> _{s: 18.89%}	36.65%	221
Sus scrofa domesticus (pork)	<i>PC</i> _{s: 16.31%}	40.03%	221
Oreochromis spp. (tilapia)	<i>PC</i> _{s: 20.08%}	21.92%	221
Katsuwonus pelamis (skipjack tuna)	<i>PC</i> _{s: 22.00%}	29.42%	221

Note:

a. PC_s denotes the protein contents of fresh weight (% fresh weight) for a given protein species s; PCD_s represents the protein content of dry weight (% dry weight) for a given protein species s.

b. DW_s stands for the oven-dried weight (% fresh weight) for a given protein species s.

NA: data not available

SI-8.2 LCA and TEA of waste-to-protein

Base on the comprehensive literature review and analyses presented in Supplementary Table ST-8, we have compared the environmental profiles and economic viability between different protein species based on per kg of protein. Regardless of protein grade (feed- or food-grade) and their nutritional values (amino acid compositions), we have drawn the following conclusions.

LCA comparisons of waste-to-protein technologies and benchmark protein sources suggested that -

- The environmental impacts of different insect proteins derived from wastes vary. Among 4 insect proteins produced via 'waste-to-protein' pathways in Supplementary Table ST-8, *Hermetia illucens* has attracted increasing research attention and represent the most environmentally sustainable option across most of the impact categories (GWP100: -1.40E+01 – 2.42E+01 kg CO₂ eq. per kg protein; Agricultural land occupation: -3.67E+01 – 1.78E+01 m²a per kg protein; Water use/depletion: -7.2E-02 – 2.39E+00 m³ per kg protein). In contrast, *Musca domestic* demonstrated higher environmental burdens compared with other insects, especially in energy profile (1.10E+00 – 1.13E+03 MJ per kg protein), agricultural land utilisation (4.71E-02 – 8.90E+01 m²a per kg protein) and water use (5.14E-02 – 2.19E+03 m³ per kg protein) categories.
- 2. Insect proteins produced from wastes demonstrated competitive environmental footprints in acidification, eutrophication, land use, and water use, compared with traditional plant-sourced proteins. For instance, the environmental scores of waste derived *Tenebrio molitor* (Freshwater eutrophication: 2.30E-02 2.74E-02 kg P eq. per

kg protein; GWP100: 5.25E+00 - 5.77E+00 kg CO₂ eq. per kg protein; Agricultural land occupation: 6.35E+00 - 8.49E+00 m²a per kg protein) is close to these of soybean (Freshwater eutrophication: 1.60E-02 kg P eq. per kg protein; GWP100: 8.90E-01 - 3.74E+01 kg CO₂ eq. per kg protein; Agricultural land occupation: 5.24E+00 - 1.19E+01 m²a per kg protein); while *Hermetia illucens* exhibits a better environmental performance than soybean in these categories. However, it should be noted that the energy consumption of waste-derived *Hermetia illucens* (mostly ranging from 7.19E+00 to 1.50E+02 MJ per kg protein) is slightly higher than traditional plant-based proteins on market (ranging from 5.33E+00 to 1.56E+01 MJ per kg protein), but lower than traditional animal-sourced proteins (ranging from 3.53E+01 to 2.99E+02 MJ per kg protein).

- 3. The sustainability of different microbial proteins also varies. Solein® (hydrogen-oxidising bacteria sp.) from Solar Foods outperformed other microbial protein species in most environmental impact categories (GWP100: 3.91E-03 4.21E-02 kg CO₂ eq. per kg protein; Agricultural land occupation: 5.22E-05 1.27E-03 m²a per kg protein; Water use/depletion: 2.34E-05 1.71E-04 m³ per kg protein). Furthermore, Solein® from Solar Foods is generally recognised as food-grade ²⁵⁰, although more work should be undertaken to confirm its food safety produced via 'waste-to-protein' pathways. Additionally, microbial proteins produced via electricity from grid showed higher GWP100 burdens, ranging from 1.29E+01 to 4.64E+02 kg CO₂ eq. per kg protein, in comparison with that utilising renewable energy (solar, wind), ranging from 3.91E-03 to 4.26E+00 kg CO₂ eq. per kg protein, indicating that the environmental burdens derived from fossil fuel consumption for energy input cannot be neglected.
- 4. The environmental credits derived from carbon capture and utilisation e.g. waste gas CO_2 as substrate for microbial proteins cultivation can benefit the sustainability of

protein sources. Based on the LCA profile for Tetraselmis suecica and Tisochrysis lutea ²¹⁸, the assumed 'zero-burden' substrate - flue gas (a recycled waste-product obtained from the burning of used vegetable oils) demonstrates superior environmental performance (GWP100: 3.84E+01 - 4.84E+01 kg CO₂ eq. per kg protein; Fossil resources depletion: 3.65E+02 – 5.94E+02 MJ per kg protein; Water use/depletion: 1.31E+01 - 2.09E+01 m³ per kg protein) to pure CO₂ from cylinder (GWP100: 5.96E+01 - 6.61E+01 kg CO₂ eq. per kg protein; Fossil resources depletion: 5.96E+02-8.15E+02 MJ per kg protein; Water use/depletion: 1.65E+01 - 2.42E+01 m³ per kg protein). This result suggests the significant environmental advantages of 'waste-toprotein' technologies. However, the previous research followed an economic allocation approach to partition the environmental impacts between co-products which led to 'zero-burden' flue gas but underestimate the potential environmental benefits of wasteto-protein. If following a carbon counting approach to track the carbon captured, utilised and sequestered in microbial fermentation, a negative environmental 'credit' could be allocated to microbial protein, which would significantly enhance the environmental sustainability profiles.

5. Microbial proteins derived from wastes represent environmentally superior systems to plant- and animal-sourced proteins across almost all impact categories, except for the fossil resources depletion/energy use. The energy use for microbial proteins ranges from 2.11E+01 to 6.32E+03 MJ per kg protein, which is higher than both traditional plant-based protein (ranging from 5.33E+00 to 1.56E+01 MJ per kg protein) and animal protein (ranging from 3.53E+01 to 2.99E+02 MJ per kg protein). Quorn[™] mycoprotein derived from *Fusarium venenatum A3/5* is a commercially produced food-grade microbial protein; *Fusarium venenatum A3/5* cultivated through fermentation of lignocellulosic sugar sources was reported to deliver sustainable footprint ²³⁴ including

impacts on GWP100 (2.37E+01 kg CO₂ eq. per kg protein), acidification (1.65E-01 kg SO₂ eq. per kg protein), freshwater eutrophication (1.30E-02 kg P eq. per kg protein), agricultural land occupation (4.39E+00 m²a per kg protein) and water use/depletion (2.23E+00 m³ per kg protein). This microbial protein has similar environmental impacts of organic broiler in GWP100 (2.66E+01 kg CO₂ eq. per kg protein) and freshwater eutrophication (1.16E-02 kg P eq. per kg protein), but much lower scores in other categories, indicating its high potential as a protein alternative.

Techno-economic analyses results indicated that -

- 1. Insect proteins produced from waste demonstrate great competitiveness from the economic perspective. For example, the market price of *Hermetia illucens* (1.94-2.41 USD per kg protein) is cheaper than that of rice (6.02 USD per kg protein) and is close to soybean and wheat (1.33 and 2.27 USD per kg protein, respectively). It is obvious that this insect market price range is lower than that of animal-based proteins (15.4-76.3 USD per kg protein). Nevertheless, it should be noted that the food safety of waste derived insect protein is still under certification. Therefore, the final market price of commercialised waste derived insect protein might increase to some extent, due to the requirement for additional processes to ensure the food safety.
- 2. The price of different microbial proteins varies significantly. According to Supplementary Table ST-8, it can be difficult for microbial proteins to compete with both plant and animal-sourced proteins due to a relatively high selling price. The feed-grade hydrogen-based microbial protein in García 's work ²⁴² (5.69-25 USD per kg protein) has shown to be less economically beneficial than soybean meal (0.754-1.98 USD per kg protein) and fishmeal (3.02-4.01 USD per kg protein). Food-grade Quorn[™] mycoprotein product (*Fusarium venenatum A3/5*) derived from lignocellulosic sugar

sources ²³⁴ is predicted with a minimum selling price of 173.02 USD per kg protein, which is twice the market price of beef (76.3 USD per kg protein) and six times more than chicken (27.7 USD per kg protein).

The following research gaps have merged from the literature review on LCA and TEA studies of 'waste-to-protein' systems -

- 1. Further research efforts could be devoted on holistic yet robust analyses of environmental profiles of novel protein sources, in particular on insect and microbial proteins, which represent a clear knowledge gap. Most of the LCA studies published thus far focused on global warming (GWP100), arable land use, and water use impact categories; whereas less research attention has been given to other important impact categories including fossil resources depletion, acidification, eutrophication, ozone depletion, and photochemical oxidant formation. Furthermore, previous LCA research lacks explicit interpretation of sensitivity and uncertainty in LCA findings. An interesting research direction is to further explore the LCA data quality based on statistical methods to enable robust evidences for decision-making and comparative assertions on novel protein technologies.
- 2. Limited publicly available TEA studies hinder the understanding of the scalability and viability of waste-to-protein technologies. Computational experiments based on process design and simulation would save empirical efforts at lab or pilot scales and guide research and development to focus on performance-limiting steps. Thus, waste-to-protein process simulation and optimisation represent another research frontier to accelerate novel protein technology scaling-up.

Supplementary Information Table 8.2 | Summary of techno-economic analyses for each protein source, including capital cost, operation cost, total production cost, minimum selling price, and market price.

Drote		$CC_{sa} OC_{sa} TPC_{sb}$	MSP _s c, MP _s d	Poforonco
FIOR		(USD/kg protein)	(USD/kg protein)	Reference
	Insect protein	1		1
	Musca domestica	NA	^{MSP} s: 1.71E+00-2.29E+00	223, 246
	Musca domestica [Mixture of sheep manure and fresh ruminant blood]	NA	^{MSP} s: 2.47E+00-2.99E+00	223, 246
	Hermetia illucens [Gainesville fly diet)	<i>OC_{s: 6.03E+00}</i>	NA	231
	Hermetia illucens [Compound chicken feed]	<i>^{OC}s</i> : 7.80E+00	NA	231
	Hermetia illucens [Distiller's grains]	<i>^{OC}s</i> : 6.39E+00	NA	231
	<i>Hermetia illucens</i> [Wheat middlings]	<i>^{OC}s</i> : 6.51E+00	NA	231
	Hermetia illucens [Fruit and vegetable waste]	<i>OC_s</i> : 7.62E+00	NA	231
	Hermetia illucens [Poultry manure]	<i>OC_s</i> : 6.91E+00	NA	231
	<i>Hermetia illucens</i> - fresh insect puree [Food wastes]	NA	^{<i>MP</i>} <i>s</i> : 2.41E+00	225
ein	Hermetia illucens [Chicken manure and fresh brewery waste]	NA	^{<i>MSP</i>} <i>s</i> : 4.42E+00-5.88E+00	223, 246
-prot	Hermetia illucens - prepupae	NA	^{<i>MP</i>} <i>s</i> : 1.94E+00	245
te-to-	Hermetia illucens	<i>TPC_s</i> : 7.74E+00	^{MP} s: 4.62E+01	213
Was	Hermetia illucens [Potato peel, Germany]	<i>TPC_s</i> : 1.95E+00	^{MP} s: 4.62E+01	213
	Hermetia illucens [Expired food, Germany]	<i>TPC_s</i> : 1.07E+01	^{MP} s: 4.62E+01	213
	Microbial protein	1		
	Hydrogan-oxidising bacteria sp. [H ₂ (electrolysis), industrial emitted CO ₂]	NA	^{<i>MP</i>} <i>s</i> : 1.48E+01 (Average value of 6- and 20-year lifetime plants)	242
	Hydrogan-oxidising bacteria sp. [H ₂ (gasification), industrial emitted CO ₂]	NA	^{<i>MP</i>} <i>s</i> : 1.02E+01 (Average value of 6- and 20-year lifetime plants)	242
	Ascochloris sp. ADW007 [Dairy effluent]	$\begin{array}{c} CC_{s:} 2.94\text{E-01} \\ OC_{s:} 4.00\text{E-01} \\ TPC_{s:} 6.94\text{E-01} \\ \text{(Average value of plants with capacity of 250, 500, 1000} \\ \text{m}^{3}/\text{day and lifetime of 10, 20, } \\ 30 \text{ years)} \end{array}$	^{MSP}s : 1.02E+00 (Average value of plants with capacity of 250, 500, 1000 m ³ /day and lifetime of 10, 20, 30 years)	244 229
	<i>Fusarium venenatum A3/5</i> * [Lignocellulosic agricultural residues]	NA	^{MSP} s: 1.73E+02	234

	Insect protein					
	Apis mellifera (drone brood as by product) * [Pollen and sugar]	NA	^{<i>MP</i>} <i>s</i> : 5.82E+02	226, 233		
	Microbial protein	1	1			
	Mycoprotein (Quorn) *	NA	NA	NA		
	Plant-based protein					
c	<i>Glycine max</i> (soybean meal)	NA	^{<i>MP</i>} <i>s</i> : 1.98E+00	245		
ariso	<i>Glycine max</i> (soybean meal)	NA	^{<i>MP</i>} <i>s</i> : 7.54E-01	245, 246		
npî	Glycine max (soybean) *	NA	^{<i>MP</i>} <i>s</i> : 1.33E+00	221 240		
col	Oryza sativa (rice) *	NA	^{<i>MP</i>} <i>s</i> : 6.02E+00	221, 237		
ark	Triticum aestivum (wheat) *	NA	^{<i>MP</i>} <i>s</i> : 2.27E+00	221, 238		
Ĩ	Animal-based protein					
ench	Fish meal (<i>Rastrineobola</i> argentae)	NA	^{<i>MP</i>} <i>s</i> : 4.01E+00	245, 246		
8	Fish meal	NA	^{<i>MP</i>} <i>s</i> : 3.02E+00	245		
	<i>Gallus domesticus</i> (chicken) *	NA	^{MP} s: 2.77E+01	221, 239		
	Egg *	NA	^{<i>MP</i>} <i>s</i> : 1.54E+01	221, 239		
	Milk *	NA	^{<i>MP</i>} <i>s</i> : 2.83E+01	221, 239		
	Bos taurus (beef) *	NA	^{<i>MP</i>} <i>s</i> : 7.63E+01	221, 239		
	Sus scrofa domesticus (pork) *	NA	^{MP} s: 4.79E+01	221, 239		

Note:

a. C_s and O_s denote capital cost (USD/kg protein) and operational cost (USD/kg protein) for a given protein species s, respectively.

b. TPC_s represents total production cost (USD/kg protein) for a given protein species s which is calculated as the sum of capital cost (CC_s) and operational cost (OC_s).

c. MSP_s denotes minimum selling price for a given protein species s which is defined as the minimum price to cover the overall base cost. The currency conversion of of EUR to USD is: 1 EUR = 1.1647 USD (Average value in March 2022, European Centrial Bank).

d. MP_s represents market price for a given protein species s. The currency conversion of fEUR to USD is: 1 EUR = 1.1647 USD (Average value in March 2022, European Centrial Bank).

[...]: indicates the substrates used to produce proteins.

*: food-grade protein source; otherwise feed-grade protein source.

NA: no data available

References

- 1. S. Kaza, L. Yao, P. Bhada-Tata and F. Van Woerden, *What a waste 2.0: a global snapshot of solid waste management to 2050*, The World Bank, 2018.
- 2. N. Scarlat, V. Motola, J. F. Dallemand, F. Monforti-Ferrario and L. Mofor, *Renewable and Sustainable Energy Reviews*, 2015, **50**, 1269-1286.
- 3. K. Kawai and T. Tasaki, *Journal of Material Cycles and Waste Management*, 2016, **18**, 1-13.

- 4. D. Hoornweg and P. Bhada-Tata, 2012.
- 5. S. Esteves and D. Devlin, in *Waste and Resources Action Programme*, 2010, pp. 1-33.
- 6. A. Koopmans and J. Koppejan, 1998.
- 7. TNO Biobased and Circular Technologies, *Journal*, 2021.
- 8. *Nucleic Acids Research*, 2016, **44**, D7-D19.
- 9. I. Letunic and P. Bork, *Nucleic Acids Research*, 2021, **49**, W293-W296.
- 10. T. Aggelopoulos, K. Katsieris, A. Bekatorou, A. Pandey, I. M. Banat and A. A. Koutinas, *Food Chemistry*, 2014, **145**, 710-716.
- 11. N. M. Apandi, R. M. S. R. Mohamed, A. A. S. Al-Gheethi and A. H. M. Kassim, in *Handbook of Algal Technologies and Phytochemicals*, CRC Press, 2019, pp. 3-12.
- 12. J. Baldensperger, J. Le Mer, L. Hannibal and P. Quinto, *Biotechnology letters*, 1985, **7**, 743-748.
- 13. T. Bhalla and M. Joshi, *World Journal of Microbiology and Biotechnology*, 1994, **10**, 116-117.
- 14. I. Bogdahn, unpublished work.
- 15. P. W. Chiou, S. Chiu and C. Chen, *Animal feed science and technology*, 2001, **91**, 171-182.
- 16. W. Cui, Q. Wang, F. Zhang, S.-C. Zhang, Z.-M. Chi and C. Madzak, *Process Biochemistry*, 2011, **46**, 1442-1448.
- 17. A. De Gregorio, *Bioresource Technology*, 2002, **83**, 89-94.
- 18. M. De Oliveira, M. Monteiro, P. Robbs and S. Leite, *Aquaculture international*, 1999, **7**, 261-275.
- 19. L. C. Duarte, F. Carvalheiro, S. Lopes, I. Neves and F. M. Gírio, in *Biotechnology for Fuels and Chemicals*, Springer, 2007, pp. 637-647.
- 20. V. T. Duong, F. Ahmed, S. R. Thomas-Hall, S. Quigley, E. Nowak and P. M. Schenk, *Frontiers in bioengineering and biotechnology*, 2015, **3**, 53.
- 21. Y. Gao, D. Li and Y. Liu, *Annals of microbiology*, 2012, **62**, 1165-1172.
- 22. M. Hashem, A. E.-L. Hesham, S. A. Alrumman, S. A. Alamri and M. F. Moustafa, *International Journal of Agriculture and Biology*, 2014, **16**.
- 23. S. W. Jones, A. Karpol, S. Friedman, B. T. Maru and B. P. Tracy, *Current Opinion in Biotechnology*, 2020, **61**, 189-197.
- 24. S. Kam, A. A. Kenari and H. Younesi, *Journal of Aquatic Food Product Technology*, 2012, **21**, 403-417.
- 25. B. Kunasundari, V. Murugaiyah, G. Kaur, F. H. J. Maurer and K. Sudesh, *PLoS ONE*, 2013, **8**, e78528.
- 26. E. B. Kurbanoglu and O. F. Algur, *Bioresource Technology*, 2002, **85**, 125-129.
- 27. J. Z. Lee, A. Logan, S. Terry and J. R. Spear, *Microbial Biotechnology*, 2015, **8**, 65-76.
- 28. K. Liu, H. K. Atiyeh, B. S. Stevenson, R. S. Tanner, M. R. Wilkins and R. L. Huhnke, *Bioresource technology*, 2014, **152**, 337-346.
- 29. B. Liu, J. Song, Y. Li, J. Niu, Z. Wang and Q. Yang, *Applied Biochemistry and Biotechnology*, 2013, **171**, 1001-1010.
- 30. M. Øverland, A.-H. Tauson, K. Shearer and A. Skrede, *Archives of Animal Nutrition*, 2010, **64**, 171-189.
- 31. A. Paraskevopoulou, I. Athanasiadis, M. Kanellaki, A. Bekatorou, G. Blekas and V. Kiosseoglou, *Food Research International*, 2003, **36**, 431-438.
- 32. I. Rafiqul, K. Jalal and M. Alam, *Biotechnology*, 2005, 4, 19-22.
- 33. R. Ravinder, L. Venkateshwar Rao and P. Ravindra, *Food Technology and Biotechnology*, 2003, **41**, 243-246.
- 34. R. Rhishipal and R. Philip, *Bioresource technology*, 1998, **65**, 255-256.
- 35. A. Ritala, S. T. Häkkinen, M. Toivari and M. G. Wiebe, *Frontiers in Microbiology*, 2017, 8.
- 36. J. Rodríguez, A. Ferraz, R. F. Nogueira, I. Ferrer, E. Esposito and N. Durán, *Applied biochemistry and biotechnology*, 1997, **62**, 233.

- 37. J. Rodríguez-Zavala, M. Ortiz-Cruz, G. Mendoza-Hernández and R. Moreno-Sánchez, *Journal of applied microbiology*, 2010, **109**, 2160-2172.
- 38. H. Safafar, P. Uldall Nørregaard, A. Ljubic, P. Møller, S. Løvstad Holdt and C. Jacobsen, *Journal of Marine Science and Engineering*, 2016, **4**, 84.
- 39. T. Şişman, Ö. Gür, N. Doğan, M. Özdal, Ö. F. Algur and T. Ergon, *Toxicology and Industrial Health*, 2013, **29**, 792-799.
- 40. M. Taran and N. Asadi, *Petroleum Science and Technology*, 2014, **32**, 625-630.
- 41. F. Valentino, F. Morgan-Sagastume, S. Campanari, M. Villano, A. Werker and M. Majone, *New Biotechnology*, 2017, **37**, 9-23.
- 42. A. G. Waghmare, M. K. Salve, J. G. LeBlanc and S. S. Arya, *Bioresources and Bioprocessing*, 2016, **3**, 1-11.
- 43. J. Wang, J. Kim, J. Kim and I. Kim, *Animal Feed Science and Technology*, 2013, **180**, 111-114.
- 44. M. Wiebe, *Applied Microbiology and Biotechnology*, 2002, **58**, 421-427.
- 45. P. Wongputtisin, C. Khanongnuch, W. Kongbuntad, P. Niamsup, S. Lumyong and P. Sarkar, *Letters in applied microbiology*, 2014, **59**, 328-333.
- 46. P. Wongputtisin, C. Khanongnuch, W. Khongbantad, P. Niamsup and S. Lumyong, *Journal of applied microbiology*, 2012, **113**, 798-806.
- 47. T. C. Yadav, A. A. Khardenavis and A. Kapley, *Bioresource Technology*, 2014, **165**, 257-264.
- 48. F. Yazdian, S. Hajizadeh, M. JAHANSHAHI, A. S. SHOJA, R. KHALILZADEH and M. Nosrati, 2005.
- 49. L. Q. Zepka, E. Jacob-Lopes, R. Goldbeck, L. A. Souza-Soares and M. I. Queiroz, *Bioresource Technology*, 2010, **101**, 7107-7111.
- 50. G. Zhao, W. Zhang and G. Zhang, *Letters in applied microbiology*, 2010, **50**, 187-191.
- 51. S. Zinjarde, M. Apte, P. Mohite and A. R. Kumar, *Biotechnology advances*, 2014, **32**, 920-933.
- 52. B. A. Rumpold and O. K. Schlüter, *Molecular Nutrition & Food Research*, 2013, **57**, 802-823.
- 53. O. Ladrón de Guevara, P. Padilla, L. García, J. Pino and J. Ramos-Elorduy, *Amino Acids*, 1995, **9**, 161-173.
- 54. C. Calvert, *Journal of Animal Science*, 1979, **48**, 178-192.
- 55. S. St-Hilaire, C. Sheppard, J. K. Tomberlin, S. Irving, L. Newton, M. A. McGuire, E. E. Mosley, R. W. Hardy and W. Sealey, *Journal of the world aquaculture society*, 2007, **38**, 59-67.
- 56. H. Hall, H. M. O'Neill, D. Scholey, E. Burton, M. Dickinson and E. Fitches, *Poultry Science*, 2018, **97**, 1290-1297.
- 57. T. Spranghers, M. Ottoboni, C. Klootwijk, A. Ovyn, S. Deboosere, B. De Meulenaer, J. Michiels, M. Eeckhout, P. De Clercq and S. De Smet, *Journal of the Science of Food and Agriculture*, 2017, **97**, 2594-2600.
- 58. C. Huang, W. Feng, J. Xiong, T. Wang, W. Wang, C. Wang and F. Yang, *European Food Research and Technology*, 2019, **245**, 11-21.
- 59. A. Schiavone, M. Cullere, M. De Marco, M. Meneguz, I. Biasato, S. Bergagna, D. Dezzutto, F. Gai, S. Dabbou and L. Gasco, *Italian Journal of Animal Science*, 2017, **16**, 93-100.
- 60. C. Neumann, S. Velten and F. Liebert, *Open Journal of Animal Sciences*, 2018, **8**, 163-183.
- 61. M. De Marco, S. Martínez, F. Hernandez, J. Madrid, F. Gai, L. Rotolo, M. Belforti, D. Bergero, H. Katz and S. Dabbou, *Animal Feed Science and Technology*, 2015, **209**, 211-218.
- M. Abd El-Hack, M. Shafi, W. Alghamdi, S. Abdelnour, A. Shehata, A. Noreldin, E. Ashour, A. Swelum, A. Al-Sagan, M. Alkhateeb, A. Taha, A.-M. Abdel-Moneim, V. Tufarelli and M. Ragni, *Agriculture*, 2020, **10**, 339.
- 63. F. G. Barroso, M.-J. Sánchez-Muros, M. Segura, E. Morote, A. Torres, R. Ramos and J.-L. Guil, *Journal of Food Composition and Analysis*, 2017, **62**, 8-13.
- 64. Z. Mwaniki, M. Neijat and E. Kiarie, *Poultry Science*, 2018, **97**, 2829-2835.
- 65. S. Marono, R. Loponte, P. Lombardi, G. Vassalotti, M. Pero, F. Russo, L. Gasco, G. Parisi, G. Piccolo and S. Nizza, *Poultry Science*, 2017, **96**, 1783-1790.
- 66. M. Cullere, G. Tasoniero, V. Giaccone, R. Miotti-Scapin, E. Claeys, S. De Smet and A. Dalle Zotte, *Animal*, 2016, **10**, 1923-1930.

- 67. A. Mariod, S. Abdelwahab, M. Ibrahim, S. Mohan, M. Abd Elgadir and N. Ain, *Journal of Food Science and Engineering*, 2011, **1**, 45.
- 68. V. Melo, M. Garcia, H. Sandoval, H. D. Jiménez and C. Calvo, *Emirates Journal of Food and Agriculture*, 2011, **23**, 283.
- 69. S. G. F. Bukkens, *Ecology of Food and Nutrition*, 1997, **36**, 287-319.
- 70. M. D. Finke, *Zoo Biology: Published in affiliation with the American Zoo and Aquarium Association*, 2007, **26**, 105-115.
- 71. M. D. Finke, *Zoo Biology*, 2002, **21**, 269-285.
- 72. T. Longvah, K. Mangthya and P. Ramulu, *Food Chemistry*, 2011, **128**, 400-403.
- 73. Z. Xia, S. Wu, S. Pan and J. M. Kim, *Journal of the Science of Food and Agriculture*, 2012, **92**, 1479-1482.
- 74. M. D. Finke, G. R. DeFoliart and N. J. Benevenga, *The Journal of nutrition*, 1989, **119**, 864-871.
- 75. J. Yhoung-Aree, *Edible forest insects*, 2010, 201-216.
- 76. M. Wijayasinghe and A. Rajaguru, *Journal of the National Science Council of Sri Lanka*, 1977, 5, 95-104.
- 77. F. I. Oibiokpa, H. O. Akanya, A. A. Jigam, A. N. Saidu and E. C. Egwim, *Food Science and Human Wellness*, 2018, **7**, 175-183.
- 78. B. O. Elemo, G. N. Elemo, M. Makinde and O. L. Erukainure, *Journal of Insect Science*, 2011, **11**.
- 79. I. Jajic, A. Popovic, M. Urosevic, S. Krstovic, M. Petrovic, D. Guljas and M. Samardzic, *Biotehnologija u stocarstvu*, 2020, **36**, 167-180.
- 80. E. Zielińska, B. Baraniak, M. Karaś, K. Rybczyńska and A. Jakubczyk, *Food Research International*, 2015, **77**, 460-466.
- 81. N. Ravzanaadii, S.-H. Kim, W.-H. Choi, S.-J. Hong and N.-J. Kim, *International Journal of Industrial Entomology*, 2012, **25**, 93-98.
- 82. R. H. Janssen, J.-P. Vincken, L. A. van den Broek, V. Fogliano and C. M. Lakemond, *Journal of agricultural and food chemistry*, 2017, **65**, 2275-2278.
- 83. M. D. Finke, *Ecology of food and nutrition*, 2005, **44**, 257-270.
- 84. S. Bhulaidok, O. Sihamala, L. Shen and D. Li, *Maejo International Journal of Science and Technology*, 2010, **4**, 101-112.
- 85. B. Julieta Ramos-Elorduy, M. José Manuel Pino and C. Víctor Hugo Martínez, *Food and Nutrition Sciences*, 2012, **2012**.
- 86. F. Hashempour-Baltork, S. M. Hosseini, M. A. Assarehzadegan, K. Khosravi-Darani and H. Hosseini, *Journal of the Science of Food and Agriculture*, 2020, **100**, 4433-4441.
- 87. F. Stoffel, W. D. O. Santana, J. G. N. Gregolon, T. B. L. Kist, R. C. Fontana and M. Camassola, Innovative Food Science & Emerging Technologies, 2019, **58**, 102227.
- 88. S. F. S. Reihani and K. Khosravi-Darani, *Electronic Journal of Biotechnology*, 2019, **37**, 34-40.
- 89. Z. Ahangi, S. A. Shojaosadati and H. Nikoopour, *Pakistan J Nutr*, 2008, **7**, 240-243.
- 90. S. H. M. Gorissen, J. J. R. Crombag, J. M. G. Senden, W. A. H. Waterval, J. Bierau, L. B. Verdijk and L. J. C. Van Loon, *Amino Acids*, 2018, **50**, 1685-1695.
- 91. M. Thakur and C. R. Hurburgh, *Journal of the American Oil Chemists' Society*, 2007, **84**, 835-843.
- 92. R. N. Dilger, J. S. Sands, D. Ragland and O. Adeola, *Journal of Animal Science*, 2004, **82**, 715-724.
- 93. G. Maxin, D. R. Ouellet and H. Lapierre, *Journal of Dairy Science*, 2013, **96**, 5151-5160.
- 94. M. A. Ibáñez, C. De Blas, L. Cámara and G. G. Mateos, *Animal Feed Science and Technology*, 2020, **267**, 114531.
- 95. R. Donadelli, C. Jones and R. Beyer, *Poultry science*, 2019, **98**, 1371-1378.
- 96. J. D. House, J. Neufeld and G. Leson, *Journal of Agricultural and Food Chemistry*, 2010, **58**, 11801-11807.

- 97. T. A. Woyengo, J. M. Heo, Y. L. Yin and C. M. Nyachoti, *Animal Feed Science and Technology*, 2015, **207**, 196-203.
- 98. H. V. Masey O'Neill, M. Rademacher, I. Mueller-Harvey, E. Stringano, S. Kightley and J. Wiseman, *Animal Feed Science and Technology*, 2012, **175**, 158-167.
- 99. M. P. Le Guen, J. Huisman and M. W. A. Verstegen, *Livestock Production Science*, 1995, **44**, 169-178.
- 100. C.-H. Shih, T.-T. Lee, W. H.-J. Kuo and B. Yu, *Annals of Animal Science*, 2014, **14**, 897-909.
- 101. K. Xie, X. He, D.-X. Hou, B. Zhang and Z. Song, *Animals*, 2021, **11**, 1894.
- 102. X. S. Piao, D. Li, I. K. Han, Y. Chen, J. H. Lee, D. Y. Wang, J. B. Li and D. F. Zhang, *Asian-Australasian Journal of Animal Sciences*, 2002, **15**, 89-93.
- 103. D. C. Wilkie, A. G. Van Kessel, L. J. White, B. Laarveld and M. D. Drew, *Canadian Journal of Animal Science*, 2005, **85**, 185-193.
- 104. M. Bednářová, M. Borkovcová, J. Mlček, O. Rop and L. Zeman, *Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis*, 2013, **61**, 587-593.
- 105. S. Ghosh, S.-M. Lee, C. Jung and V. B. Meyer-Rochow, *Journal of Asia-Pacific Entomology*, 2017, **20**, 686-694.
- 106. X. Zhao, J. L. Vázquez-Gutiérrez, D. P. Johansson, R. Landberg and M. Langton, *PLOS ONE*, 2016, **11**, e0147791.
- M. G. Paoletti, E. Buscardo, D. J. Vanderjagt, A. Pastuszyn, L. Pizzoferrato, Y. S. Huang, L. T. Chuang, R. H. Glew, M. Millson and H. Cerda, *Ecology of Food and Nutrition*, 2003, 42, 177-191.
- 108. J. Chakravorty, S. Ghosh, K. Megu, C. Jung and V. B. Meyer-Rochow, *Journal of Asia-Pacific Entomology*, 2016, **19**, 711-720.
- 109. M. O. Coelho, A. J. Monteyne, M. V. Dunlop, H. C. Harris, D. J. Morrison, F. B. Stephens and B. T. Wall, *Nutrition Reviews*, 2020.
- 110. W. Kudełka, M. Kowalska and M. Popis, *Molecules*, 2021, **26**, 5071.
- 111. C.-C. R. Wang and S. K.-C. Chang, *Journal of Agricultural and Food Chemistry*, 1995, **43**, 3029-3034.
- 112. N. Wang and J. K. Daun, *Journal of the Science of Food and Agriculture*, 2004, **84**, 1021-1029.
- 113. C. Hall, C. Hillen and J. Garden Robinson, *Cereal Chemistry Journal*, 2017, **94**, 11-31.
- 114. H. Ning, J. Qiao, Z. Liu, Z. Lin, G. Li, Q. Wang, S. Wang and Y. Ding, *Journal of Cereal Science*, 2010, **52**, 90-95.
- 115. H. Kim, H. W. Do and H. Chung, *Korean journal for food science of animal resources*, 2017, **37**, 626.
- 116. W. He, P. Li and G. Wu, Springer International Publishing, 2021, DOI: 10.1007/978-3-030-54462-1_7, pp. 109-131.
- 117. D. G. A. B. Oonincx, S. Van Broekhoven, A. Van Huis and J. J. A. Van Loon, *PLOS ONE*, 2015, **10**, e0144601.
- 118. T. Upcraft, W.-C. Tu, R. Johnson, T. Finnigan, N. Van Hung, J. Hallett and M. Guo, *Green Chemistry*, 2021, DOI: 10.1039/d1gc01021b.
- 119. M. Øverland and A. Skrede, *Journal of the Science of Food and Agriculture*, 2017, **97**, 733-742.
- 120. V. Ramakrishnan, A. Ghaly, M. Brooks and S. Budge, *Bioprocess Biotech*, 2013, **3**, 2.
- 121. C. Wen, J. Zhang, Y. Duan, H. Zhang and H. Ma, *Journal of Food Science*, 2019, **84**, 3330-3340.
- 122. S. I. Mussatto, G. Dragone and I. C. Roberto, *Journal of Cereal Science*, 2006, **43**, 1-14.
- 123. TNO Biomass and Circular Technologies, Journal, 2020.
- 124. Food and A. Organization, *State of World Fisheries and Aquaculture. Rome*, 2020, **200**.
- 125. A. Chetrariu and A. Dabija, *Applied Sciences*, 2020, **10**, 5619.
- 126. D. B. HERBST, Oregon State University, 1986.
- 127. D. B. Herbstl, *Great Basin Naturalist*, 1999, **59**, 127-135.

- 128. J. Alcocer, E. G. Escobar, A. Lugo and L. A. Oseguera, *International Journal of Salt Lake Research*, 1999, **8**, 113-126.
- 129. S. Kramer, *Science*, 1915, **41**, 874-877.
- 130. R. F. Callahan, Fordham University, 1962.
- 131. J.-G. Kim, Y.-C. Choi, J.-Y. Choi, W.-T. Kim, G.-S. Jeong, K.-H. Park and S.-J. Hwang, *Korean journal of applied entomology*, 2008, **47**, 337-343.
- 132. J. H. Byrd and J. K. Tomberlin, in *Forensic Entomology*, CRC Press, 2009, pp. 177-200.
- 133. C. Bertinetti, A. C. Samayoa and S.-Y. Hwang, Journal of Insect Science, 2019, 19.
- 134. S. Nakamura, R. T. Ichiki, M. Shimoda and S. Morioka, *Applied entomology and zoology*, 2016, **51**, 161-166.
- 135. L. I. Macavei, G. Benassi, V. Stoian and L. Maistrello, *PLOS ONE*, 2020, **15**, e0232144.
- 136. S. Y. Chia, C. M. Tanga, I. M. Osuga, S. A. Mohamed, F. M. Khamis, D. Salifu, S. Sevgan, K. K. Fiaboe, S. Niassy and J. J. van Loon, *PeerJ*, 2018, **6**, e5885.
- 137. J. A. Cuervo-Parra, V. H. Pérez-España, P. A. L. Pérez, M. A. Morales-Ovando, O. Arce-Cervantes, J. E. Aparicio-Burgos and T. Romero-Cortes, *Florida Entomologist*, 2019, **102**, 1-9.
- 138. N. Mbahin, S. K. Raina, E. N. Kioko and J. M. Mueke, *International Journal of Forestry Research*, 2012, **2012**, 1-7.
- 139. J. Cloutier, 2015.
- 140. Y. Gao, Y.-J. Zhao, M.-L. Xu and S.-S. Shi, *Sustainability*, 2021, **13**, 12533.
- 141. P. Singkum, S. Suwanmanee, P. Pumeesat and N. Luplertlop, *Acta Microbiologica et Immunologica Hungarica*, 2019, **66**, 31-55.
- 142. S. Kecko, A. Mihailova, K. Kangassalo, D. Elferts, T. Krama, R. Krams, S. Luoto, M. J. Rantala and I. A. Krams, *Journal of Evolutionary Biology*, 2017, **30**, 1910-1918.
- 143. Y. Banno, T. Shimada, Z. Kajiura and H. Sezutsu, *Experimental animals*, 2010, **59**, 139-146.
- 144. C. Fiore, Journal of the New York Entomological Society, 1960, 68, 27-35.
- 145. Y.-K. Park, Y.-C. Choi, Y.-B. Lee, S.-H. Lee, J.-S. Lee and S.-H. Kang, *Journal of Sericultural and Entomological Science*, 2012, **50**, 126-132.
- 146. M. Kulma, L. Kouřimská, D. Homolková, M. Božik, V. Plachý and V. Vrabec, *Journal of Food Composition and Analysis*, 2020, **92**, 103570.
- 147. D. Leung, D. Yang, Z. Li, Z. Zhao, J. Chen and L. Zhu, *Industrial & engineering chemistry research*, 2012, **51**, 1036-1040.
- 148. G. Bhawane, S. Gaikwad, A. Mamlayya and S. Aland, *The Bioscan*, 2011, **6**, 471-474.
- 149. A. D. Hinckley, *Biotropica*, 1973, **5**, 111.
- 150. E. Gnanda and Q. Mauricette, Internafional Journal of Biosciences, 2018, 13, 137-147.
- 151. M. E. V. Estrada, M. C. H. Reyes, M. G. Ochoa and L. A. Llanos, *Florida Entomologist*, 2010, **93**, 398-402.
- 152. O. Rueppell, C. Bachelier, M. K. Fondrk and R. E. Page, *Experimental Gerontology*, 2007, **42**, 1020-1032.
- 153. J. Tungjitwitayakul and N. Tatun, *Journal of Entomology and Zoology Studies*, 2017, **5**, 314-319.
- 154. V. V. BIRARI, M. Siddhapara and A. Desai, *Journal of Farm Sciences*, 2019, **32**, 443-446.
- 155. A. C. Mintzer, *Journal*, 2010.
- 156. R. Hoey-Chamberlain, M. K. Rust and J. H. Klotz, *Sociobiology*, 2013, **60**, 1-10.
- 157. Y. Wang, G. Xi and D. Yang, *Journal of Northwest A & F University-Natural Science Edition*, 2016, **44**, 167-172.
- 158. M. I. A. Alla, E. E. Mohammed and A. M. Hammad, *Int. J. Sci. Environ. Technol*, 2015, **4**, 414-423.
- 159. W. Peters and J. Spurgeon, American Midland Naturalist, 1971, 86, 197.
- 160. K. M. K. Saliheen, University of Khartoum.
- 161. E. G. Mohamed, University of Khartoum, 1977.
- 162. N. Collins, *The Journal of Animal Ecology*, 1981, 293-311.

- 163. P. Bodot, *Insectes Sociaux*, 1969, **16**, 39-53.
- 164. R. J. Brenner and R. D. Kramer, in *Medical and veterinary entomology*, Elsevier, 2019, pp. 61-77.
- 165. J. T. Griffiths and O. E. Tauber, *Journal of the New York Entomological Society*, 1942, **50**, 263-272.
- 166. S. Jiang and P. E. Kaufman, Series of the Department of Entomology and Nematology, *UF/IFAS Extension.[citado 13/12/2018] Disponible en: <u>https://edis</u>. ifas. ufl. <i>edu/pdffiles/IN/IN108800. pdf*, 2015.
- 167. J. Lyn, V. Aksenov, Z. Leblanc and C. D. Rollo, *Evolutionary Biology*, 2012, **39**, 371-387.
- 168. J. C. Lyn, W. Naikkhwah, V. Aksenov and C. D. Rollo, *AGE*, 2011, **33**, 509-522.
- 169. C. MacVean and J. Capinera, *Journal*, 1987.
- 170. J. L. Capinera, *Journal*, 2001, DOI: <u>https://doi.org/10.1016/B978-012158861-8/50012-0</u>., 511-534.
- 171. C. M. MacVean and J. L. Capinera, *Journal of Invertebrate Pathology*, 1991, **57**, 23-36.
- 172. D. T. Gwynne, *Evolution*, 1984, 1011-1022.
- 173. R. D. Alexander, *The Quarterly Review of Biology*, 1968, **43**, 1-41.
- 174. G. M. Limberger, L. E. M. Nery and D. B. d. Fonseca, *Neotropical Entomology*, 2021, **50**, 237-246.
- 175. M. V. Masson, W. de Souza Tavares, J. M. Alves, P. J. Ferreira-Filho, L. R. Barbosa, C. F. Wilcken and J. C. Zanuncio, *Journal of Orthoptera Research*, 2020, **29**, 83-89.
- 176. S. Tanaka and T. Okuda, *Japanese Journal of Entomology*, 1996, **64**, 189-201.
- 177. N. Hokyo and K. Fujisaki, *Applied Entomology and Zoology*, 1984, **19**, 170-174.
- 178. S. Ali, Bangladesh Journal of Zoology (Bangladesh), 1980.
- 179. I. Rychlik, Animals, 2020, 10, 103.
- 180. C. E. Bennett, R. Thomas, M. Williams, J. Zalasiewicz, M. Edgeworth, H. Miller, B. Coles, A. Foster, E. J. Burton and U. Marume, *Royal Society Open Science*, 2018, **5**, 180325.
- 181. J. Róźańska-Zawieja, A. Nienartowicz-Zdrojewska, T. Smorag and Z. Sobek, *Medycyna Weterynaryjna*, 2014, **70**, 491-496.
- 182. L. Scherer, B. Tomasik, O. Rueda and S. Pfister, *The International Journal of Life Cycle Assessment*, 2018, **23**, 1476-1490.
- 183. S. P. Smith and R. L. Quaas, Journal of Dairy Science, 1984, 67, 2999-3007.
- 184. J. Parish, *Journal*, 2010, DOI: <u>https://extension.msstate.edu/sites/default/files/topic-files/cattle-business-mississippi-articles/cattle-business-mississippi-articles-landing-page/mca_novdec2010.pdf</u>.
- 185. Consolidated text: Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. OJ L 327. p.1, 2015.
- 186. Australia New Zealand Food Standards Code Standard 1.5.1 Novel foods, Online, 2017.
- 187. Food and Drug Regulations (C.R.C., c. 870), Online, 1978.
- 188. J. Buijs, B. M. J. van der Meulen and L. Jiao, *Pre-market Authorization of Food Ingredients and Products in Chinese Food Law: Legal Systematic Analysis of the Pre-Market Authorization Requirements of Food Ingredients and Products in the People's Republic of China*, Online, October 14, 2018.
- 189. FSANZ, Application Handbook, Online, July 2019.
- EFSA Panel on Dietetic Products & Nutrition & Allergies, D. Turck, J.-L. Bresson, B.
 Burlingame, T. Dean, S. Fairweather-Tait, M. Heinonen, K. I. Hirsch-Ernst, I. Mangelsdorf, H. J.
 McArdle, A. Naska, M. Neuhäuser-Berthold, G. Nowicka, K. Pentieva, Y. Sanz, A. Siani, A.
 Sjödin, M. Stern, D. Tomé, M. Vinceti, P. Willatts, K.-H. Engel, R. Marchelli, A. Pöting, M.

Poulsen, S. Salminen, J. Schlatter, D. Arcella, W. Gelbmann, A. de Sesmaisons-Lecarré, H. Verhagen and H. van Loveren, *EFSA Journal*, 2021, **19**, e06555.

- 191. Food Directorate, *Guidelines for the Safety Assessment of Novel Foods*, Health Canada, Online, June 2006.
- 192. Campden BRI (Chipping Campden) Ltd, *Comparing international approaches to food safety regulation of GM and Novel Foods*, Food Standards Agency, Online, 20 April 2021.
- 193. Health Canada's Food Directorate, *The Food Directorate's Pre-Market Submission Management Process for Food Additives, Infant Formulas and Novel Foods*, Online, October 2021.
- 194. CIRS Food Technical Team, *Guideline on New Food Raw Material Chinese Market Access*, CIRS, Online, November 23, 2018.
- 195. FSSAI Gazette notification of Food Safety and Standards (Approval for Non-Specified Food and Food Ingredients) Regulations, 2017, Online.
- 196. B. Magnuson, I. Munro, P. Abbot, N. Baldwin, R. Lopez-Garcia, K. Ly, L. McGirr, A. Roberts and S. Socolovsky, *Food Additives & Contaminants: Part A*, 2013, **30**, 1147-1220.
- 197. Singapore Food Agency, *Requirements for the Safety Assessment of Novel Foods and Novel Food Ingredients*, Online, 13 December 2021.
- 198. Federal Food, Drug, and Cosmetic Act, 21 CFR §170.3(b), Online, 1938.
- 199. CII-HUL Initiative on Food Safety Sciences (CHIFSS), *Guidance Document on Risk Assessment, Novel Foods and Food Additives*, FSSAI, Online, 2019.
- 200. Federal Food, Drug, and Cosmetic Act, 21 U.S.C. §342 Adulterated Food, Online, 1938.
- 201. Federal Food, Drug, and Cosmetic Act, 21 CFR §170.3(c), Online, 1938.
- 202. *Federal Food, Drug, and Cosmetic Act, 21 CFR §170.3(f)*, Online, 1938.
- 203. Cedric Porter, *World Agricultural Prospects The road to 2050*, Supply Intelligence, 2016.
- 204. U.S. Department of Health and Human Services, *Guidance for Industry: Considerations Regarding Substances Added to Foods, Including Beverages and Dietary Supplements*, FDA, Online, 2014.
- 205. U.S. Department of Health and Human Services, *Regulatory Framework for Substances* Intended for Use in Human Food or Animal Food on the Basis of the Generally Recognized as Safe (GRAS) Provision of the Federal Food, Drug, and Cosmetic Act: Guidance for Industry, FDA, Online, 2017.
- 206. J. Sillman, V. Uusitalo, V. Ruuskanen, L. Ojala, H. Kahiluoto, R. Soukka and J. Ahola, International Journal of Life Cycle Assessment, 2020, **25**, 2190-2203.
- 207. C. Ye, D. Mu, N. Horowitz, Z. Xue, J. Chen, M. Xue, Y. Zhou, M. Klutts and W. Zhou, *Algal Research*, 2018, **34**, 154-163.
- 208. L. Bava, C. Jucker, G. Gislon, D. Lupi, S. Savoldelli, M. Zucali and S. Colombini, *Animals 2019, Vol. 9, Page 289*, 2019, **9**, 289.
- 209. G. Bosch, H. H. E. van Zanten, A. Zamprogna, M. Veenenbos, N. P. Meijer, H. J. van der Fels-Klerx and J. J. A. van Loon, *Journal of Cleaner Production*, 2019, **222**, 355-363.
- 210. M. Dreyer, S. Hörtenhuber, W. Zollitsch, H. Jäger, L. M. Schaden, A. Gronauer and I. Kral, International Journal of Life Cycle Assessment, 2021, **26**, 2232-2247.
- 211. A. Halloran, Y. Hanboonsong, N. Roos and S. Bruun, *Journal of Cleaner Production*, 2017, **156**, 83-94.
- 212. A. Halloran, N. Roos, J. Eilenberg, A. Cerutti and S. Bruun, *Agronomy for Sustainable Development*, 2016, **36**, 1-13.
- 213. S. Ites, S. Smetana, S. Toepfl and V. Heinz, *Journal of Cleaner Production*, 2020, 248, 119248.
- 214. N. Järviö, N. L. Maljanen, Y. Kobayashi, T. Ryynänen and H. L. Tuomisto, *Science of The Total Environment*, 2021, **776**, 145764.
- 215. B. Khoshnevisan, M. Tabatabaei, P. Tsapekos, S. Rafiee, M. Aghbashlo, S. Lindeneg and I. Angelidaki, *Renewable and Sustainable Energy Reviews*, 2020, **117**, 109493.

- 216. Y. Kobayashi, E. Kärkkäinen, S. T. Häkkinen, L. Nohynek, A. Ritala, H. Rischer and H. L. Tuomisto, *Science of The Total Environment*, 2022, **808**, 151990.
- 217. A. J. Komakech, C. Sundberg, H. Jönsson and B. Vinnerås, *Resources, Conservation and Recycling*, 2015, **99**, 100-110.
- 218. S. Maiolo, G. Parisi, N. Biondi, F. Lunelli, E. Tibaldi and R. Pastres, *International Journal of Life Cycle Assessment*, 2020, **25**, 1455-1471.
- 219. A. Nikkhah, S. Van Haute, V. Jovanovic, H. Jung, J. Dewulf, T. Cirkovic Velickovic and S. Ghnimi, *Scientific Reports 2021 11:1*, 2021, **11**, 1-11.
- 220. D. G. A. B. Oonincx and I. J. M. de Boer, *PLOS ONE*, 2012, **7**, e51145.
- 221. A. Parodi, A. Leip, I. J. M. De Boer, P. M. Slegers, F. Ziegler, E. H. M. Temme, M. Herrero, H. Tuomisto, H. Valin, C. E. Van Middelaar, J. J. A. Van Loon and H. H. E. Van Zanten, *Nature Sustainability 2018 1:12*, 2018, **1**, 782-789.
- 222. J. Poore and T. Nemecek, *Science*, 2018, **360**, 987-992.
- 223. M. Roffeis, J. Almeida, M. E. Wakefield, T. R. A. Valada, E. Devic, N. G. Koné, M. Kenis, S. Nacambo, E. C. Fitches, G. K. D. Koko, E. Mathijs, W. M. J. Achten and B. Muys, *Sustainability 2017, Vol. 9, Page 1697*, 2017, **9**, 1697.
- 224. M. Roffeis, B. Muys, J. Almeida, E. Mathijs, W. M. J. Achten, B. Pastor, Y. Velásquez, A. I. Martinez-Sanchez and S. Rojo, <u>https://doi.org/10.3920/JIFF2014.0021</u>, 2015, **1**, 195-214.
- 225. R. Salomone, G. Saija, G. Mondello, A. Giannetto, S. Fasulo and D. Savastano, *Journal of Cleaner Production*, 2017, **140**, 890-905.
- 226. J. Sillman, V. Uusitalo, T. Tapanen, A. Salonen, R. Soukka and H. Kahiluoto, *Science of The Total Environment*, 2021, **756**, 143880.
- 227. S. Smetana, A. Mathys, A. Knoch and V. Heinz, *International Journal of Life Cycle Assessment*, 2015, **20**, 1254-1267.
- 228. S. Smetana, M. Palanisamy, A. Mathys and V. Heinz, *Journal of Cleaner Production*, 2016, **137**, 741-751.
- 229. S. Smetana, M. Sandmann, S. Rohn, D. Pleissner and V. Heinz, *Bioresource Technology*, 2017, **245**, 162-170.
- 230. S. Smetana, E. Schmitt and A. Mathys, *Resources, Conservation and Recycling*, 2019, **144**, 285-296.
- 231. R. Spykman, S. M. Hossaini, D. A. Peguero, A. Green, V. Heinz and S. Smetana, *International Journal of Life Cycle Assessment*, 2021, **26**, 1959-1976.
- 232. A. Thévenot, J. L. Rivera, A. Wilfart, F. Maillard, M. Hassouna, T. Senga-Kiesse, S. Le Féon and J. Aubin, *Journal of Cleaner Production*, 2018, **170**, 1260-1267.
- 233. M. Ulmer, S. Smetana and V. Heinz, *Resources, Conservation and Recycling*, 2020, **154**, 104576.
- 234. T. Upcraft, W. C. Tu, R. Johnson, T. Finnigan, N. Van Hung, J. Hallett and M. Guo, *Green Chemistry*, 2021, **23**, 5150-5165.
- 235. C. P. Van PhI, M. Walraven, M. Bézagu, M. Lefranc and C. Ray, *Sustainability 2020, Vol. 12, Page 10333*, 2020, **12**, 10333.
- 236. H. H. E. Van Zanten, H. Mollenhorst, D. G. A. B. Oonincx, P. Bikker, B. G. Meerburg and I. J. M. De Boer, *Journal of Cleaner Production*, 2015, **102**, 362-369.
- 237. U.S. Department of Agriculture, USDA ERS Rice Yearbook, <u>https://www.ers.usda.gov/data-products/rice-yearbook/</u>, (accessed April 5, 2022).
- 238. U.S. Department of Agriculture, USDA ERS Wheat, https://www.ers.usda.gov/topics/crops/wheat/, (accessed April 5, 2022).
- 239. U.S. Department of Agriculture, USDA ERS Meat Price Spreads, <u>https://www.ers.usda.gov/data-products/meat-price-spreads/meat-price-spreads/,</u> (accessed April 5, 2022).

- 240. U.S. Department of Agriculture, USDA ERS Oil Crops Yearbook, <u>https://www.ers.usda.gov/data-products/oil-crops-yearbook/oil-crops-yearbook/</u>, (accessed April 5, 2022).
- 241. S. Y. Chia, C. M. Tanga, J. J. van Loon and M. Dicke, *Current Opinion in Environmental Sustainability*, 2019, **41**, 23-30.
- 242. J. B. García Martínez, J. Egbejimba, J. Throup, S. Matassa, J. M. Pearce and D. C. Denkenberger, *Sustainable Production and Consumption*, 2021, **25**, 234-247.
- 243. D. Humbird, *Biotechnology and Bioengineering*, 2021, **118**, 3239-3250.
- 244. A. K. Kumar, S. Sharma, G. Dixit, E. Shah and A. Patel, *Renewable Energy*, 2020, **145**, 1620-1632.
- 245. V. O. Onsongo, I. M. Osuga, C. K. Gachuiri, A. M. Wachira, D. M. Miano, C. M. Tanga, S. Ekesi, D. Nakimbugwe and K. K. M. Fiaboe, *Journal of Economic Entomology*, 2018, **111**, 1966-1973.
- 246. M. Roffeis, M. E. Wakefield, J. Almeida, T. R. Alves Valada, E. Devic, N. G. G. Koné, M. Kenis, S. Nacambo, E. C. Fitches, G. K. D. Koko, E. Mathijs, W. M. J. Achten and B. Muys, *Journal of Cleaner Production*, 2018, **199**, 792-806.
- 247. T. Sar, S. Harirchi, M. Ramezani, G. Bulkan, M. Y. Akbas, A. Pandey and M. J. Taherzadeh, *Science of The Total Environment*, 2022, **810**, 152253.
- 248. V. A. Torok, K. Luyckx, S. Lapidge, V. A. Torok, K. Luyckx and S. Lapidge, *Animal Production Science*, 2021, DOI: 10.1071/AN20631.
- 249. L. M. Wendt, C. Kinchin, B. D. Wahlen, R. Davis, T. A. Dempster and H. Gerken, *Biotechnol Biofuels*, 2019, **12**, 1-14.
- 250. Solar Foods, SOLEIN SUBMITTED TO THE EUROPEAN COMMISSION FOR NOVEL FOOD APPROVAL, <u>https://solarfoods.fi/our-news/solein-submitted-to-the-european-commission-for-novel-food-approval/</u>, (accessed April 9, 2022).