Antioxidant Silicone Oils from Natural Antioxidants

Michael A. Brook,*^a Akop Yepremyan,^a Guanhua Lu,^a Miguel Melendez-Zamudio,^a Daniel J. Hrabowyj,^a and Cody B. Gale^a

Supporting information

Figure S1. A) 1 H NMR and B) 13 C NMR of allyl retinoate.

Figure S2. A) Competitive displacement of the π -allyl complex leading to silyl esters. B) DPPH reactivity.

Figure S3. ¹H NMR of A) 2-*E* and B) 2-*Z* homoallyl retinoate. ¹³C NMR of the C) 2-*E* and D) 2-*Z* homoallyl retinoate.

 T
 T
 T
 T

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 1
 1
 1
 1
 1

 2.5
 2.0
 1.5
 1.0
 0.5
 0.0

3.5 3.0

6.0

5.5 5.0 4.5 4.0 f1 (ppm)

8.5 8.0 7.5 7.0 6.5

Figure S5. A: ¹H NMR and B: ¹³C NMR spectrum of polymer **3T** in CDCl₃. C: ¹H NMR and D: ¹³C NMR spectrum of polymer **3P** in CDCl₃.

0.5

7.0 6.5

6.0

4.5 4.0 f1 (ppm) 3.5 3.0

2.0

7.5

A 8.5 8.0

4

	Total Vol	Mass	Moles	concentration
	(mL)	(mg)	(mmol)	(mM)
P-4 control	4	389	0.32	80
Retinoate Acid	5	120	0.40	80
Homoallyl Retinoate	5	142	0.40	80
ЗТ	3	719	0.24	80
3P	2	317	0.18	80
Tocopherol	4	138	0.32	80
Tocopherol Acetate	4	151	0.32	80
4Т	4	858	0.32	80
Eugenol	4	53	0.32	80
5P-6	3	361	0.24	80
5T	2	224	0.08	40

Table S1. DPPH assay 80 mM stock solution preparation information.

The data is provided in Figure 3 as log plots. See also a DPPH concentration dependent linear plot (Figure S8).

Figure S8. DPPH UV assay at 520 nm wavelength, comparison of antioxidation activity of different **3T** and **3P** to Vitamin A.

Figure **S9.** A cotton cloth on which yellow/brown drops of **SP-17** were spotted was soaked with 0.2 mM DPPH solution (the inverse of Figure 4A). A) Oil on cotton while DPPH (purple) is being dispensed; B) 15 s and C) 40 s after complete exposure

Figure S10. Antioxidant activity using DPPH at time 0, 3 min and 15 minutes of 1) **4P-17** and 2) **4P-26**

Table S2 Eugenol elastomer DPPH assay preparation information.

	Mass (mg)	Concentration in 1 mL IPA (mM)
5E-33	1	0.13
	10	1.30
	100	13.05
5E-50	1	0.32
	10	3.16
	100	31.60
5E-75	1	0.86
	10	8.59
	100	85.90

Figure S11. DPPH UV Analysis of **5E-33**, -**50**, -**75**, respectively, when mixed with 0.1 mM DPPH solution.

Table S3 Eugenol elastomer DPPH assay preparation information: No effect of exposure to H_2O_2 .

	Amount	Time to
	(mg)	Decolorization (s)
5P-17	100	81
5P-17*	100	81
5E-33	100	5510
5E-33*	100	5510
5E-50	100	5233
5E-50*	100	5233
5E-75	100	2019
5E-75*	100	2019

*Oil or elastomer treated with H_2O_2 .