Electronic Supplementary Information

for

Electrochemical Minisci reaction via HAT-driven α-C(sp³)-H

functionalization of alcohols

Heng Li, Jinwen Tong, Yan Zhu, Cong Jiang, Ping Liu,* and Peipei Sun*

School of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory of Material Cycle Processes and Pollution Control, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, China. pingliu@njnu.edu.cn; sunpeipei@njnu.edu.cn

Contents

1 General information	S2
2 Experimental procedures	
3 Mechanistic investigations	
4 Experimental data for the products 3 , 4a , 5a , 6a and 7a	S10-S28
5 References	S28
6 Copies of ¹ H and ¹³ C NMR spectra of products 3 , 4a , 5a , 6a and 7a	1 <i>S29-S74</i>

1 General information

All reagents were obtained from commercial suppliers and used without further purification. The reactions were monitored by TLC (thin layer chromatography). Column chromatography was performed using silica gel (300–400 mesh). The NMR spectra were recorded on a Bruker Avance 400 spectrometer at 400 MHz (¹H) and 100 MHz (¹³C) in CDCl₃ or DMSO- d_6 using tetramethylsilane as the internal standard. The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet, q = quartet. High-resolution mass spectra were obtained with an AB Triple 5600 mass spectrometer by ESI on a TOF mass analyzer. Melting points are uncorrected.

2 Experimental procedures

2.1 The general procedure for electrochemical hydrohydroxyalkylation reaction of 3a-3ff.

To an undivided three-necked flask (25 mL) were added quinoxalin-2(1*H*)-ones 1 (0.5 mmol), alcohols 2 (1.0 mL), TMSN₃ (86.4 mg, 99.0 μ L, 0.75 mmol), "Bu₄NBF₄ (0.5 mmol, 164.6 mg) and CH₃CN (10 mL). The flask was equipped with graphite felt as anode and platinum plate electrode (10 mm × 10 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current (15 mA) under Ar at 40 °C for 8 h. After the reaction was completed, the mixture was diluted with water (20 mL) and then extracted by CH₂Cl₂ (30 mL × 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated in vacuo and the crude product was obtained. The pure product was obtained by silica gel chromatography using petroleum ether/ethyl acetate (10:1, v/v) as the eluent.

2.2 The general procedure for electrochemical hydrohydroxyalkylation reaction of 3gg-3pp.

To an undivided three-necked flask (25 mL) were added quinoxalin-2(1H)-one (1, 80.1 mg, 0.5

mmol), methanol (**2m**, 1.0 mL) or CH₃OD (**2m**- d_1 , 1.0 mL), TMSN₃ (115.2 mg, 133.0 µL, 1.0 mmol), "Bu₄NBF₄ (164.6 mg, 0.5 mmol) and CH₃CN (10 mL). The flask was equipped with graphite felt as anode and platinum plate electrode (10 mm × 10 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current (15 mA) under Ar at 50 °C for 12 h. After the reaction was completed, the mixture was diluted with water (20 mL) and then extracted by CH₂Cl₂ (30 mL × 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated in vacuo and the crude product was obtained. The pure product was obtained by silica gel chromatography using petroleum ether/ethyl acetate (2:1, v/v) as the eluent.

2.3 5 mmol-scale synthesis of 3a.

To an undivided three-necked flask (100 mL) were added 1-methylquinoxalin-2(1*H*)-one (**1a**, 800.4 mg, 5 mmol), isopropanol (**2a**, 2.0 mL), TMSN₃ (864.2 mg, 0.99 mL, 7.5 mmol, 1.5 equiv.) and CH₃CN (50 mL). The flask was equipped with graphite felt as anode and platinum plate electrode (10 mm × 10 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current (15 mA) under air at 40 °C for 48 h. After the reaction was completed, the mixture was diluted with water (50 mL) and then extracted by CH₂Cl₂ (80 mL × 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated in vacuo and the crude product was obtained. The pure product **3a** was obtained by silica gel chromatography using petroleum ether/ethyl acetate (4:1, v/v) as the eluent.

2.4 20 mmol-scale synthesis of 3a.

To an undivided three-necked flask (250 mL) were added 1-methylquinoxalin-2(1*H*)-one (**1a**, 3.20 g, 20 mmol), isopropanol (**2a**, 8.0 mL), TMSN₃ (3.46 g, 3.96 mL, 30.0 mmol, 1.5 equiv.) and CH₃CN (100 mL). The flask was equipped with graphite felt as anode and platinum plate

electrode (10 mm × 15 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current (25 mA) under air at 40 °C for 72 h. After the reaction was completed, the mixture was diluted with water (50 mL) and then extracted by CH_2Cl_2 (80 mL × 3). The combined organic phases were dried over anhydrous Na₂SO₄, filtered, concentrated in vacuo and the crude product was obtained. The pure product **3a** was obtained by silica gel chromatography using petroleum ether/ethyl acetate (3:1, v/v) as the eluent.

2.5 The etherification of 3a.

To a dry Schlenk tube (25 mL) were added 3-(2-hydroxypropan-2-yl)-1-methylquinoxalin-2(1*H*)one (**3a**, 109.1 mg, 0.5 mmol), NaH (14.4 mg, 0.6 mmol), tetrahydrofuran (5 mL) and CH₃I (106.5 mg, 47 μ L, 0.75 mmol). The resulting solution was stirred at 50 °C for 10 h. After completion of the reaction, the reaction mixture was diluted with H₂O (15 mL) and CH₂Cl₂ (15 mL). The organic layer was collected, dried over anhydrous MgSO₄, and evaporated under vacuum. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (4:1, v/v) as the eluent to afford the desired product **4a** in 85% yield.

2.6 The oxidation of 3x.

To a dry Schlenk tube (25 mL) were added 3-(1-hydroxypropyl)-1-methylquinoxalin-2(1*H*)-one (3x, 208.1 mg, 1.0 mmol), IBX (420.2 mg, 1.5 mmol) and CH₃CN (5 mL). The resulting solution was stirred at 80 °C for 10 h. After completion of the reaction, the reaction mixture was diluted with H₂O (15 mL) and CH₂Cl₂ (15 mL). The organic layer was collected, dried over anhydrous MgSO₄, and evaporated under vacuum. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (4:1, v/v) as the eluent to afford the desired product 5a in 87% yield.

2.7 The reduction of 3x.

To a dry Schlenk tube (25 mL) were added 3-(1-hydroxypropyl)-1-methylquinoxalin-2(1*H*)-one (**3x**, 109.1 mg, 0.5 mmol), KI (124.5 mg, 0.75 mmol), BF₃·Et₂O (14.2 mg, 13 μ L, 0.1 mmol), 1,4-dioxane (5 mL) and H₂O (0.5 mL). The resulting solution was stirred at 50 °C for 12 h. After completion of the reaction, the reaction mixture was diluted with H₂O (15 mL) and CH₂Cl₂ (15 mL). The organic layer was collected, dried over anhydrous MgSO₄, and evaporated under vacuum. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (4:1, v/v) as the eluent to afford the desired product **6a** in 93% yield.

2.8 Elimination of H₂O from 3x.

To a dry Schlenk tube (25 mL) were added 3-(1-hydroxypropyl)-1-methylquinoxalin-2(1*H*)-one (**3x**, 65.4 mg, 0.3 mmol), AlCl₃ (4.4 mg, 0.03 mmol), PPh₃ (8.7 mg, 0.03 mmol) and CH₃NO₂ (5 mL). The resulting solution was stirred at 80 °C for 6 h. After completion of the reaction, the reaction mixture was diluted with H₂O (15 mL) and CH₂Cl₂ (15 mL). The organic layer was collected, dried over anhydrous MgSO₄, and evaporated under vacuum. The residue was purified by silica gel chromatography using petroleum ether/ethyl acetate (4:1, v/v) as the eluent to afford the desired product **7a** in 82%.

3 Mechanistic investigations

3.1 Cyclic voltammetry studies.

Cyclic voltammetry (CV) experiments were performed to detect the oxidation potential of two substrates involving the process. As shown in Figure S1-a, a reduction peak of TMSN₃ can be observed at -1.22 V vs SCE (green curve), which reveals that TMSN₃ may be reduced at cathode. By using $^{n}Bu_{4}NN_{3}$ as the azide anion source, an oxidation peak at 1.02 V vs SCE can be found, which indicated that the azide anion is preferentially oxidized than 1-methylquinoxalin-2(1*H*)-one (**1a**, 2.29 V vs SCE, red curve) and TMSN₃ (2.36 V vs SCE, blue curve) in this electrochemical

reaction process (Figure S1-b).

Figure S1 CV scans (scan rate 100 mv·s⁻¹) of substrates: (a) Blank (${}^{n}Bu_{4}NBF_{4}$ (0.01 M) in MeCN); TMSN₃ (0.02 M, blue curve). (b) Blank (${}^{n}Bu_{4}NBF_{4}$ (0.02 M) in MeCN); 1-Methylquinoxalin-2(1*H*)-one (**1a**, 0.02 M, red curve); TMSN₃ (0.02 M, blue curve); ${}^{n}Bu_{4}NN_{3}$ (0.02 M, green curve).

- 3.2 Radical capture experiment.
- 3.2.1 Reaction with TEMPO.

To an undivided three-necked flask (25 mL) were added 1-methylquinoxalin-2(1*H*)-one (**1a**, 80.1 mg, 0.5 mmol), isopropyl alcohol (**2a**, 1.0 mL), TMSN₃ (86.4 mg, 99.0 μ L, 0.75 mmol), ^{*n*}Bu₄NBF₄ (164.6 mg, 0.5 mmol), TEMPO (234.4 mg, 1.5 mmol), and CH₃CN (10 mL). The flask was equipped with graphite felt as anode and platinum plate electrode (10 mm \times 10 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current (15 mA) under Ar at 40 °C for 8 h. After the reaction was stopped, no desired product **3a** was detected by TLC, indicating that the reaction was completely inhibited. Meanwhile, an adduct product **8** of **2a** with TEMPO was observed through the HRMS analysis from the reaction solution.

8, HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₂H₂₆NO₂, 216.1963; found 216.1968.

Figure S2 HRMS analysis of the adduct product 8.

3.2.2 Reaction with BHT.

To an undivided three-necked flask (25 mL) were added 1-methylquinoxalin-2(1*H*)-one (**1a**, 80.1 mg, 0.5 mmol), isopropyl alcohol (**2a**, 1.0 mL), TMSN₃ (86.4 mg, 99.0 μ L, 0.75 mmol), ^{*n*}Bu₄NBF₄ (164.6 mg, 0.5 mmol), 2,6-di-*t*-butyl-4-methylphenol (BHT, 330.3 mg, 1.5 mmol) and CH₃CN (10 mL). The flask was equipped with graphite felt as anode and platinum plate electrode (10 mm × 10 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current (15 mA) under Ar at 40 °C for 8 h. After the reaction was stopped, only a small amount of target product **3a** was observed by TLC, indicating that the reaction was inhibited. Meanwhile, an adduct product **9** was observed through the HRMS analysis from the reaction solution.

9, HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{17}H_{29}O_2$, 265.2161; found 265.2167.

Figure S3 HRMS analysis of the adduct product 9.

3.2.3 Reaction with 1,1-diphenylethylene.

To an undivided three-necked flask (25 mL) were added 1-methylquinoxalin-2(1*H*)-one (**1a**, 80.1 mg, 0.5 mmol), isopropyl alcohol (**2a**, 1.0 mL), TMSN₃ (86.4 mg, 99.0 μ L, 0.75 mmol), ^{*n*}Bu₄NBF₄ (164.6 mg 0.5 mmol), 1,1-diphenylethylene (270.4 mg, 265 μ L, 1.5 mmol), and CH₃CN (10 mL). The flask was equipped with graphite felt as anode and platinum plate electrode (10 mm × 10 mm) as cathode. The reaction mixture was stirred and electrolyzed at a constant current (15 mA) under Ar at 40 °C for 8 h. After the reaction was stopped, no desired product **3a** was detected by TLC, indicating that the reaction was completely inhibited. Meanwhile, some intermediates, such as N₃-1,1-diphenylethylene (10), TMS-1,1-diphenylethylene (11), N₃-2a, and TMS-2a, were observed through the HRMS analysis from the reaction solution.

Figure S4 HRMS analysis of the adduct product 10.

11, HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{17}H_{21}Si^+$, 253.1407; found 253.1409.

Figure S5 HRMS analysis of the adduct product 11.

 N_3 -2a, HRMS (ESI-TOF) m/z [M+H]⁺ calcd for $C_3H_8N_3O$, 102.0661; found 102.0663.

Figure S6 HRMS analysis of the adduct product N₃-2a.

TMS-2a, HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₆H₁₇OSi, 133.1048; found 133.1042.

Figure S7 HRMS analysis of the adduct product TMS-2a.

4 Experimental data for the products 3, 4a, 5a, 6a and 7a

3-(2-Hydroxypropan-2-yl)-1-methylquinoxalin-2(1*H***)-one (3a).¹ According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 102.5 mg, total 94%; mp 118–120 °C; ¹H NMR (400 MHz, DMSO-d_6) \delta (ppm) 7.85–7.83 (m, 1H), 7.68–7.64 (m, 1H), 7.61–7.58 (m, 1H), 7.43–7.39 (m, 1H),**

5.37 (s, 1H), 3.66 (s, 3H), 1.56 (s, 6H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 161.9, 153.8, 133.7, 131.3, 131.0, 129.7, 124.2, 115.3, 73.5, 29.4, 28.1; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₂H₁₅N₂O₂, 219.1128; found 219.1125.

1-Ethyl-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3b). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 106.7 mg, total 92%; mp 101–103 °C; ¹H NMR (400 MHz, DMSO-d_6) \delta (ppm) 7.86 (d, J = 8.0 Hz, 1H), 7.67–7.66 (m, 2H), 7.44–7.40 (m, 1H), 5.38 (s, 1H), 4.33–4.27(m, 2H), 1.56 (s, 6H), 1.27–1.24 (m, 3H); ¹³C NMR (100 MHz, DMSO-d_6) \delta (ppm) 161.9, 153.3, 132.5, 131.6, 131.1, 130.1, 124.2, 115.0, 73.6, 37.3, 28.1, 12.8; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₃H₁₇N₂O₂⁺, 233.1285; found 233.1295.**

1-Butyl-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3c). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 105.3 mg, total 81%; mp 82–84 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.89–7.87 (m, 1H), 7.60–7.56 (m, 1H), 7.39–7.34 (m, 2H), 5.55 (s, 1H), 4.29–4.25 (m, 2H), 1.80– 1.74 (m, 2H), 1.70 (s, 6H), 1.56–1.46 (m, 2H), 1.04–1.00 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 161.7, 153.8, 132.5, 131.9, 130.4, 130.4, 123.8, 113.7, 73.8, 42.1, 29.3, 27.6, 20.3, 13.8; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₅H₂₁N₂O₂⁺, 261.1598; found 261.1608.**

1-(Cyclopropylmethyl)-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3d).² According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 117.4 mg, total 91%; mp 93–95 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.91–7.88 (m, 1H), 7.62–7.57 (m, 1H), 7.49–7.46 (m, 1H), 7.40–7.36 (m, 1H), 5.57 (s, 1H), 4.24 (d,** *J* **= 7.0 Hz, 2H), 1.70 (s, 6H), 1.32–1.27 (m, 1H), 0.59–0.57 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 161.9, 154.1, 132.7, 131.8, 130.3, 123.8, 114.0, 73.9, 46.0, 27.5, 9.7, 4.2; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₅H₁₉N₂O₂⁺, 259.1441; found 259.1449.**

1-Allyl-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3e).² According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 114.7 mg, total 94%; mp 89–91 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.90–7.88 (m, 1H), 7.58–7.54 (m, 1H), 7.40–7.32 (m, 2H), 6.00–5.93 (m, 1H), 5.47 (s, 1H), 5.31– 5.28 (m, 1H), 5.21–5.16 (m, 1H), 4.94–4.92 (m, 2H), 1.71 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 161.8, 153.6, 132.6, 131.8, 130.4, 130.2, 124.0, 118.3, 114.3, 73.8, 44.4, 27.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₄H₁₇N₂O₂⁺, 245.1284; found 245.1291.**

3-(2-Hydroxypropan-2-yl)-1-(prop-2-yn-1-yl)quinoxalin-2(1*H***)-one (3f).² According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 112.5 mg, total 93%; mp 101–103 °C; ¹H NMR (400 MHz,**

CDCl₃) δ (ppm) 7.90–7.88 (m, 1H), 7.65–7.61 (m, 1H), 7.52–7.50 (m, 1H), 7.43–7.39 (m, 1H), 5.33 (s, 1H), 5.07 (d, J = 2.5 Hz, 2H), 2.35–2.34 (m, 1H), 1.70 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.7, 153.0, 131.9, 131.7, 130.6, 130.2, 124.3, 114.2, 76.6, 73.8, 73.5, 31.4, 27.5; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₄H₁₅N₂O₂⁺, 243.1127; found 243.1137.

Ethyl 2-(3-(2-hydroxypropan-2-yl)-2-oxoquinoxalin-1(2*H*)-yl)acetate (3g). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 124.7 mg, total 86%; mp 91–93 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.89–7.86 (m, 1H), 7.56–7.51 (m, 1H), 7.39–7.35 (m, 1H), 7.12–7.10 (m, 1H), 5.32 (s, 1H), 5.03 (s, 2H), 4.28–4.22 (m, 2H), 1.68 (s, 6H), 1.29–1.26 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 166.9, 161.6, 153.5, 132.6, 131.6, 130.7, 130.3, 124.2, 113.2, 73.7, 62.2, 43.4, 27.5, 14.1; HRMS (ESI-TOF) m/z [M+Na]⁺ calcd for: C₁₅H₁₈N₂O₄Na, 313.1164; found 313.1159.

1-(4-Chlorophenyl)-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3h). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 130.3 mg, total 83%; mp 173–175 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.96–7.93 (m, 1H), 7.66–7.62 (m, 2H), 7.44–7.37 (m, 2H), 7.31–7.28 (m, 2H), 6.75–6.72 (m, 1H), 1.73 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 162.5, 153.7, 135.8, 133.9, 133.8, 131.5, 130.7, 130.3, 129.9, 129.7, 124.4, 115.3, 73.9, 27.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₇H₁₆ClN₂O₂⁺, 315.0894; found 315.0903.**

3-(2-Hydroxypropan-2-yl)-1-(4-methylbenzyl)quinoxalin-2(1*H***)-one (3i). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 138.6 mg, total 90%; mp 87–89 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.91–7.88 (m, 1H), 7.49–7.45 (m, 1H), 7.36–7.32 (m, 2H), 7.18–7.13 (m, 4H), 5.49 (s, 2H), 5.43 (s, 1H), 2.32 (s, 3H), 1.77 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 161.9, 154.2, 137.6, 132.7, 132.0, 131.9, 130.5, 130.2, 129.7, 126.8, 124.0, 114.6, 74.0, 45.6, 27.7, 21.1; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₉H₂₁N₂O₂⁺, 309.1597; found 309.1607.**

1-Benzyl-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3j).¹ According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 127.9 mg, total 87%; mp 85–87 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.91–7.89 (m, 1H), 7.49–7.45 (m, 1H), 7.37–7.31 (m, 4H), 7.28–7.24 (m, 3H), 5.53 (s, 2H), 1.77 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 161.9, 154.2, 135.0, 132.7, 131.9, 130.5, 130.3, 129.0, 127.8, 126.8, 124.1, 114.5, 74.0, 45.8, 27.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₈H₁₉N₂O₂, 295.1440; found 295.1448.**

1-(4-Chlorobenzyl)-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3k). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 157.4 mg, total 96%; mp 82–84 °C; ¹H NMR (400 MHz, DMSO-d_6) \delta (ppm) 7.87–7.85 (m, 1H), 7.57–7.52 (m, 1H), 7.46 (d, J = 7.8 Hz, 1H), 7.38–7.34 (m, 3H), 7.30 (d, J = 8.6 Hz, 2H), 5.53 (s, 2H), 5.35 (s, 1H), 1.61 (s, 6H); ¹³C NMR (100 MHz, DMSO-d_6) \delta (ppm) 162.3, 153.8, 135.2, 132.8, 132.5, 131.7, 131.0, 130.1, 129.2, 129.1, 124.4, 115.5, 73.6, 44.7, 28.1; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₈H₁₈ClN₂O₂⁺, 329.1051; found 329.1055.**

1-(4-Fluorobenzyl)-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3l). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 145.1 mg, total 93%; mp 86–88 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.88–7.86 (m, 1H), 7.49–7.44 (m, 1H), 7.35–7.31 (m, 1H), 7.28–7.21 (m, 3H), 7.01–6.96 (m, 2H), 5.49 (s, 1H), 5.46 (s, 2H), 1.74 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 163.4 (d,** *J* **= 245.1 Hz), 161.8, 154.1, 132.5, 131.9, 130.8 (d,** *J* **= 3.2 Hz), 130.6, 130.3, 128.8 (d,** *J* **= 8.1 Hz), 124.2, 116.1 (d,** *J* **= 21.5 Hz), 114.3, 73.9, 45.1, 27.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₈H₁₈FN₂O₂⁺, 313.1346; found 313.1352.**

3-(2-Hydroxypropan-2-yl)-1-(4-(trifluoromethyl)benzyl)quinoxalin-2(1*H***)-one (3m). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 166.5 mg, total 92%; mp 103-105 °C;**

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94–7.92 (m, 1H), 7.61 (d, J = 8.2 Hz, 2H), 7.52–7.48 (m, 1H), 7.41–7.36 (m, 3H), 7.23–7.21 (m, 1H), 5.59 (s, 2H), 1.75 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.9, 154.0, 139.0, 132.5, 131.9, 130.7, 130.5, 130.4 (q, J = 32.5 Hz), 127.1, 126.1 (q, J = 3.8 Hz), 125.2 (q, J = 270.4 Hz), 124.3, 114.1, 73.9, 45.4, 27.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₉H₁₈F₃N₂O₂⁺, 363.1314; found 363.1317.

6-Chloro-3-(2-hydroxypropan-2-yl)-1-methylquinoxalin-2(1*H***)-one (3n).² According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 109.6 mg, total 91%; mp 214–216 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.87 (d, J = 2.4 Hz, 1H), 7.55–7.53 (m, 1H), 7.30–7.28 (m, 1H), 5.31 (s, 1H), 3.71 (s, 3H), 1.68 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 163.2, 153.7, 132.1, 132.0, 130.5, 129.4, 129.3, 114.9, 74.0, 29.2, 27.5. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd for: C₁₂H₁₃ClN₂O₂Na, 275.0563; found 275.0570.**

6-Chloro-1-ethyl-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (30). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 115.7 mg, total 87%; mp 184–186 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.90 (d, J = 2.4 Hz, 1H), 7.56–7.53 (m, 1H), 7.31 (d, J = 9.0 Hz, 1H), 5.39 (s, 1H), 4.35–7.30 (m, 2H), 1.69 (s, 6H), 1.42–1.39 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 163.1, 153.3, 132.5, 130.9, 130.5, 129.7, 129.1, 114.7, 74.0, 37.6, 27.5, 12.5; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₃H₁₆ClN₂O₂⁺, 267.0894; found 267.0900.**

3-(2-Hydroxypropan-2-yl)-1-methyl-6-nitroquinoxalin-2(1*H***)-one (3**p).¹ According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 103.9 mg, total 79%; mp 174–176 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.58 (d, J = 2.5 Hz, 1H), 7.35 (d, J = 8.9 Hz, 1H), 7.26–7.24 (m, 1H), 5.40 (s, 1H), 3.73 (s, 3H), 1.70 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.2, 153.7, 136.4, 132.4, 130.6, 121.8, 119.2, 115.1, 74.0, 29.2, 27.5. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₂H₁₄N₃O₄, 264.0978; found 264.0980.

3-(2-Hydroxypropan-2-yl)-1,6,7-trimethylquinoxalin-2(1*H***)-one (3q**).^{1,2} According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 103.3 mg, total 84%; mp 132–134 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.64 (s, 1H), 7.12 (s, 1H), 5.59 (s, 1H), 3.71 (s, 3H), 2.45 (s, 3H), 2.38 (s, 3H), 1.69 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.4, 154.1, 140.4, 133.0, 131.4, 130.1, 130.0, 114.2, 73.7, 28.8, 27.6, 20.6, 19.2; HRMS (ESI-TOF) m/z [M+Na]⁺ calcd for: C₁₄H₁₈N₂O₂Na, 269.1266; found 269.1268.

6,7-Difluoro-3-(2-hydroxypropan-2-yl)-1-methylquinoxalin-2(1*H***)-one (3r). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 116.8 mg, total 92%; mp 145–147 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.71–7.66 (m, 1H), 7.19–7.14(m, 1H), 5.23 (s, 1H), 3.68 (s, 3H), 1.66 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 162.3 (d,** *J* **= 3.6 Hz), 153.7, 152.8 (dd,** *J* **= 252.5 Hz, 14.4 Hz), 148.1 (dd,** *J* **= 246.3 Hz, 14.0 Hz), 130.5 (d,** *J* **= 9.0 Hz), 127.9 (dd,** *J* **= 9.4, 2.9 Hz), 117.7 (dd,** *J* **= 18.0, 2.2 Hz), 102.5, 74.0, 29.5, 27.4. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₂H₁₃F₂N₂O₂⁺, 255.0939; found 255.0944.**

6,7-Dibromo-3-(2-hydroxypropan-2-yl)-1-methylquinoxalin-2(1*H***)-one (3s). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 170.6 mg, total 91%; mp 172–174 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 8.13 (s, 1H), 7.62 (s, 1H), 3.69 (s, 3H), 1.68 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 163.5, 153.5, 134.0, 133.2, 131.3, 126.9, 119.2, 118.4, 74.1, 29.2, 27.4; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₂H₁₃Br₂N₂O₂⁺, 376.9317; found 376.9319.**

6-Chloro-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H*)-one (3t).¹ According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 71.4 mg, total 60%; mp 182–184 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 12.55 (s, 1H), 7.92 (d, J = 2.2 Hz, 1H), 7.57–7.54 (m, 1H), 7.33 (d, J = 8.7 Hz, 1H), 1.75 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 163.6, 155.8, 132.2, 131.0, 130.1, 129.7, 128.7, 116.6, 73.9, 27.5; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₁H₁₂ClN₂O₂⁺, 239.0582; found 239.0593.

7-Bromo-3-(2-hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3u). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 91.7 mg, total 65%; mp 149–151 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 12.37 (s, 1H), 7.76 (d,** *J* **= 8.4 Hz, 1H), 7.54–7.50 (m, 2H), 1.76 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 162.6, 155.7, 132.1, 130.6, 130.5, 128.3, 124.7, 118.2, 73.8, 27.5; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₁H₁₂BrN₂O₂⁺, 283.0078; found 283.0082.**

3-(2-Hydroxypropan-2-yl)quinoxalin-2(1*H***)-one (3v).^{1,2} According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 71.4 mg, total 70%; mp 177–179 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 12.74 (s, 1H), 7.92–7.90 (m, 1H), 7.62–7.58 (m, 1H), 7.45–7.39 (m, 2H), 1.78 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 162.2, 156.1, 131.7, 131.3, 130.7, 129.2, 124.8, 115.6, 73.7, 27.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₁H₁₃N₂O₂⁺, 205.0971; found 205.0978.**

3-(1-Hydroxyethyl)-1-methylquinoxalin-2(1*H***)-one (3w). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 3:1); 88.7 mg, total 87%; mp 97–99 °C; ¹H NMR (400 MHz, DMSO-***d***₆) \delta (ppm) 7.84–7.82 (m, 1H), 7.65–7.61 (m, 1H), 7.58–7.55 (m, 1H), 7.41–7.37 (m, 1H), 5.11–5.07 (m, 1H), 5.06–5.03 (m, 1H), 3.63 (s, 3H), 1.42–1.38 (m, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆) \delta (ppm) 161.7, 153.8, 133.6, 132.0, 130.7, 129.5, 124.0, 115.2, 65.7, 29.3, 21.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₁H₁₃N₂O₂⁺, 205.0971; found 205.0981.**

3-(1-Hydroxypropyl)-1-methylquinoxalin-2(1*H***)-one (3x).¹ According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 5:1); 91.6 mg, total 84%; mp 127–129 °C; ¹H NMR (400 MHz, DMSO-d_6) \delta (ppm) 7.84 (d, J = 7.8 Hz, 1H), 7.66–7.56 (m, 2H), 7.41–7.38 (m, 1H), 4.98 (d, J = 6.5 Hz, 1H), 4.87– 4.83 (m, 1H), 3.64 (s, 3H), 1.93–1.83 (m, 1H), 1.70–1.59 (m, 1H), 0.94–0.90 (m, 3H); ¹³C NMR** (100 MHz, DMSO-*d*₆) δ (ppm) 161.1, 153.9, 133.5, 132.0, 130.7, 129.5, 123.9, 115.2, 70.7, 29.3,
28.1, 10.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₂H₁₅N₂O₂⁺, 219.1127; found 219.1125.

3-(1-Hydroxybutyl)-1-methylquinoxalin-2(1*H***)-one (3**y). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 5:1); 98.6 mg, total 85%; mp 111–113 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm) 7.83 (d, *J* = 7.8 Hz, 1H), 7.65–7.56 (m, 2H), 7.41–7.38 (m, 1H), 4.97 (d, *J* = 6.5 Hz, 1H), 4.94–4.91 (m, 1H), 3.64 (s, 3H), 1.83–1.75 (m, 1H), 1.65–1.56 (m, 1H), 1.46–1.37 (m, 2H), 0.92–0.88 (m, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm) 161.4, 153.8, 133.5, 132.0, 130.7, 129.5, 124.0, 115.2, 69.1, 37.2, 29.3, 19.1, 14.4; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₃H₁₇N₂O₂⁺, 233.1285; found 233.1295.

3-(1-Hydroxypentyl)-1-methylquinoxalin-2(1*H***)-one (3z).¹ According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 5:1); 93.5 mg, total 76%; mp 105–107 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.91–7.88 (m, 1H), 7.62–7.58 (m, 1H), 7.42–7.36 (m, 2H), 5.02–5.00 (m, 1H), 4.17 (s, 1H), 3.74 (s, 3H), 2.11–2.02 (m, 1H), 1.72–1.65 (m, 1H), 1.57–1.48 (m, 2H), 1.43–1.35 (m, 2H), 0.94–0.91 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 160.2, 153.9, 133.2, 131.8, 130.4, 129.8, 123.9, 113.8, 71.2, 35.3, 28.9, 27.7, 22.6, 14.1; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₄H₁₉N₂O₂⁺, 247.1440; found 247.1442.**

3-(1-Hydroxyoctyl)-1-methylquinoxalin-2(1*H***)-one (3aa).** According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum

ether/EtOAc = 5:1); 122.4 mg, total 85%; mp 102–104 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J = 7.8 Hz, 1H), 7.62–7.59 (m, 1H), 7.42–7.36 (m, 2H), 5.02–5.00 (m, 1H), 4.15 (s, 1H), 3.74 (s, 3H), 2.10–2.02 (m, 1H), 1.73–1.64 (m, 1H), 1.55–1.51 (m, 2H), 1.39–1.28 (m, 8H), 0.89–0.86 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 160.2, 153.9, 133.2, 131.8, 130.4, 129.8, 123.9, 113.8, 71.3, 35.6, 31.8, 29.5, 29.3, 28.9, 25.6, 22.7, 14.1; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₇H₂₅N₂O₂⁺, 289.1910; found 289.1912.

1-(1-Hydroxy-2-methylpropyl)-1-methylquinoxalin-2(1*H***)-one (3bb). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 5:1); 88.2 mg, total 76%; mp 111–113 °C; ¹H NMR (400 MHz, DMSO-d_6) \delta (ppm) 7.86–7.84 (m, 1H), 7.66–7.57 (m, 2H), 7.42–7.38 (m, 1H), 4.88 (d, J = 6.7 Hz, 1H), 4.71–4.68 (m, 1H), 3.64 (s, 3H), 2.29–2.25 (m, 1H), 0.90 (d, J = 6.8 Hz, 3H), 0.84 (d, J = 6.7 Hz, 3H); ¹³C NMR (100 MHz, DMSO-d_6) \delta (ppm) 160.8, 154.0, 133.5, 131.9, 130.8, 129.6, 124.0, 115.3, 74.2, 31.7, 29.4, 20.2, 17.6; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₃H₁₇N₂O₂⁺, 233.1284; found 233.1291.**

3-(2-Hydroxybutan-2-yl)-1-methylquinoxalin-2(1*H***)-one (3cc). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 83.5 mg, total 72%; mp 102–104 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.92–7.90 (m, 1H), 7.63–7.59 (m, 1H), 7.42–7.36 (m, 2H), 5.42 (s, 1H), 3.74 (s, 3H), 2.35–2.26 (m, 1H), 2.04–1.95 (m, 1H), 1.67 (s, 3H), 0.86–0.82 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 161.5, 153.8, 133.5, 131.4, 130.5, 130.0, 123.9, 113.7, 76.0, 32.6, 29.0, 25.7, 8.4; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₃H₁₇N₂O₂⁺, 233.1284; found 233.1291.**

1-Ethyl-3-(1-hydroxycyclopentyl)quinoxalin-2(1*H***)-one (3dd). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 121.3 mg, total 94%; mp 104–106 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.90–7.87 (m, 1H), 7.60–7.56 (m, 1H), 7.39–7.35 (m, 2H), 5.29 (s, 1H), 4.37–4.32 (m, 2H), 2.46 (d,** *J* **= 5.8 Hz, 2H), 2.03–1.85 (m, 6H), 1.42–1.39 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 160.7, 153.9, 132.1, 132.0, 130.4, 130.3, 123.8, 113.5, 84.2, 38.9, 37.3, 25.1, 12.5; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₅H₁₉N₂O₂⁺, 259.1440; found 259.1443.**

3-(1-Hydroxycyclohexyl)-1-methylquinoxalin-2(1*H***)-one (3ee). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 116.1 mg, total 90%; mp 123–125 °C; ¹H NMR (400 MHz, DMSO-d_6) \delta (ppm) 7.85–7.83 (m, 1H), 7.68–7.59 (m, 2H), 7.44–7.40 (m, 1H), 3.66 (s, 3H), 2.14–2.06 (m, 2H), 1.79–1.54 (m, 7H), 1.29–1.22 (m, 1H); ¹³C NMR (100 MHz, DMSO-d_6) \delta (ppm) 161.7, 154.1, 133.4, 131.5, 131.0, 129.8, 124.3, 115.4, 74.8, 34.7, 29.4, 25.7, 21.7; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₅H₁₉N₂O₂⁺, 259.1440; found 259.1443.**

3-(4-Hydroxytetrahydro-2*H*-pyran-4-yl)-1-methylquinoxalin-2(1*H*)-one (3ff). According to general procedure for 8 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 5:1); 107.9 mg, total 83%; mp 164–166 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.89–7.86 (m, 1H), 7.62–7.57 (m, 1H), 7.41–7.34 (m, 2H), 5.39 (s, 1H), 4.04–

3.98 (m, 2H), 3.91–3.86 (m, 2H), 3.72 (s, 3H), 2.50–2.42 (m, 2H), 1.83–1.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.7, 154.5, 132.9, 131.9, 130.7, 130.4, 124.2, 113.8, 72.9, 63.6, 35.0, 28.9; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₄H₁₇N₂O₃⁺, 261.1233; found 261.1239.

3-(Hydroxymethyl)-1-methylquinoxalin-2(1*H***)-one (3gg). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 72.2 mg, total 76%; mp 131–133 °C; ¹H NMR (400 MHz, DMSO-***d***₆) \delta (ppm) 7.84 (d,** *J* **= 7.9 Hz, 1H), 7.63–7.56 (m, 2H), 7.42–7.38 (m, 1H), 5.09 (s, 1H), 4.63 (s, 2H), 3.62 (s, 3H); ¹³C NMR (100 MHz, DMSO-***d***₆) \delta (ppm) 159.1, 153.8, 133.5, 132.2, 130.5, 129.4, 123.9, 115.3, 61.7, 29.1; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₀H₁₁N₂O₂⁺, 191.0814; found 191.0816.**

1-Ethyl-3-(hydroxymethyl)quinoxalin-2(1*H***)-one (3hh).** According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 71.4 mg, total 70%; mp 106–108 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94–7.92 (m, 1H), 7.64–7.59 (m, 1H), 7.43–7.38 (m, 2H), 4.90 (s, 2H), 4.39–4.34 (m, 2H), 1.43–1.40 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 157.4, 153.4, 132.2, 132.0, 130.4, 129.9, 123.8, 113.7, 62.1, 37.1, 12.5; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₁H₁₃N₂O₂⁺, 205.0971; found 205.0981.

1-Butyl-3-(hydroxymethyl)quinoxalin-2(1*H*)-one (3ii). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum

ether/EtOAc = 2:1); 78.9 mg, total 68%; mp 97–99 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.92–7.90 (m, 1H), 7.62–7.57 (m, 1H), 7.40–7.37 (m, 2H), 4.88 (s, 2H), 4.30–4.26 (m, 2H), 1.80–1.72 (m, 2H), 1.55–1.45 (m, 2H), 1.03–1.00 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 157.3, 153.6, 132.2, 132.1, 130.3, 129.8, 123.8, 113.9, 62.1, 41.9, 29.3, 20.3, 13.8; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₃H₁₇N₂O₂⁺, 233.1284; found 233.1291.

3-(Hydroxymethyl)-1-(4-methylbenzyl)quinoxalin-2(1*H***)-one (3jj). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 88.2 mg, total 63%; mp 119–121 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.93–7.90 (m, 1H), 7.51–7.47 (m, 1H), 7.38–7.34 (m, 2H), 7.18–7.13 (m, 4H), 5.49 (s, 2H), 4.96 (s, 2H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 157.5, 154.0, 137.7, 132.4, 132.1, 131.9, 130.4, 129.7, 129.7, 126.9, 124.0, 114.7, 62.2, 45.5, 21.1; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₇H₁₇N₂O₂⁺, 281.1284; found 281.1296.**

1-(4-Chlorobenzyl)-3-(hydroxymethyl)quinoxalin-2(1*H***)-one (3kk). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 100.5 mg, total 67%; mp 114–116 °C; ¹H NMR (400 MHz, DMSO-d_6) \delta (ppm) 7.86 (d, J = 7.7 Hz, 1H), 7.54–7.51 (m, 1H), 7.43 (d, J = 8.4 Hz, 1H), 7.39–7.30 (m, 5H), 5.49 (s, 2H), 5.17–5.14 (m, 1H), 4.70 (d, J = 6.0 Hz, 2H); ¹³C NMR (100 MHz, DMSO-d_6) \delta (ppm) 159.4, 154.0, 135.3, 132.5, 132.5, 132.4, 130.5, 129.7, 129.3, 129.1, 124.2, 115.5, 61.7, 44.4; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₆H₁₄ClN₂O₂⁺, 301.0738; found 301.0746.**

1-Allyl-3-(hydroxymethyl)quinoxalin-2(1*H***)-one (3ll). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 65.9 mg, total 61%; mp 117–119 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.93–7.91 (m, 1H), 7.59–7.55 (m, 1H), 7.42–7.35 (m, 2H), 6.00–5.90 (m, 1H), 5.32–5.29 (m, 1H), 5.19 (d, J = 17.2 Hz, 1H), 4.95–4.93 (m, 2H), 4.90 (d, J = 3.1 Hz, 2H), 3.86 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 157.4, 153.4, 132.3, 132.0, 130.3, 129.7, 124.0, 118.4, 114.5, 62.1, 44.2; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₂H₁₃N₂O₂⁺, 217.0971; found 217.0972.**

3-(Hydroxymethyl)-1-(prop-2-yn-1-yl)quinoxalin-2(1*H***)-one (3mm). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 77.0 mg, total 72%; mp 144–146 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.95–7.92 (m, 1H), 7.67–7.63 (m, 1H), 7.56–7.54 (m, 1H), 7.47–7.42 (m, 1H), 5.09 (d,** *J* **= 2.5 Hz, 2H), 4.90 (s, 2H), 2.34–2.33 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 157.4, 152.8, 132.0, 131.5, 130.5, 129.8, 124.4, 114.4, 76.4, 73.5, 62.1, 31.2; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₂H₁₁N₂O₂⁺, 215.0814; found 215.0824.**

7-Chloro-1-ethyl-3-(hydroxymethyl)quinoxalin-2(1*H*)-one (3nn). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 92.8 mg, total 78%; mp 112–114 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 (d, J = 2.4 Hz, 1H), 7.54–7.51 (m, 1H), 7.32 (d, J = 9.0 Hz, 1H), 4.86 (s, 2H), 4.33–

4.28 (m, 2H), 1.39–1.35 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.0, 153.0, 132.7, 130.7, 130.4, 129.1, 129.0, 114.9, 62.1, 37.4, 12.4; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₁H₁₂ClN₂O₂⁺, 239.0581; found 239.0578.

6,7-Dibromo-3-(hydroxymethyl)-1-methylquinoxalin-2(1*H*)-one (300). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 147.5 mg, total 85%; mp 162–164 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.16 (s, 1H), 7.66 (s, 1H), 4.87 (s, 2H), 3.70 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.3, 153.2, 133.5, 133.0, 131.5, 126.8, 119.3, 118.6, 62.2, 29.1; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₀H₉Br₂N₂O₂⁺, 348.9004; found 348.9012.

3-((Hydroxy-*d***)methyl)-1-methylquinoxalin-2(1***H***)-one (3pp). According to general procedure for 12 hours; a pale-yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 2:1); 147.5 mg, total 74%; mp 127–129 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.92 (d,** *J* **= 8.1 Hz, 1H), 7.64–7.60 (m, 1H), 7.43–7.38 (m, 2H), 4.89 (s, 2H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 157.4, 153.8, 133.1, 131.9, 130.4, 129.6, 124.1, 113.9, 62.1, 28.8; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₀H₁₀DN₂O₂⁺, 192.0877; found 192.0883.**

3-(2-Methoxypropan-2-yl)-1-methylquinoxalin-2(1*H***)-one (4a). According to general procedure for 10 hours; a yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 10:1); 98.7 mg, total 85%; mp 108–110 °C; ¹H NMR (400 MHz, CDCl₃) \delta (ppm) 7.91–7.89 (m, 1H), 7.56–7.52 (m, 1H), 7.34–7.27 (m, 2H), 3.68 (s, 3H), 3.33 (s, 3H), 1.73 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) \delta (ppm) 160.4, 153.2, 133.6, 131.8, 130.6, 130.4, 123.4, 113.4, 78.9,** 51.4, 28.9, 24.4; HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for: $C_{13}H_{17}N_2O_2^+$, 233.1284; found 233.1295.

1-Methyl-3-propionylquinoxalin-2(1*H***)-one (5a).** According to general procedure for 10 hours; a yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 3:1); 198.7 mg, total 92%; mp 175–177 °C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.90 (d, J = 8.0 Hz, 1H), 7.67–7.64 (m, 1H), 7.40–7.34 (m, 2H), 3.71 (s, 3H), 3.12–3.07 (m, 2H), 1.25–1.21 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 201.4, 152.9, 152.8, 134.2, 132.5, 131.9, 131.2, 124.1, 113.9, 34.2, 29.0, 7.5; HRMS (ESI-TOF) m/z [M+H]⁺ calcd for: C₁₂H₁₃N₂O₂⁺, 217.0971; found 217.0970.

1-Methyl-3-propylquinoxalin-2(1*H***)-one (6a).** According to general procedure for 12 hours; a yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 20:1); 104.2 mg, total 93%; mp: 90–92°C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.85–7.82 (m, 1H), 7.55–7.50 (m, 1H), 7.36–7.28 (m, 2H), 3.71 (s, 3H), 2.95–2.91 (m, 2H), 1.86–1.81 (m, 2H), 1.08–1.04 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 161.2, 154.9, 133.1, 132.7, 129.6, 129.5, 123.5, 113.6, 36.3, 29.0, 20.3, 14.1. HRMS (ESI-TOF) m/z [M+Na]⁺ calcd for: C₁₂H₁₄N₂ONa⁺, 225.0998; found 225.1009.

(*E*)-1-Methyl-3-(prop-1-en-1-yl)quinoxalin-2(1*H*)-one (7a). According to general procedure for 6 hours; a yellow solid has been obtained after purification on silica gel (petroleum ether/EtOAc = 20:1); 49.2 mg, total 82%; mp: 105–107°C; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.85–7.83 (m, 1H), 7.54–7.50 (m, 1H), 7.37–7.28 (m, 3H), 7.10–7.06 (m, 1H), 3.73 (s, 3H), 2.05–2.03 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 154.8, 152.6, 138.0, 133.1, 132.9, 129.8, 129.5, 125.9,

123.7, 113.5, 19.2. HRMS (ESI-TOF) m/z $[M\text{+}H]^{+}$ calcd for: $C_{12}H_{13}N_{2}O^{+}\!\!,$ 201.1022; found 201.1026.

5 References

1 J. Fu, J. Yuan, Y. Zhang, Y. Xiao, P. Mao, X. Diao and L. Qu, Org. Chem. Front., 2018, 5, 3382–3390.

2. H. Zhang, J. Xu, Y. Ouyang, X. Yue, C. Zhou, Z. Ni and W. Li, Chin. Chem. Lett., 2022, 33, 2036–2040.

6 Copies of ¹H and ¹³C NMR spectra of products 3, 4a, 5a, 6a and 7a

100 90 80 70 f1 (ppm)

¹³C NMR Spectrum of Compound 3b

¹³C NMR Spectrum of Compound 3c

¹³C NMR Spectrum of Compound 3d

¹³C NMR Spectrum of Compound 3e

¹³C NMR Spectrum of Compound 3f

¹³C NMR Spectrum of Compound 3g

-1.733

¹³C NMR Spectrum of Compound 3h

¹³C NMR Spectrum of Compound 3i

¹³C NMR Spectrum of Compound 3j

¹³C NMR Spectrum of Compound 3k

¹³C NMR Spectrum of Compound 31

¹³C NMR Spectrum of Compound 30

¹³C NMR Spectrum of Compound 3q

¹³C NMR Spectrum of Compound 3r

¹³C NMR Spectrum of Compound 3s

¹³C NMR Spectrum of Compound 3t

¹³C NMR Spectrum of Compound 3u

¹³C NMR Spectrum of Compound 3v

¹³C NMR Spectrum of Compound 3x

¹³C NMR Spectrum of Compound 3y

¹³C NMR Spectrum of Compound 3z

¹³C NMR Spectrum of Compound 3aa

¹³C NMR Spectrum of Compound 3bb

¹³C NMR Spectrum of Compound 3cc

¹³C NMR Spectrum of Compound 3dd

¹³C NMR Spectrum of Compound 3ee

¹³C NMR Spectrum of Compound 3ff

¹³C NMR Spectrum of Compound 3gg

¹³C NMR Spectrum of Compound 3hh

¹³C NMR Spectrum of Compound 3ii

¹³C NMR Spectrum of Compound 3jj

¹³C NMR Spectrum of Compound 3kk

¹³C NMR Spectrum of Compound 3ll

¹³C NMR Spectrum of Compound 3mm

¹³C NMR Spectrum of Compound 3nn

¹³C NMR Spectrum of Compound 300

¹³C NMR Spectrum of Compound 3pp

¹³C NMR Spectrum of Compound 4a

¹³C NMR Spectrum of Compound 5a

¹³C NMR Spectrum of Compound 6a

¹³C NMR Spectrum of Compound 7a