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1. Electronic Supplementary Calculations and corresponding Tables

Supplementaty computational methods regarding calculation of CO2 removal analysis for phenolic oil
(or bioasphalt) and biochar emissions (related to Table 6 of the paper):

1.1 Phenolic oil (PO) or Bioasphalt CO2 removal analysis for corn stover (CS) or red oak (RO) or yellow
pine (YP) fed conventional fast pyrolysis FP or autothermal pyrolysis ATP (no pretreatment) plant:

Ybioas
_ phalt
EFPO - EFbioasphalt * YPO ~ “POcs/ro/YP * CRbioasphalt * CF

44 kg CO
where, CF = ==8—ze
12kg C

Electronic Supplementary Table ES1. Values of the parameters for CO2 removal analysis of phenolic oil or
bioasphalt (Related to Table 6 in the paper)

Parameters Value Units Comments References
Cpocs 0.621 kg C Carbon content of phenolic oil ~ Polin et al.’
kg PO
Cprogo 0.56
Cpoyp 0.56
EFvicasphalt 0.16 kg CO,, Emission factor of bioasphalt Zhou et al.?
kg bioasphalt
Ybioasphalt 0.23 kg bioasphalt Bioasphalt yield from biomass
kg biomass
Yro 0.525 kg PO Phenolic oil yield from biomass
kg biomass
CRbioasphalt 1 kg C Carbon sequestration rate after
kg C 100 years
EFpoq -2.21 kg CO,, Emission factor of phenolic oil ~ For this study
EFpog, -1.98 kg PO
EFpoyp -1.98

1.2 Biochar (BC) CO2 removal analysis for corn stover (CS) or red oak (RO) or yellow pine (YP) fed
conventional fast pyrolysis FP or autothermal pyrolysis ATP (no pretreatment) plant:

EFBCCS/RO/YP = _CBCCS/RO/YP * CRpc * CF + Dy

44 kg COze

where, CF = 2 ke C



Electronic Supplementary Table ES2. Values of the parameters for CO2 removal analysis of biochar
(Related to Table 6 in the paper)

Parameters Value Unit Comments Reference
Caees 0.623 kg C Biochar carbon content  Polin et al.’
Caceg 0.427 kg BC
Cecyp 0.427
Dgc 0.00609 kg COy, Biochar distribution Wang et al.?
kg BC from pyrolysis plant (40
miles)
CRpc 0.7 kg C Carbon sequestration Tisserant,
kg C rate after 100 years Cherubini#
EFpc,g -1.59 kg of CO,, Emission factor of For this study
EFpcg -1.09 kg of PO phenolic oil
EFBCYP '1 09

1.2.1  Biochar (BC) CO2 removal analysis for corn stover (CS) or red oak (RO) or yellow pine (YP)
fed ATP (with FeSO4 pretreatment) plant:

Note: The biochar carbon content for pretreated FeSO4 ATP plants assumes that the FeSO4 mass goes
directly into biochar. Hence, we took the adjusted carbon content of biochar for all FeSO4 treated biomass
(CS or RO or YP)

YBCCS/RO/YP * CBCCS/RO/YP

Adj CBCCS/RO/YP -

TYBCCS/RO/YP

EFgc/ro/vp = —Adj CBCCS/RO/YP * CRpc * CF + Dpc

Electronic Supplementary Table ES3. Values of the parameters for CO2 removal analysis of adjusted
biochar for all FeSO4 pretreatment scenarios (Related to Table 6 in the paper)

Parameters Value Unit Comments Reference
Chees 0.623 kg C Biochar carbon content  Polin et al.
Caceg 0.427 kg BC
Chcye 0.427
TYgccs 14 ke BC (wt.%) Total biochar yield Elliot et al?
kg CS including FeSO4 from  Rollag et al.® and
biomass used Dalluge et al.”
kg BC
TYBCRO 11 k:ﬁ (Wt%)
TYBCYP 17 % (Wto/o)
g
S Achelviochryels T Rolag tal
YBcro 10 :::—Eg (wWt.%) biomass used
kg BC
YBCyp 16 kiﬁ (Wt%)
Adj Cpcq 28.3 kl;chc (Wt.%) Quantified




Adj Cpcpy 38.8 Adjusted biochar
carbon content

Adj Cgey, 38.8

EFpc.g -0.74 kg of CO,, Emission factor of For this study
ke of BC biochar

EFpc,, -0.99 80

EFac, s -1.02

1.3 Direct air capture:

Direct air capture results include carbon footprint (cradle to grave) involved for storage for obtaining
CO:2 removal along with electricity, heat, and other requirements for the DAC plant.

_ €emission
€net DAC =
€energy

€emission — (Cfootprint_Total - 1)

Electronic Supplementary Table ES4. Values of the parameters for DAC plant (Related to Figure 10 in
paper)

Parameters  Global Germany Global Unit Comments Reference
2030 Value 2050
Value Value
Cfootprint Total  0-589 1.0025 0.2 kg CO,, Total CO: footprint Deutz et
from different al.®

energy sources for
the DAC plant

€emission -0.411 0.0025 -0.8 kg CO, emitted CO: footprint of
kg CO, captured carbon captured
€energy (N 15.9 6.5 M] of energy Energy
kg CO, captured requirement of
carbon captured
€net DAC -0.04 0.00016  -0.12 kg CO, emitted CO. footprint of For this
M] energy energy required by  study
DAC plant

1.4 Conventional fast pyrolysis (FP) and Autothermal pyrolysis (ATP):

The corn stover or red oak or yellow pine fed CFP or ATP systems quantifies CO2 footprint per MJ of
energy (electricity for grinding), and CO: footprint per MJ of energy, when the source of electricity
changes. The table SX shows for corn stover FeSO4 pretreated ATP plant only. The calculation remains
same for the rest of the seven scenarios.

AaMmj_bio

aemission_KWh = qemission_st
AKwh

Snet_ATP = aemission_KWh * ConVKWh—M] * Convelect—M]



1 KWh

where, Conv = oMl electricite
ere, Kwh-M] 3.6 M] electricity

0.42 M] electricity
1 M] energy

Convelect—M] =

KWhr electricity

= =0.02
UKWh = 1o hiomass (CS/RO/YP)

M] lignocellulosic biomass
Ay bio = s = 17.47

kg lignocellulosic biomass

Electronic Supplementary Table ES5. Values of the parameters for CS FeSO4 pretreated ATP plant
(Related to Table 7 in paper)

Parameters ATP-US ATP- ATP- ATP- ATP-PV  Unit Comments References
National Coal Coal- Wind
Electricity fired
Boiler
(CHP)
Qemissiom st -0-022 -0.021 -0.022 -0.023 -0.023 kg CO,, Carbon Caietal®

M] stover  footprint of (Coal,
MJ stover CHP-NG),

Deutz et
al.®
(Wind, PV)
Oemission kwh -19-3 -18.74 -18.98 -19.8 -19.7 kg CO,, Carbon
i KWh footprint of
electricity
€net ATP -2.25 -2.18 -2.21 -2.31 -2.3 kg CO,, Carbon This study

M] energy footprint of
total energy

Electronic Supplementary Table ES6. Comparison in GHG emissions of red oak (RO) fed FP and ATP
(without and with pretreatment) plants and DAC plant using different electricity resources (related to table
7 in the paper)

Electricity Supply RO FP RO ATP RO ATP DAC Plant References
(No PT) (PT)
(kg CO2¢/MJ energy)
Global grid 2030 - - - -0.037 Deutz et al.8
Global grid 2050 - - - -0.12
Germany grid - - - 0.00016
Renewable grid 1 -2.9 -3.0 -2.83 -
Renewable grid 2 -2.87 -2.98 -2.8 -
Fossil fuel grid 1 -2.7 -2.87 -2.7 - GREET®
Fossil fuel grid 2 -2.7 -2.9 -2.74 -
This study -2.82 -2.94 -2.78 - Calculated




Electronic Supplementary Table ES7. Comparison in GHG emissions of yellow pine (YP) fed ATP
(without and with pretreatment) plants and DAC plants using different electricity resources (related to

table 7 in the paper)

Electricity Supply YP ATP YP ATP DAC Plant References
(No PT) (PT)
(kg CO2¢/MJ energy)
Global grid 2030 - - -0.037 Deutz et al.®
Global grid 2050 - - -0.12
Germany grid - - 0.00016
Renewable grid 1 -2.82 -3.03 -
Renewable grid 2 -2.8 -3.0 -
Fossil fuel grid 1 -2.69 -2.90 - GREET?®
Fossil fuel grid 2 -2.72 -2.93 -
This study -2.76 -2.97 - Calculated
1.5 Life cycle analysis (LCA) system boundary:
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Figure ES1. Life cycle system boundary for 250 MTPD biomass fed FP system sugar production
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Figure ES2. Life cycle system boundary for 250 MTPD biomass fed ATP system sugar production

1.6 Annual operating costs and revenues incurred by 250 MTPD biomass (corn stover/red oak/yellow
pine) fed fast pyrolysis and autothermal pyrolysis plants (with and without pretreatment) (all related

to figure 4 in the paper):
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Figure ES3. Annual operating costs and revenues (at average sugar market price over the last 16
years) of 250 MTPD biomass-fed FP and ATP plant sugar production
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1.1 Techno-economic analysis sensitivity for red oak and yellow pine FP and ATP (with and without
pretreatment) scenarios (all related to figure 5 in the paper):
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Figure ES4. Sensitivity analysis of red oak fed 250 MTPD FP plant sugar production with phenolic
oil and biochar byproducts MSSP
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Figure ES5. Sensitivity analysis of red oak fed 250 MTPD ATP (no pretreatment) plant sugar
production with phenolic oil and biochar byproducts MSSP
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Figure ES6. Sensitivity analysis of red oak fed 250 MTPD ATP (with FeSOa pretreatment) plant
sugar production with phenolic oil and biochar byproducts MSSP
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Figure ES7. Sensitivity analysis of yellow pine fed 250 MTPD ATP (without pretreatment) plant
sugar production with phenolic oil and biochar byproducts MSSP
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Figure ES8. Sensitivity analysis of yellow pine fed 250 MTPD ATP (FeSOs pretreatment) plant
sugar production with phenolic oil and biochar byproducts MSSP

1.2 Life cycle sensitivity analysis for red oak and yellow pine FP and ATP (with and without
pretreatment) scenarios (all related to figure 7 in the paper):
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Figure ES9. Sensitivity analysis of GHG emissions (upper x-axis) and carbon removal (lower x-axis) for red
oak fed 250 MTPD FP plant sugar production with phenolic oil and biochar byproducts
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Figure ES10. Sensitivity analysis of GHG emissions (upper x-axis) and carbon removal (lower x-axis) for
red oak fed 250 MTPD ATP (no pretreatment) plant sugar production with phenolic oil and biochar
byproducts
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Figure ES11. Sensitivity analysis of GHG emissions (upper x-axis) and carbon removal (lower x-axis) for
red oak fed 250 MTPD ATP (FeSO4 pretreatment) plant sugar production with phenolic oil and biochar
byproducts
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Figure ES12. Sensitivity analysis of GHG emissions (upper x-axis) and carbon removal (lower x-axis) for
yellow pine fed 250 MTPD ATP (no pretreatment) plant sugar production with phenolic oil and biochar
byproducts
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Figure ES13. Sensitivity analysis of GHG emissions (upper x-axis) and carbon removal (lower x-axis) for
yellow pine fed 250 MTPD ATP (FeSOs pretreatment) plant sugar production with phenolic oil and biochar
byproducts

1.8 Costs of CO2 removal for corn stover/red oak/yellow pine fed 250 MTPD and 50 MTPD fast pyrolysis
and autothermal pyrolysis plants with and without FeSO4 pretreatment (all related to figure 11 in the paper)
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Figure ES14. Cost of CO2 removal for a red oak fed autothermal and conventional fast pyrolysis system as
function of sugar price
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Figure ES15. Cost of CO2 removal for a yellow pine fed autothermal systems (without and with FeSO4
pretreatment) as a function of sugar price
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Figure ES16. Cost of CO2 removal for a 50 MTPD corn stover-fed autothermal and conventional fast
pyrolysis system as a function of sugar price
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Figure ES17. Cost of CO2 removal for a 50 MTPD red oak-fed autothermal and conventional fast pyrolysis
system as a function of sugar price
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Figure ES18. Cost of CO2 removal for a 50 MTPD yellow pine-fed autothermal systems (without and with
FeSOs pretreatment) as a function of sugar price
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