Supporting information

Electroreductive Cross-Coupling between Aldehydes and Ketones or Imines via Cathodically Generated Dianions

Lu-Jun Wang, Peng Ye, Ninghua Tan,* and Bo Zhang*

State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China

E-mail: zb3981444@cpu.edu.cn; nhtan@cpu.edu.cn

Table of contents

General	S 2
Optimization of reaction conditions	S 3
General procedure for electroreductive cross-coupling of aldehydes with ketones (GP 1)	S 8
General procedure for electroreductive cross-coupling of aldehydes with a-ketoesters (GP 2)	S 8
General procedure for electroreductive cross-coupling of aldehydes with imines (GP 3)	S 8
Physical data of the compounds	S10
Investigation of other electrophiles	S42
Derivatization of products	S43
Larger-scale synthesis	S45
Mechanistic studies	S46
References	S65
NMR spectra	S66

General

All manipulations were conducted in an IKA[®] ElectraSyn 2.0 cell under a nitrogen atmosphere. Unless otherwise noted, all chemicals and solvents obtained from commercial suppliers (*Alfa, Acros, Aldrich, TCI, J&K Chemical, Energy Chemical*) were used without further purification. Anhydrous DMF, DMA, CH₂Cl₂, CH₃CN, and DMSO were purchased from J&K Chemical or Energy Chemical and used as received. These solvents were dried and degassed by commercial suppliers.

Flash column chromatography was carried out on silica gel (200-300 mesh). Thin layer chromatography (TLC) was performed using silica gel 60 F_{254} plates.

¹H NMR spectra were recorded on a *Bruker AV-300* or *AV-400* spectrometer at room temperature. Chemical shifts (in ppm) were referenced to tetramethylsilane ($\delta = 0$ ppm) in CDCl₃ as an internal standard. ¹³C NMR spectra were obtained by the same NMR spectrometer and were calibrated with CDCl₃ ($\delta = 77.00$ ppm). ¹⁹F NMR spectra were obtained by the same NMR spectrometer and using CFCl₃ as external standard. ¹⁹F NMR spectra were decoupled with hydrogens. Data for ¹H NMR are reported as follows: chemical shifts (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet or unresolved, brs = broad singlet), coupling constant (Hz) and integration. Data for ¹³C NMR are reported in terms of chemical shift and multiplicity where appropriate. High-Resolution Mass Spectrometry (HRMS) were performed on an *Aglient 6530 Q-TOF* for HRMS. Cyclic voltammetry (CV) experiments were performed using a Shanghai Chenhua CHI620E workstation. The yields were determined on a *METTLER TOLEDO ME 104* balance (accuracy: 0.1 mg). **Optimization of reaction conditions**

Optimization studies for the electroreductive cross-coupling of aldehydes with ketones

Table S1. Evaluation of electrode materials^a

O II	+ U	<i>n</i> Bu ₄ NBF ₄ (0.1 M)	OH
Ph [—] H	Ph ^C Ph	DMF, rt, 6 h	h Y Ph Ph
1	2	undivided cell	3
entry	anode	cathode	yield ^b (%)
1	Zn	Zn	70
2	Zn	Sn	62
3	Zn	reticulated vitreous carbon (RVC)	44
4	Zn	graphite	69
5	Zn	nickel foam	66
6	Zn	Mg	75
7	Mg	Mg	58
8	graphite	Mg	46
9	graphite	graphite	55

^{*a*}Reaction conditions: in an ElectraSyn 2.0 cell, **1** (1.80 mmol) and **2** (0.60 mmol) in DMF (6.0 mL) with 0.1 M nBu_4NBF_4 (0.60 mmol) as supporting electrolyte were electrolyzed under a constant current of 10 mA at room temperature under N₂ for 6 h. ^{*b*}Isolated yields.

Table S2. Evaluation of solvents^a

O II	+	0	<i>n</i> Bu ₄ NBF ₄ (0.1 M)	OH
Ph ^{//} H 1	·	Ph ^C Ph 2	solvent, rt, 6 h Zn(+)/Mg(-), I = 10 mA undivided cell	Ph Ph Ph 3
entry		solv	rent	yield ^b (%)
1	DMF		75	
2		DMA		72
3		CH ₂ Cl ₂		31
4		CH ₃ CN		54
5		DMS	SO	72

^{*a*}Reaction conditions: in an ElectraSyn 2.0 cell, **1** (1.80 mmol) and **2** (0.60 mmol) in solvent (6.0 mL) with 0.1 M nBu_4NBF_4 (0.60 mmol) as supporting electrolyte were electrolyzed under a constant current of 10 mA at room temperature under N₂ for 6 h. ^{*b*}Isolated yields.

Table S3. Evaluation of electrolytes^a

O II	+ 0	electrolyte (0.1 M)	он <u></u> он
Ph ^{//} H 1	Ph Ph 2	DMF, rt, 6 h Zn(+)/Mg(-), I = 10 mA undivided cell	Ph ² Ph ² Ph Ph Ph 3
entry	elect	rolyte	yield ^b (%)
1	<i>n</i> Bu ₄	NBF ₄ (0.1 M)	75
2	<i>n</i> Bu ₄	NCIO ₄ (0.1 M)	65
3	<i>n</i> Bu ₄	NPF ₆ (0.1 M)	66
4	<i>n</i> Bu ₄	NBr (0.1 M)	71
5	LiBr	(0.1 M)	57

^{*a*}Reaction conditions: in an ElectraSyn 2.0 cell, **1** (1.80 mmol) and **2** (0.60 mmol) in DMF (6.0 mL) with 0.1 M electrolyte (0.60 mmol) were electrolyzed under a constant current of 10 mA at room temperature under N₂ for 6 h. ^{*b*}Isolated yields.

Table S4.	Evaluation	of electric	<i>currents^a</i>	

O II	+	O	<i>n</i> Bu ₄ NBF ₄ (0.1 M)	OH
Ph ^{//} H 1	•	Ph th Ph 2	DMF, rt, 6 h Zn(+)/Mg(-), electric current undivided cell	Ph [°] X [°] Ph Ph 3
entry		ele	ctric current (mA)	yield ^b (%)
1		5		28
2		10		75
3		15		72
4		0		0

^{*a*}Reaction conditions: in an ElectraSyn 2.0 cell, **1** (1.80 mmol) and **2** (0.60 mmol) in DMF (6.0 mL) with 0.1 M nBu_4NBF_4 (0.60 mmol) as supporting electrolyte were electrolyzed under a constant current at room temperature under N₂ for 6 h. ^{*b*}Isolated yields.

O Ph └ H 1	+ 0 Ph Ph 2	nBu ₄ NBF ₄ (0.1 M) DMF, rt, time Zn(+)/Mg(-), I = 10 mA undivided cell	Ph Ph Ph 3
entry	1 (equiv)	time	yield ^b (%)
1	3.0	6 h	75
2	2.0	6 h	73
3	3.0	4 h	53
4	3.0	8 h	73
5 ^c	3.0	8 h	50

Table S5. Evaluation of other reaction parameters^a

^{*a*}Reaction conditions: in an ElectraSyn 2.0 cell, **1** (1.80 mmol) and **2** (0.60 mmol) in DMF (6.0 mL) with 0.1 M nBu_4NBF_4 (0.60 mmol) as supporting electrolyte were electrolyzed under a constant current of 10 mA at room temperature under N₂. ^{*b*}Isolated yields. ^{*c*}The reaction was electrolyzed under air.

Table S6. Optimization studies for the electroreductive cross-coupling of

aldehydes with a-ketoesters^a

O Ph H	+ Ph OE	Et► 0.1 M) ► Pt ► Pt	
1	87	anode/cathode, I = 10 mA undivided cell	41
entry	anode	cathode	yield ^b (%)
1	Zn	Mg	59
2	Zn	stainless steel	48
3	Zn	reticulated vitreous carbon (RVC)	75
4	Zn	graphite	55
5	Zn	nickel foam	53
6	Zn	Zn	81
7	Mg	Zn	38
8	graphite	Zn	64
9	RVC	Zn	57

^{*a*}Reaction conditions: in an ElectraSyn 2.0 cell, **1** (1.20 mmol) and **87** (0.60 mmol) in DMF (6.0 mL) with 0.1 M nBu_4NBF_4 (0.60 mmol) as supporting electrolyte were electrolyzed under a constant current of 10 mA at room temperature under N₂ for 5 h. ^{*b*}Isolated yields.

Table S7. Optimization studies for the electroreductive cross-coupling of

aldehydes with imines^a

O U		NPh	nBu ₄ NBF ₄ (0.1	M) O	нн
Ph I 1	⊣ ⁺ Ph	anoo 71	DMF, rt, 6 h de/cathode, I = undivided cell	Ph 10 mA	Y ^N `Ph Ph 46
entry	anode	cathode	1 (equiv)	71 (equiv)	yield ^b (%)
1	Zn	Mg	3.0	1.0	70
2	Zn	Zn	3.0	1.0	51
3	Zn	graphite	3.0	1.0	52
4	Zn	nickel foam	3.0	1.0	36
5	Mg	Mg	3.0	1.0	23
6	graphite	Mg	3.0	1.0	28
7	Zn	Mg	1.0	3.0	12

^{*a*}Reaction conditions: in an ElectraSyn 2.0 cell, **1** (1.80 mmol) and **71** (0.60 mmol) in DMF (6.0 mL) with 0.1 M nBu_4NBF_4 (0.60 mmol) as supporting electrolyte were electrolyzed under a constant current of 10 mA at room temperature under N₂ for 6 h. ^{*b*}Isolated yields.

Investigating aromatic aldehydes bearing strong electron-absorbing groups under the current electrolytic conditions

General procedure for electroreductive cross-coupling of aldehydes with ketones (GP 1):

Ketone (0.60 mmol, 1.0 equiv), aldehyde (1.80 mmol, 3.0 equiv), and nBu_4NBF_4 (0.60 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash column chromatography on silica gel to afford the desired product.

General procedure for electroreductive cross-coupling of aldehydes with a-ketoesters (GP 2):

a-Ketoester (0.60 mmol, 1.0 equiv), aldehyde (1.20 mmol, 2.0 equiv), and nBu_4NBF_4 (0.60 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 5 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash column chromatography on silica gel to afford the desired product.

General procedure for electroreductive cross-coupling of aldehydes with imines (GP 3):

Imine (0.60 mmol, 1.0 equiv), aldehyde (1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (0.60 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped

with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N_2 for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash column chromatography on silica gel to afford the desired product.

Figure S1 Experimental setup (IKA ElectraSyn 2.0)

Physical data of the compounds

1,1,2-Triphenylethane-1,2-diol (3)^[1]

According to **GP1** with benzophenone (109.3 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **3** as white solid (130.6 mg, 75%). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.65 (m, 2H), 7.42-7.36 (m, 2H), 7.32-7.26 (m, 1H), 7.20-7.06 (m, 8H), 7.05-7.01 (m, 2H), 5.60 (d, J = 2.8 Hz, 1H), 3.15 (s, 1H), 2.46 (d, J = 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 143.3, 138.8, 128.4, 128.1, 127.7, 127.6, 127.4, 127.3, 127.0, 126.7, 126.2, 80.7, 77.9; HRMS (ESI) calculated for C₂₀H₁₈O₂Na [M+Na]⁺ m/z 313.1199, found 313.1200.

1,1-Diphenyl-2-(p-tolyl)ethane-1,2-diol (4)^[1]

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), 4-methylbenzaldehyde (213 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **4** as white solid (150.8 mg, 83%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.71-7.66 (m, 2H), 7.42-7.36 (m, 2H), 7.32-7.26 (m, 1H), 7.17-7.08 (m, 5H), 6.96-6.93 (m, 4H), 5.60 (s, 1H), 3.12 (s, 1H), 2.37 (s, 1H), 2.26 (s, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 145.1, 143.5, 137.4, 135.8, 128.4, 128.2, 127.9, 127.6, 127.3, 126.9, 126.7, 126.2, 80.7, 77.8, 21.1; **HRMS** (ESI) calculated for C₂₁H₂₀O₂Na [M+Na]⁺ m/z 327.1356, found 327.1352. 2-(4-(tert-Butyl)phenyl)-1,1-diphenylethane-1,2-diol (5)^[1]

According to **GP1** with benzophenone (109.6 mg, 0.60 mmol, 1.0 equiv), 4-(*tert*-butyl)benzaldehyde (301 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **5** as white solid (155.2 mg, 75%). ¹H NMR (300 MHz, CDCl₃) δ 7.71-7.64 (m, 2H), 7.43-7.34 (m, 2H), 7.32-7.25 (m, 1H), 7.19-7.05 (m, 7H), 7.00-6.94 (m, 2H), 5.58 (s, 1H), 3.14 (brs, 1H), 2.40 (brs, 1H), 1.25 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 150.6, 145.1, 143.5, 135.7, 128.3, 127.7, 127.5, 127.2, 127.0, 126.6, 126.2, 124.4, 80.7, 77.8, 34.4, 31.2; HRMS (ESI) calculated for C₂₄H₂₆O₂Na [M+Na]⁺ m/z 369.1825, found 369.1809.

2-(4-Methoxyphenyl)-1,1-diphenylethane-1,2-diol (6)^[2]

According to **GP1** with benzophenone (109.4 mg, 0.60 mmol, 1.0 equiv), 4-methoxybenzaldehyde (219 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (198.0 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **6** as white solid (153.1 mg, 80%). ¹**H NMR** (300 MHz, DMSO-*d*₆) δ 7.61 (d, *J* = 7.5 Hz, 2H), 7.34-7.26 (m, 4H), 7.21-7.10 (m, 3H), 7.06-7.03 (m, 3H), 6.64 (d, *J* = 8.4 Hz, 2H), 5.56 (d, *J* = 4.2 Hz, 1H), 5.48 (d, *J* = 4.5 Hz, 1H), 5.48 (s, 1H), 3.65 (s, 3H); ¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 157.9, 146.9, 146.2, 134.1, 129.8, 127.5, 127.2, 126.5, 126.0, 125.9, 111.9, 79.8, 76.2, 54.8; **HRMS** (ESI) calculated for C₂₁H₂₀O₃Na [M+Na]⁺ m/z 343.1305, found 343.1291.

2-(4-Phenoxyphenyl)-1,1-diphenylethane-1,2-diol (7)

According to **GP1** with benzophenone (109.7 mg, 0.60 mmol, 1.0 equiv), 4-phenoxybenzaldehyde (315 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.7 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product 7 as white solid (139.2 mg, 61%). ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.63 (m, 2H), 7.40-7.37 (m, 2H), 7.31-7.27 (m, 3H), 7.12-7.05 (m, 6H), 7.03-6.96 (m, 2H), 6.95-6.89 (m, 2H), 6.82-6.74 (m, 2H), 5.57 (s, 1H), 3.17 (brs, 1H), 2.51 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 156.5, 145.0, 143.3, 133.8, 129.6, 129.4, 128.4, 127.6, 127.4, 127.0, 126.7, 126.2, 123.1, 118.6, 118.0, 80.7, 77.5; HRMS (ESI) calculated for C₂₆H₂₂O₃Na [M+Na]⁺ m/z 405.1461, found 405.1464.

2-(4-Fluorophenyl)-1,1-diphenylethane-1,2-diol (8)^[2]

According to **GP1** with benzophenone (109.4 mg, 0.60 mmol, 1.0 equiv), 4-fluorobenzaldehyde (193 μL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **8** as white solid (116.1 mg, 63%). ¹H NMR (400 MHz, CDCl₃) δ 7.69-7.63 (m, 2H), 7.41-7.37 (m, 2H), 7.32-7.28 (m, 1H), 7.14-7.06 (m, 5H), 7.01-6.98 (m, 2H), 6.83-6.78 (m, 2H), 5.58 (s, 1H), 3.13 (brs, 1H), 2.49 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 162.2 (d, J_{C-F} = 244.5 Hz), 144.9, 143.1, 134.5 (d, J_{C-F} = 3.1 Hz), 129.7 (d, J_{C-F} = 8.0 Hz), 128.5, 127.7, 127.5, 126.9, 126.8, 126.1, 114.2 (d, J_{C-F} = 21.2 Hz), 80.7, 77.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.66; HRMS (ESI) calculated for $C_{20}H_{17}FO_2Na [M+Na]^+$ m/z 331.1105, found 331.1080. 2-(4-(Dimethylamino)phenyl)-1,1-diphenylethane-1,2-diol (9)

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), 4-(dimethylamino)benzaldehyde (268.5 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **9** as white solid (128.2 mg, 64%). ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.63-7.55 (m, 2H), 7.33-7.24 (m, 4H), 7.18-7.08 (m, 3H), 7.04-7.00 (m, 1H), 6.98-6.90 (m, 2H), 6.48-6.39 (m, 2H), 5.47 (brs, 1H), 5.34 (s, 1H), 5.28 (brs, 1H), 3.37 (s, 6H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 149.1, 147.2, 146.3, 129.7, 129.4, 127.3, 127.2, 126.5, 125.9, 125.7, 100.8, 79.9, 76.4, 40.2; HRMS (ESI) calculated for C₂₂H₂₃NO₂Na [M+Na]⁺ m/z 356.1621, found 356.1618.

2-(4-(Methylthio)phenyl)-1,1-diphenylethane-1,2-diol (10)^[2]

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), 4-(methylthio)benzaldehyde (239 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **10** as white solid (109.8 mg, 54%). ¹H **NMR** (300 MHz, CDCl₃) δ 7.69-7.67 (m, 2H), 7.42-7.37 (m, 2H), 7.33-7.27 (m, 1H), 7.16-7.08 (m, 5H), 7.03-6.95 (m, 4H), 5.59 (s, 1H), 3.10 (s, 1H), 2.42 (s, 4H); ¹³C **NMR** (75 MHz, CDCl₃) δ 145.0, 143.2, 137.8, 135.6, 128.51, 128.48, 127.7, 127.4, 126.9, 126.8, 126.1, 125.4, 80.7, 77.6, 15.6; **HRMS** (ESI) calculated for C₂₁H₂₀O₂SNa [M+Na]⁺ m/z 359.1076, found 359.1073.

2-(3-Methoxyphenyl)-1,1-diphenylethane-1,2-diol (11)^[2]

According to **GP1** with benzophenone (109.8 mg, 0.60 mmol, 1.0 equiv), 3-methoxybenzaldehyde (219 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **11** as white solid (112.6 mg, 59%). ¹H NMR (300 MHz, CDCl₃) δ 7.70-7.67 (m, 2H), 7.42-7.37 (m, 2H), 7.32-7.29 (m, 1H), 7.19-7.04 (m, 6H), 6.74-6.66 (m, 2H), 6.55-6.49 (m, 1H), 5.60 (s, 1H), 3.59 (s, 3H), 3.10 (brs, 1H), 2.47 (brs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 158.7, 149.9, 143.4, 140.3, 128.4, 127.7, 127.4, 127.0, 126.8, 126.2, 120.3, 113.8, 113.2, 80.7, 77.9, 55.1; **HRMS** (ESI) calculated for C₂₁H₂₀O₃Na [M+Na]⁺ m/z 343.1305, found 343.1305.

1,1-Diphenyl-2-(o-tolyl)ethane-1,2-diol (12)^[2]

According to **GP1** with benzophenone (109.6 mg, 0.60 mmol, 1.0 equiv), 2-methylbenzaldehyde (208 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **12** as white solid (142.3 mg, 78%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.70-7.67 (m, 2H), 7.65-7.62 (m, 1H), 7.45-7.40 (m, 2H), 7.36-7.31 (m, 1H), 7.21-7.16 (m, 1H), 7.15-7.09 (m, 1H), 7.06-6.98 (m, 3H), 6.95-6.91 (m, 2H), 6.87 (d, *J* = 7.3 Hz, 1H), 5.81 (s, 1H), 3.37 (brs, 1H), 2.32 (brs, 1H), 1.70 (s, 3H); ¹³C **NMR** (75 MHz, CDCl₃) δ 145.3, 142.8, 137.2, 136.7, 129.6, 128.4, 128.2, 127.7, 127.43, 127.36, 127.19, 127.17, 126.9, 125.5, 80.9, 72.6, 19.1; **HRMS** (ESI) calculated for C₂₁H₂₀O₂Na [M+Na]⁺ m/z 327.1356, found 327.1339.

2-(2-Hydroxy-4-methylphenyl)-1,1-diphenylethane-1,2-diol (13)

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), 2-hydroxy-4-methylbenzaldehyde (245.2 mg, 1.80 mmol, 3.0 equiv), and nBu_4NBF_4 (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 5:1) to afford the desired

product **13** as white solid (107.6 mg, 56%). ¹**H NMR** (400 MHz, CDCl₃) δ 8.50 (s, 1H), 7.59-7.57 (m, 2H), 7.38-7.34 (m, 2H), 7.31-7.27 (m, 1H), 7.24-7.21 (m, 2H), 7.16-7.07 (m, 3H), 6.57 (s, 1H), 6.45 (d, *J* = 7.6 Hz, 1H), 6.36 (dd, *J* = 7.6, 0.8 Hz, 1H), 5.64 (s, 1H), 3.86 (s, 1H), 3.01 (brs, 1H), 2.16 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 154.9, 143.8, 143.0, 139.5, 130.8, 128.5, 127.9, 127.7, 127.0, 126.9, 125.8, 120.8, 120.3, 118.2, 82.1, 79.3, 20.9; **HRMS** (ESI) calculated for C₂₁H₂₀O₃Na [M+Na]⁺ m/z 343.1305, found 343.1314.

2-(4-Hydroxy-3-methoxyphenyl)-1,1-diphenylethane-1,2-diol (14)

According to **GP1** with benzophenone (109.3 mg, 0.60 mmol, 1.0 equiv), 4-hydroxy-3-methoxybenzaldehyde (274.0 mg, 1.80 mmol, 3.0 equiv), and *n*Bu4NBF4 (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3:1) to afford the desired product **14** as white solid (119.3 mg, 59%). **¹H NMR** (300 MHz, CDCl₃) δ 7.72-7.63 (m, 2H), 7.42-7.37 (m, 2H), 7.32-7.25 (m, 1H), 7.19-7.07 (m, 5H), 6.73-6.64 (m, 2H), 6.39 (s, 1H), 5.55 (s, 1H), 5.23 (brs, 1H), 3.58 (s, 3H), 3.08 (brs, 1H), 2.46 (brs, 1H); **¹³C NMR** (75 MHz, CDCl₃) δ 145.5, 145.1, 144.8, 143.6, 130.5, 128.4, 127.7, 127.3, 127.0, 126.7, 126.3, 120.9, 113.4, 110.7, 80.7, 77.8, 55.7; **HRMS** (ESI) calculated for C₂₁H₂₀O₄Na [M+Na]⁺ m/z 359.1254, found 359.1254.

2-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-1,1-diphenylethane-1,2-diol (15)

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), 2,3-dihydrobenzo[*b*][1,4]dioxine-6-carbaldehyde (295.6 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **15** as white solid (153.8 mg, 74%). ¹H **NMR** (300 MHz, CDCl₃) δ 7.71-7.62 (m, 2H), 7.40-7.35 (m, 2H), 7.32-7.26 (m, 1H), 7.19-7.07 (m, 5H), 6.70 (d, *J* = 1.8 Hz, 1H), 6.59 (d, *J* = 8.4 Hz, 1H), 6.45 (dd, *J* = 8.4, 1.8 Hz, 1H), 5.51 (s, 1H), 4.22-4.12 (m, 4H), 3.12 (brs, 1H), 2.41 (brs, 1H); ¹³C **NMR** (75 MHz, CDCl₃)

δ 145.1, 143.5, 143.0, 142.7, 132.1, 128.4, 127.6, 127.3, 126.9, 126.7, 126.1, 121.3, 117.1, 116.1, 80.6, 77.4, 64.3, 64.2; **HRMS** (ESI) calculated for C₂₂H₂₀O₄Na [M+Na]⁺ m/z 371.1254, found 371.1254.

1,1-Diphenyl-2-(2,4,6-trimethoxyphenyl)ethane-1,2-diol (16)

According to **GP1** with benzophenone (109.4 mg, 0.60 mmol, 1.0 equiv), 2,4,6-trimethoxybenzaldehyde (353.5 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 5:1) to afford the desired product **16** as white solid (144.3 mg, 63%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.52-7.48 (m, 2H), 7.42-7.37 (m, 2H), 7.33-7.28 (m, 2H), 7.25-7.08 (m, 4H), 6.11 (d, *J* = 9.6 Hz, 1H), 5.99 (s, 2H), 4.28 (d, *J* = 10.2 Hz, 1H), 4.09 (brs, 1H), 3.75 (s, 3H), 3.50 (s, 6H); ¹³**C NMR** (75 MHz, CDCl₃) δ 160.5, 158.6, 146.2, 144.7, 127.6, 127.4, 127.1, 127.0, 126.6, 126.4, 108.0, 90.8, 81.6, 72.0, 55.5, 55.2; **HRMS** (ESI) calculated for C₂₃H₂₄O₅Na [M+Na]⁺ m/z 403.1516, found 403.1535.

2-(Furan-2-yl)-1,1-diphenylethane-1,2-diol (17)^[2]

According to **GP1** with benzophenone (109.6 mg, 0.60 mmol, 1.0 equiv), furan-2-carbaldehyde (150 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **17** as white solid (100.2 mg, 60%). ¹H NMR (300 MHz, CDCl₃) δ 7.67-7.58 (m, 2H), 7.38-7.10 (m, 9H), 6.21-6.19 (m, 1H), 6.12 (d, *J* = 3.2 Hz, 1H), 5.64 (s, 1H), 3.42 (s, 1H), 2.70 (brs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 152.7, 144.2, 143.5, 141.9, 128.4, 127.9, 127.3, 126.9, 126.4, 125.6, 110.2, 109.1, 80.4, 72.3; HRMS (ESI) calculated for C₁₈H₁₆O₃Na [M+Na]⁺ m/z 303.0992, found 303.0984.

2-(Dibenzo[b,d]furan-4-yl)-1,1-diphenylethane-1,2-diol (18)

According to **GP1** with benzophenone (109.8 mg, 0.60 mmol, 1.0 equiv), dibenzo[*b*,*d*]furan-4-carbaldehyde (353.2 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **18** as white solid (91.8 mg, 40%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.84 (d, *J* = 7.5 Hz, 1H), 7.77-7.70 (m, 3H), 7.42-7.38 (m, 5H), 7.32-7.23 (m, 2H), 7.20-7.16 (m, 3H), 6.97-6.83 (m, 3H), 6.26 (s, 1H), 3.52 (s, 1H), 2.86 (brs, 1H); ¹³C **NMR** (75 MHz, CDCl₃) δ 155.7, 153.9, 144.9, 143.0, 128.4, 127.4, 127.2, 127.1, 127.0, 126.8, 126.7, 126.2, 123.8, 123.56, 123.53, 122.6, 122.3, 120.5, 120.0, 111.3, 81.1, 73.4; **HRMS** (ESI) calculated for C₂₆H₂₀O₃Na [M+Na]⁺ m/z 403.1305, found 403.1320.

2-(Benzo[b]thiophen-3-yl)-1,1-diphenylethane-1,2-diol (19)

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), benzo[*b*]thiophene-3-carbaldehyde (292.2 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (198.1 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **19** as white solid (134.2 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.76-7.69 (m, 3H), 7.60-7.53 (m, 1H), 7.43-7.39 (m, 3H), 7.33-7.29 (m, 1H), 7.24-7.18 (m, 4H), 7.04-6.97 (m, 3H), 6.04 (s, 1H), 3.41 (s, 1H), 2.42 (brs, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.1, 143.2, 139.5, 138.5, 133.9, 128.5, 127.7, 127.5, 126.85, 126.82, 126.3, 126.1, 124.0, 123.8, 122.4, 121.8, 80.7, 72.5; HRMS (ESI) calculated for C₂₂H₁₈O₂SNa [M+Na]⁺ m/z 369.0920, found 369.0920.

2-(1-Methyl-1*H*-indol-3-yl)-1,1-diphenylethane-1,2-diol (20)^[3]

According to **GP1** with benzophenone (109.4 mg, 0.60 mmol, 1.0 equiv), 1-methyl-1*H*-indole-3-carbaldehyde (286.6 mg, 1.80 mmol, 3.0 equiv), and nBu_4NBF_4 (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 5:1) to afford the desired product **20** as white solid (135.8 mg, 66%). ¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.76-7.71 (m, 2H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.47-7.42 (m, 2H), 7.30 (d, *J* = 7.7 Hz, 2H), 7.26 (d, *J* = 8.2 Hz, 1H), 7.20-7.16 (m, 1H), 7.10-7.03 (m, 4H), 6.97-6.91 (m, 2H), 5.98 (d, *J* = 5.4 Hz, 1H), 5.52 (s, 1H), 5.07 (d, *J* = 5.5 Hz, 1H), 3.62 (s, 3H); ¹³**C NMR** (100 MHz, DMSO-*d*₆) δ 147.9, 146.5, 135.7, 129.0, 127.9, 127.4, 127.3, 127.0, 126.0, 125.9, 125.6, 120.5, 119.9, 118.2, 114.8, 109.1, 80.3, 70.3, 32.3; **HRMS** (ESI) calculated for C₂₃H₂₁NO₂Na [M+Na]⁺ m/z 366.1465, found 366.1471.

1,1-Diphenylheptane-1,2-diol (21)

According to **GP1** with benzophenone (109.6 mg, 0.60 mmol, 1.0 equiv), hexanal (221 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 9:1) to afford the desired product **21** as white solid (152.8 mg, 90%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.64-7.56 (m, 2H), 7.45-7.41 (m, 2H), 7.37-7.16 (m, 6H), 4.57 (d, *J* = 9.6 Hz, 1H), 2.99 (s, 1H), 1.80 (brs, 1H), 1.56-1.43 (m, 2H), 1.36-1.18 (m, 6H), 0.85 (t, *J* = 6.6 Hz, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 145.8, 143.8, 128.6, 128.2, 127.2, 126.7, 126.1, 125.5, 80.1, 75.7, 31.7, 30.2, 26.2, 22.6, 14.0; **HRMS** (ESI) calculated for C₁₉H₂₄O₂Na [M+Na]⁺ m/z 307.1669, found 307.1660.

2-Cyclohexyl-1,1-diphenylethane-1,2-diol (22)^[1]

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), cyclohexanecarbaldehyde (218 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **22** as white solid (170.2 mg, 96%). ¹H NMR (300 MHz, CDCl₃) δ 7.64-7.55 (m, 2H), 7.47-7.39 (m, 2H), 7.35-7.16 (m, 6H), 4.40 (d, *J* = 1.8 Hz, 1H), 3.07 (brs, 1H), 1.99 (d, *J* = 11.7 Hz, 1H), 1.85 (brs, 1H), 1.67-1.53 (m, 3H), 1.45-1.22 (m, 3H), 1.19-0.97 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 146.9, 144.1, 128.5, 128.1, 127.0, 126.6, 126.2, 125.5, 81.0, 78.7, 38.6, 32.3, 26.7, 26.6, 26.2, 26.1; HRMS (ESI) calculated for C₂₀H₂₄O₂Na [M+Na]⁺ m/z 319.1669, found 319.1641.

4-Methyl-1,1-diphenylpentane-1,2-diol (23)^[1]

According to **GP1** with benzophenone (109.8 mg, 0.60 mmol, 1.0 equiv), 3-methylbutanal (193 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 9:1) to afford the desired product **23** as white solid (150.6 mg, 93%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.63-7.57 (m, 2H), 7.46-7.40 (m, 2H), 7.36-7.16 (m, 6H), 4.67 (d, *J* = 10.4 Hz, 1H), 3.01 (brs, 1H), 1.83-1.73 (m, 2H), 1.50 (ddd, *J* = 14.2, 10.3, 3.9 Hz, 1H), 1.06 (ddd, *J* = 14.2, 10.2, 1.6 Hz, 1H), 0.89 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 6.8 Hz, 3H); ¹³**C NMR** (100 MHz, CDCl₃) δ 145.8, 143.8, 128.6, 128.2, 127.1, 126.7, 126.1, 125.5, 80.2, 73.7, 39.1, 24.8, 23.8, 21.4; **HRMS** (ESI) calculated for C₁₈H₂₂O₂Na [M+Na]⁺ m/z 293.1512, found 293.1510.

4,4-Dimethyl-1,1-diphenylpentane-1,2-diol (24)

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), 3,3-dimethylbutanal (226 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 9:1) to afford the desired product **24** as white solid (159.8 mg, 94%). ¹H NMR (300 MHz, CDCl₃) δ 7.67-7.57 (m, 2H), 7.50-7.42 (m, 2H), 7.37-7.15 (m, 6H), 4.71 (dd, *J* = 6.3, 3.4 Hz, 1H), 3.04 (brs, 1H), 1.72 (brs, 1H), 1.41-1.33 (m, 2H), 0.89 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 145.7, 128.6, 128.1, 127.1, 126.7, 126.0, 125.6, 81.0, 73.5, 43.7, 30.0; HRMS (ESI) calculated for C₁₉H₂₄O₂Na [M+Na]⁺ m/z 307.1669, found 307.1656.

1,1,4-Triphenylbutane-1,2-diol (25)

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), 3-phenylpropanal (237 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.5 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **25** as white solid (133.2 mg, 70%). ¹H NMR (300 MHz, CDCl₃) δ 7.58-7.50 (m, 2H), 7.36-7.17 (m, 11H), 7.15-7.08 (m, 2H), 4.56 (d, *J* = 9.6 Hz, 1H), 3.00 (brs, 1H), 2.92-2.83 (m, 1H), 2.68-2.58 (m, 1H), 1.89-1.76 (m, 1H), 1.73-1.62 (m, 1H), 1.56 (brs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 145.6, 143.5, 141.8, 128.7, 128.5, 128.3, 128.2, 127.2, 126.8, 126.0, 125.8, 125.5, 80.1, 74.8, 32.4, 31.7; HRMS (ESI) calculated for C₂₂H₂₂O₂Na [M+Na]⁺ m/z 341.1512, found 341.1495.

6-Chloro-1,1-diphenylhexane-1,2-diol (26)

According to GP1 with benzophenone (109.3 mg, 0.60 mmol, 1.0 equiv),

5-chloropentanal (216 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.7 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **26** as white solid (121.3 mg, 66%). ¹H NMR (300 MHz, CDCl₃) δ 7.61-7.53 (m, 2H), 7.45-7.38 (m, 2H), 7.36-7.15 (m, 6H), 4.53 (d, *J* = 8.4 Hz, 1H), 3.45 (t, *J* = 6.4 Hz, 2H), 3.09 (brs, 1H), 1.96 (brs, 1H), 1.76-1.62 (m, 2H), 1.52-1.40 (m, 2H), 1.35-1.26 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 145.5, 143.6, 128.6, 128.2, 127.2, 126.8, 126.0, 125.4, 80.1, 75.6, 44.9, 32.4, 29.4, 23.9; HRMS (ESI) calculated for C₁₈H₂₁ClO₂Na [M+Na]⁺ m/z 327.1122, found 327.1124.

1,1-Diphenyl-2-(tetrahydro-2*H*-pyran-4-yl)ethane-1,2-diol (27)

According to **GP1** with benzophenone (109.6 mg, 0.60 mmol, 1.0 equiv), tetrahydro-2*H*-pyran-4-carbaldehyde (187 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3:1) to afford the desired product **27** as white solid (114.6 mg, 64%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.62-7.55 (m, 2H), 7.46-7.40 (m, 2H), 7.36-7.18 (m, 6H), 4.43-4.38 (m, 1H), 3.88-3.80 (m, 2H), 3.21-3.12 (m, 2H), 3.12 (s, 1H), 2.05 (d, *J* = 4.7 Hz, 1H), 1.88-1.78 (m, 1H), 1.71-1.55 (m, 3H), 1.15-1.07 (m, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 146.5, 143.8, 128.6, 128.2, 127.2, 126.8, 126.0, 125.4, 80.8, 77.8, 67.9, 67.8, 36.0, 31.4, 27.3; **HRMS** (ESI) calculated for C₁₉H₂₂NaO₃ [M+Na]⁺ m/z 321.1461, found 321.1461.

tert-Butyl 4-(1,2-dihydroxy-2,2-diphenylethyl)piperidine-1-carboxylate (28)

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), *tert*-butyl 4-formylpiperidine-1-carboxylate (383.9 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 5:1) to afford the desired product **28** as white solid (154.8 mg, 65%). ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.56

(m, 2H), 7.46-7.41 (m, 2H), 7.36-7.18 (m, 6H), 4.44 (d, J = 4.4 Hz, 1H), 4.01 (brs, 2H), 3.13 (s, 1H), 2.60-2.30 (m, 2H), 2.07 (d, J = 5.0 Hz, 1H), 1.96 (d, J = 12.7 Hz, 1H), 1.57-1.36 (m, 3H), 1.42 (s, 9H), 1.29-1.21 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.7, 146.5, 143.8, 128.6, 128.2, 127.2, 126.8, 126.0, 125.3, 80.9, 79.2, 77.7, 37.1, 30.8, 28.4, 26.2; **HRMS** (ESI) calculated for C₂₄H₃₁NNaO₄ [M+Na]⁺ m/z 420.2145, found 420.2145.

4-(5-Methylfuran-2-yl)-1,1-diphenylbutane-1,2-diol (29)

According to **GP1** with benzophenone (109.6 mg, 0.60 mmol, 1.0 equiv), 3-(5-methylfuran-2-yl)propanal (240 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **29** as white solid (120.6 mg, 62%). ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.53 (m, 2H), 7.40-7.16 (m, 8H), 5.86-5.79 (m, 2H), 4.60 (d, *J* = 9.9 Hz, 1H), 3.02 (s, 1H), 2.81-2.74 (m, 1H), 2.69-2.61 (m, 1H), 2.24 (s, 3H), 1.93 (d, *J* = 3.2 Hz, 1H), 1.83-1.65 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.7, 150.4, 145.6, 143.5, 128.6, 128.2, 127.2, 126.8, 126.0, 125.5, 105.82, 105.79, 80.1, 74.8, 28.8, 24.7, 13.5; HRMS (ESI) calculated for C₂₁H₂₂NaO₃ [M+Na]⁺ m/z 345.1461, found 345.1461.

2-Phenyl-1,1-di-p-tolylethane-1,2-diol (30)^[4]

According to **GP1** with di-*p*-tolylmethanone (126.5 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **30** as white solid (87.6 mg, 46%). ¹H NMR (300 MHz, CDCl₃) δ 7.59-7.52 (m, 2H), 7.21-7.11 (m, 5H), 7.08-7.04 (m, 2H), 7.03-6.97 (m, 2H), 6.94-6.87 (m, 2H), 5.57 (s, 1H), 3.03 (s, 1H), 2.43 (brs, 1H), 2.35 (s, 3H), 2.21 (s, 3H); ¹³C NMR (75 MHz,

CDCl₃) δ 142.2, 140.6, 138.9, 136.9, 136.2, 129.1, 128.3, 128.1, 127.6, 127.4, 126.7, 126.0, 80.6, 78.0, 21.0, 20.9; **HRMS** (ESI) calculated for C₂₂H₂₂O₂Na [M+Na]⁺ m/z 341.1512, found 341.1521.

1,1-Bis(4-chlorophenyl)-2-phenylethane-1,2-diol (31)

According to **GP1** with bis(4-chlorophenyl)methanone (150.9 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and nBu_4NBF_4 (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **31** as white solid (175.3 mg, 81%). ¹H NMR (300 MHz, CDCl₃) δ 7.55-7.49 (m, 2H), 7.37-7.30 (m, 2H), 7.20-7.11 (m, 3H), 7.07-7.03 (m, 2H), 7.00-6.94 (m, 4H), 5.43 (s, 1H), 3.30 (brs, 1H), 2.51 (brs, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 143.4, 141.6, 138.4, 133.4, 132.7, 128.6, 128.5, 128.1, 128.0, 127.8, 127.7, 127.6, 80.0, 77.7; HRMS (ESI) calculated for C₂₀H₁₆Cl₂O₂Na [M+Na]⁺ m/z 381.0420, found 381.0419.

1,1-Bis(4-fluorophenyl)-2-phenylethane-1,2-diol (32)^[4]

According to **GP1** with bis(4-fluorophenyl)methanone (131.2 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **32** as white solid (124.7 mg, 64%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.61-7.56 (m, 2H), 7.21-7.12 (m, 3H), 7.09-6.98 (m, 6H), 6.80-6.74 (m, 2H), 5.48 (s, 1H), 3.25 (s, 1H), 2.49 (brs, 1H); ¹³**C NMR** (100 MHz, CDCl₃) δ 162.0 (d, *J*_{C-F} = 245.2 Hz), 161.6 (d, *J*_{C-F} = 244.5 Hz), 140.8 (d, *J*_{C-F} = 3.3 Hz), 139.1 (d, *J*_{C-F} = 3.0 Hz), 138.6, 129.0 (d, *J*_{C-F} = 8.0 Hz), 128.1 (d, *J*_{C-F} = 8.0 Hz), 128.0, 127.6, 115.1 (d, *J*_{C-F} = 21.1 Hz), 114.4 (d, *J*_{C-F} = 21.2 Hz), 80.0, 78.0; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.01 – -115.09 (m), -115.77 – -115.84 (m); **HRMS** (ESI) calculated for C₂₀H₁₆F₂O₂Na [M+Na]⁺ m/z

349.1011, found 349.1010.

1-(3,4-Dimethylphenyl)-1,2-diphenylethane-1,2-diol (33)

According to **GP1** with (3,4-dimethylphenyl)(phenyl)methanone (126.2 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **33** as white solid (106.4 mg, 56%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.68-7.63 (m, 1H), 7.44-7.35 (m, 2H), 7.30-7.26 (m, 0.5H), 7.18-7.02 (m, 8H), 6.89-6.86 (m, 1.5H), 5.58 (s, 0.5H), 5.57 (s, 0.5H), 3.10 (brs, 0.5H), 3.02 (brs, 0.5H), 4.44 (brs, 1H), 2.27 (s, 1.5H), 2.26 (s, 1.5H), 2.13 (s, 1.5H), 2.08 (s, 1.5H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 145.0, 143.4, 142.5, 140.8, 138.9, 138.7, 136.8, 135.8, 135.7, 135.0, 130.0, 128.9, 128.3, 128.2, 128.13, 128.06, 127.58, 127.56, 127.5, 127.41, 127.38, 127.36, 127.2, 126.9, 126.6, 126.0, 124.0, 123.6, 80.63, 80.62, 78.0, 77.9, 20.1, 19.8, 19.4, 19.3; HRMS (ESI) calculated for C₂₂H₂₂O₂Na [M+Na]⁺ m/z 341.1512, found 341.1527.

1-(Naphthalen-2-yl)-1,2-diphenylethane-1,2-diol (34)^[2]

According to **GP1** with naphthalen-2-yl(phenyl)methanone (139.6, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and nBu_4NBF_4 (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **34** as white solid (168.7 mg, 83%). The diastereomeric ratio is 1.3:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 8.19 (s, 0.56H), 7.90-7.81 (m, 2H), 7.71-7.04 (m, 14.56H), 5.713 (s, 0.56H), 5.705 (s, 0.44H), 3.30 (s, 0.56H), 3.27 (s, 0.44H), 2.56 (d, *J* = 3.2 Hz, 0.56H), 2.53 (d, *J* = 3.3 Hz, 0.44H); ¹³C NMR (100 MHz,

CDCl₃) δ two isomers: 144.9, 143.2, 142.4, 140.8, 138.8, 138.7, 133.0, 132.7, 132.5, 132.1, 128.5, 128.4, 128.23, 128.22, 128.1, 128.0, 127.72, 127.71, 127.6, 127.50, 127.46, 127.4, 127.3, 127.2, 127.0, 126.7, 126.3, 126.20, 126.18, 125.8, 125.3, 125.0, 124.5, 80.9, 77.9, 77.7; **HRMS** (ESI) calculated for C₂₄H₂₀O₂Na [M+Na]⁺ m/z 363.1356, found 363.1371.

1,2-Diphenyl-1-(p-tolyl)ethane-1,2-diol (35)^[2]

According to **GP1** with phenyl(*p*-tolyl)methanone (117.9 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **35** as white solid (103.2 mg, 57%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.67-7.61 (m, 1H), 7.57-7.51 (m, 1H), 7.39-7.35 (m, 1H), 7.29-7.26 (m, 0.5H), 7.22-6.98 (m, 9.5H), 6.94-6.87 (m, 1H), 5.55 (s, 0.5H), 5.54 (s, 0.5H), 3.14 (brs, 0.5H), 3.10 (brs, 0.5H), 2.52 (brs, 0.5H), 2.50 (brs, 0.5H), 2.35 (s, 1.5H), 2.21 (s, 1.5H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 145.1, 143.4, 142.1, 140.4, 138.9, 138.8, 137.0, 136.2, 129.1, 128.35, 128.31, 128.1, 128.0, 127.6, 127.5, 127.40, 127.36, 127.2, 126.9, 126.8, 126.6, 126.1, 126.0, 80.64, 80.62, 77.92, 77.91, 21.0, 20.9; **HRMS** (ESI) calculated for C₂₁H₂₀O₂Na [M+H]⁺ m/z 327.1356, found 327.1369.

1-(4-Chlorophenyl)-1,2-diphenylethane-1,2-diol (36)

According to **GP1** with (4-chlorophenyl)(phenyl)methanone (130.5 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 μ L, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **36** as white solid (138.3 mg, 71%). The diastereomeric ratio is 1.4:1 determined by ¹H

NMR. ¹**H** NMR (400 MHz, CDCl₃) δ two isomers: 7.67-7.59 (m, 1H), 7.58-7.53 (m, 1H), 7.41-7.37 (m, 1H), 7.34-7.30 (m, 1.42H), 7.19-6.98 (m, 9.58H), 5.51 (d, *J* = 2.9 Hz, 0.42H), 5.50 (d, *J* = 3.1 Hz, 0.58H), 3.27 (brs, 0.42H), 3.19 (brs, 0.58H), 2.51 (brs, 0.42H), 2.50 (brs, 0.58H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 144.8, 143.7, 143.0, 141.9, 138.7, 138.5, 133.1, 132.5, 128.7, 128.5, 128.3, 128.1, 128.0, 127.9, 127.8, 127.69, 127.66, 127.57, 127.55, 127.52, 126.9, 126.1, 80.40, 80.36, 77.8, 77.7; **HRMS** (ESI) calculated for C₂₀H₁₇ClO₂Na [M+Na]⁺ m/z 347.0809, found 347.0809.

1-([1,1'-Biphenyl]-4-yl)-1,2-diphenylethane-1,2-diol (37)^[2]

According to **GP1** with [1,1'-biphenyl]-4-yl(phenyl)methanone (155.4 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **37** as white solid (193.8 mg, 88%). The diastereomeric ratio is 1.3:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ two isomers: 7.77-7.71 (m, 2H), 7.64-7.59 (m, 2H), 7.51-7.26 (m, 6H), 7.29-7.26 (m, 9H), 5.65 (s, 0.56H), 5.64 (s, 0.44H), 3.20 (brs, 0.56H), 3.18 (brs, 0.44H), 2.48 (d, *J* = 3.1 Hz, 0.56H), 2.45 (d, *J* = 3.1 Hz, 0.54H); ¹³C NMR (75 MHz, CDCl₃) δ two isomers: 144.9, 144.1, 143.2, 142.4, 140.6, 140.1, 139.4, 138.8, 138.7, 128.8, 128.7, 128.5, 128.09, 128.06, 127.75, 127.66, 127.50, 127.49, 127.4, 127.3, 127.2, 127.13, 127.07, 126.96, 126.92, 126.8, 126.6, 126.3, 126.1, 80.69, 80.66, 78.01, 77.97; **HRMS** (ESI) calculated for C₂₆H₂₂O₂Na [M+Na]⁺ m/z 389.1512, found 389.1510.

9-(Hydroxy(phenyl)methyl)-9H-fluoren-9-ol (38)^[5]

According to **GP1** with 9*H*-fluoren-9-one (108.6 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 μ L, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column

chromatography (petroleum ether/EtOAc = 5:1) to afford the desired product **38** as white solid (141.9 mg, 82%). ¹**H NMR** (300 MHz, CDCl₃) δ 7.66-7.63 (m, 1H), 7.58-7.54 (m, 1H), 7.39-7.35 (m, 2H), 7.20-7.21 (m, 4H), 7.02-6.96 (m, 1H), 6.92-6.87 (m, 2H), 6.75-6.72 (m, 2H), 5.24 (s, 1H), 3.26 (brs, 1H), 2.96 (brs, 1H); ¹³**C NMR** (75 MHz, CDCl₃) δ 145.8, 144.7, 140.2, 140.1, 137.5, 129.3, 129.1, 127.4, 127.31, 127.30, 127.2, 126.8, 125.7, 124.2, 119.8, 119.6, 84.8, 79.4; **HRMS** (ESI) calculated for C₂₀H₁₆O₂Na [M+Na]⁺ m/z 311.1043, found 311.1053.

1,2-Diphenyl-1-(thiophen-2-yl)ethane-1,2-diol (39)

According to **GP1** with phenyl(thiophen-2-yl)methanone (113.6 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **39** as white solid (103.8 mg, 58%). The diastereomeric ratio is 1.3:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.71-7.63 (m, 1H), 7.41-7.37 (m, 1H), 7.34-7.28 (m, 1H), 7.25-7.11 (m, 7H), 7.03-7.01 (m, 1H), 6.81 (dd, *J* = 5.1, 3.6 Hz, 1H), 6.71 (dd, *J* = 3.6, 1.2 Hz, 1H), 5.45 (s, 0.38H), 5.45 (s, 0.50H), 3.54 (s, 0.50H), 3.23 (s, 0.38H), 2.68 (s, 0.50H), 2.48 (s, 0.38H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 150.4, 148.3, 143.5, 142.0, 138.2, 138.0, 128.3, 128.0, 127.94, 127.88, 127.78, 127.76, 127.6, 127.4, 127.1, 126.7, 126.37, 126.35, 125.9, 125.6, 125.0, 124.9, 124.6, 80.2, 79.9, 79.8, 79.7; HRMS (ESI) calculated for C₁₈H₁₆O₂SNa [M+Na]⁺ m/z 319.0763, found 319.0777.

Ethyl 2,3-dihydroxy-2,3-diphenylpropanoate (40)

According to **GP2** with ethyl 2-oxo-2-phenylacetate (96 μ L, 0.60 mmol, 1.0 equiv), benzaldehyde (122 μ L, 1.20 mmol, 2.0 equiv), and *n*Bu₄NBF₄ (197.7 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column

chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **40** as white solid (138.5 mg, 81%). The diastereomeric ratio is 1.2:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ two isomers: 7.84-7.76 (m, 1H), 7.52-7.31 (m, 4.5H), 7.23-7.09 (m, 4.5H), 5.40 (brs, 1H), 4.37 (q, *J* = 7.1 Hz, 1H), 4.07 (qd, *J* = 7.2, 1.3 Hz, 0.45H), 4.04 (brs, 1H), 3.74 (brs, 0.45H), 2.94 (brs, 0.55H), 2.70 (brs, 0.45H), 1.37 (t, *J* = 7.1 Hz, 1.65H), 1.19 (t, *J* = 7.2 Hz, 1.35H); ¹³C NMR (75 MHz, CDCl₃) δ two isomers: 174.0, 172.5, 138.4, 138.3, 138.1, 137.9, 128.4, 128.3, 127.99, 127.98, 127.89, 127.81, 127.80, 127.7, 127.5, 126.5, 125.8, 81.7, 81.0, 78.2, 77.9, 63.1, 62.7, 14.1, 13.9; HRMS (ESI) calculated for C₁₇H₁₈O₄Na [M+Na]⁺ m/z 309.1097, found 309.1097.

Ethyl 2,3-dihydroxy-3-phenyl-2-(p-tolyl)propanoate (41)

According to **GP2** with ethyl 2-oxo-2-(*p*-tolyl)acetate (105 µL, 0.60 mmol, 1.0 equiv), benzaldehyde (122 µL, 1.20 mmol, 2.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **41** as white solid (153.8 mg, 85%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H **NMR** (400 MHz, CDCl₃) δ two isomers: 7.71-7.66 (m, 1H), 7.43-7.11 (m, 7H), 7.06-7.00 (m, 1H), 5.39 (d, *J* = 4.5 Hz, 0.5H), 5.37 (d, *J* = 2.7 Hz, 0.5H), 4.35 (qd, *J* = 7.1, 1.4 Hz, 1H), 4.06 (qd, *J* = 7.1, 1.4 Hz, 1H), 3.99 (brs, 0.5H), 3.69 (brs, 0.5H), 2.91 (d, *J* = 8.4 Hz, 0.5H), 2.65 (d, *J* = 6.7 Hz, 0.5H), 2.37 (brs, 1.5H), 2.27 (brs, 1.5H), 1.36 (t, *J* = 7.1 Hz, 1.5H), 1.19 (t, *J* = 7.1 Hz, 1.5H); ¹³C **NMR** (100 MHz, CDCl₃) δ two isomers: 174.2, 172.7, 138.5, 138.3, 138.0, 137.6, 135.4, 135.0, 129.1, 128.7, 128.3, 128.0, 127.9, 127.8, 127.6, 127.5, 126.4, 125.7, 81.7, 80.9, 78.1, 77.8, 63.0, 62.6, 21.1, 21.0, 14.1, 13.9; **HRMS** (ESI) calculated for C₁₈H₂₀NaO₄ [M+Na]⁺ m/z 323.1254, found 323.1254.

Ethyl 2-(4-chlorophenyl)-2,3-dihydroxy-3-phenylpropanoate (42)

According to **GP2** with ethyl 2-(4-chlorophenyl)-2-oxoacetate (127.8 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (122 µL, 1.20 mmol, 2.0 equiv), and *n*Bu₄NBF₄ (197.7 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **42** as white solid (117.3 mg, 61%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.76-7.70 (m, 1H), 7.46-7.32 (m, 5H), 7.21-7.09 (m, 3H), 5.37-5.32 (m, 1H), 4.44-4.33 (m, 1H), 4.14-4.03 (m, 1H), 4.07 (brs, 0.5H), 3.75 (brs, 0.5H), 2.83 (d, *J* = 8.1 Hz, 0.5H), 2.68 (d, *J* = 7.2 Hz, 0.5H), 1.38 (t, *J* = 7.1 Hz, 1.5H), 1.19 (t, *J* = 7.2 Hz, 1.5H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 173.7, 172.2, 138.2, 137.8, 137.0, 136.5, 134.3, 133.9, 128.5, 128.4, 128.13, 128.06, 128.0, 127.9, 127.8, 127.7, 127.3, 81.4, 80.7, 78.2, 77.9, 63.3, 62.9, 14.1, 13.8; HRMS (ESI) calculated for C₁₇H₁₇ClNaO₄ [M+Na]⁺ m/z 343.0708, found 343.0708.

Ethyl 2,3-dihydroxy-3-phenyl-2-(thiophen-2-yl)propanoate (43)

According to **GP2** with ethyl 2-oxo-2-(thiophen-2-yl)acetate (89 µL, 0.60 mmol, 1.0 equiv), benzaldehyde (122 µL, 1.20 mmol, 2.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **43** as white solid (115.8 mg, 66%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H **NMR** (300 MHz, CDCl₃) δ two isomers: 7.40-7.28 (m, 4H), 7.21-7.16 (m, 2H), 7.12 (dd, *J* = 5.1, 1.1 Hz, 0.5H), 7.08-7.03 (m, 1H), 6.89 (dd, *J* = 5.0, 3.7 Hz, 0.5H), 5.24 (s, 0.5H), 5.22 (s, 0.5H), 4.41 (q, *J* = 7.1 Hz, 1H), 4.28 (brs, 0.5H), 4.18-4.06 (m, 1H), 4.04 (brs, 0.5H), 2.80 (brs, 1H), 1.41 (t, *J* = 7.1, 1.5H), 1.22 (t, *J* = 7.1, 1.5H); ¹³C **NMR** (75 MHz, CDCl₃) δ two isomers: 173.0, 171.6, 142.9, 142.4, 137.9, 137.8, 128.5, 128.0, 127.7, 127.61, 127.60, 127.2, 126.8, 125.9, 125.5, 125.4, 124.8, 80.6, 80.4, 79.2, 79.1, 63.4, 63.0, 14.0, 13.8; **HRMS** (ESI) calculated for $C_{15}H_{16}NaO_4S$ $[M+H]^+ m/z$ 315.0662, found 315.0662.

3-Hydroxy-3-(hydroxy(phenyl)methyl)-2-methylisoindolin-1-one (44)^[6]

According to **GP1** with 2-methylisoindoline-1,3-dione (96.9 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and nBu_4NBF_4 (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 1:2) to afford the desired product **44** as white solid (48.8 mg, 30%). The diastereomeric ratio is 1.7:1 determined by ¹H NMR. ¹H NMR (400 MHz, DMSO- d_6) δ two isomers: 7.90-7.84 (m, 0.37H), 7.58 (td, J = 7.4, 1.4 Hz, 0.37H), 7.55-7.50 (m, 0.63H), 7.45-7.32 (m, 2.16H), 7.27-7.22 (m, 3.15H), 7.07-7.00 (m, 1.08H), 6.93-6.91 (m, 0.72H), 6.71 (s, 0.37H), 6.61-6.59 (m, 1.24H), 5.80 (d, J = 4.0 Hz, 0.37H), 5.67 (d, J = 4.7 Hz, 0.63H), 5.05 (d, J = 4.0 Hz, 0.37H), 5.03 (d, J = 4.7 Hz, 0.63H), 3.02 (s, 1.89H), 2.89 (s, 1.11H); ¹³C NMR (100 MHz, DMSO- d_6) δ two isomers: 166.4, 166.2, 145.7, 145.0, 140.5, 139.7, 132.9, 132.1, 131.0, 130.3, 128.91, 128.85, 127.9, 127.2, 127.1, 126.97, 126.96, 126.89, 124.6, 123.7, 121.6, 121.5, 91.4, 91.0, 75.3, 73.4, 24.6, 24.2; HRMS (ESI) calculated for C₁₆H₁₆NO₃ [M+H]⁺ m/z 270.1125, found 270.1149.

3-Hydroxy-3-(hydroxy(phenyl)methyl)isoindolin-1-one (45)^[7]

According to **GP1** with isoindoline-1,3-dione (88.6 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 μ L, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (EtOAc) to afford the desired product **45** as white solid (86.5 mg, 56%). The diastereomeric ratio is 1.5:1 determined by ¹H NMR. ¹H NMR (400 MHz, DMSO-*d*₆) δ two isomers: 8.65 (brs, 0.4H), 8.62 (brs, 0.6H), 7.74-7.68 (m, 0.6H),

7.57-7.53 (m, 0.6H), 7.47-7.43 (m, 0.4H), 7.40-7.33 (m, 2.2H), 7.21-7.07 (m, 5.2H), 6.50 (brs, 0.6H), 6.43 (brs, 0.4H), 5.68 (d, J = 3.9 Hz, 0.6H), 5.62 (d, J = 4.2 Hz, 0.4H), 4.99 (d, J = 3.9 Hz, 0.4H), 4.93 (d, J = 3.6 Hz, 0.6H); ¹³C NMR (100 MHz, DMSO- d_6) δ two isomers: 168.2, 167.8, 147.00, 146.98, 140.4, 140.1, 132.7, 132.5, 131.2, 131.0, 128.8, 128.7, 128.0, 127.8, 126.94, 126.91, 126.8, 124.3, 123.6, 122.0, 121.8, 89.4, 88.9, 76.7, 76.1; **HRMS** (ESI) calculated for C₁₅H₁₄NO₃ [M+H]⁺ m/z 256.0968, found 256.0985.

1,2-Diphenyl-2-(phenylamino)ethan-1-ol (46)^[2]

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.9 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **46** as white solid (121.3 mg, 70%). The diastereomeric ratio is 2.3:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.27-7.20 (m, 7.5H), 7.14-7.03 (m, 4.5H), 6.66-6.62 (m, 1H), 6.53-6.49 (m, 2H), 5.04 (s, 0.7H), 4.86 (d, *J* = 5.8 Hz, 0.3H), 4.65 (d, *J* = 4.8 Hz, 0.7H), 4.52 (d, *J* = 5.8 Hz, 0.3H), 5.04 (brs, 1H), 2.53 (brs, 0.3H), 2.31 (brs, 0.7H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 147.2, 146.7, 140.5, 140.2, 140.0, 138.4, 129.1, 129.0, 128.5, 128.25, 128.21, 128.20, 128.0, 127.9, 127.6, 127.5, 127.2, 126.52, 126.49, 117.9, 114.1, 113.9, 78.0, 77.1, 64.7, 63.7; **HRMS** (ESI) calculated for C₂₀H₂₀NO [M+H]⁺ m/z 290.1539, found 290.1538.

1-(4-(tert-Butyl)phenyl)-2-phenyl-2-(phenylamino)ethan-1-ol (47)^[2]

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.8 mg, 0.60 mmol, 1.0 equiv), 4-(*tert*-butyl)benzaldehyde (301 μ L, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **47** as colorless oil (105.8 mg, 51%). The diastereomeric ratio is 1.3:1

determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.29-7.14 (m, 8H), 7.04-6.99 (m, 3H), 6.62-6.59 (m, 1H), 6.49-6.45 (m, 2H), 4.91 (d, *J* = 5.0 Hz, 0.44H), 4.79 (d, *J* = 5.2 Hz, 0.56H), 4.59 (d, *J* = 5.1 Hz, 0.44H), 4.55 (brs, 1H), 4.50 (d, *J* = 5.3 Hz, 0.56H), 2.54 (brs, 0.56H), 2.35 (brs, 0.44H), 1.29 (s, 4H), 1.28 (s, 5H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 150.9, 15.07, 147.2, 146.8, 140.5, 138.9, 137.6, 136.9, 129.0, 128.9, 128.4, 128.2, 127.8, 127.4, 127.3, 127.2, 126.3, 126.2, 125.09, 125.07, 117.7, 117.5, 113.90, 113.87, 77.6, 77.1, 64.1, 63.6, 34.5, 34.4, 31.3; HRMS (ESI) calculated for C₂₄H₂₈NO [M+H]⁺ m/z 346.2165, found 346.2179.

1-(4-Methoxyphenyl)-2-phenyl-2-(phenylamino)ethan-1-ol (48)

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.7 mg, 0.60 mmol, 1.0 equiv), 4-methoxybenzaldehyde (219 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **48** as colorless oil (126.8 mg, 66%). The diastereomeric ratio is 1.5:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.24-7.12 (m, 6H), 7.07-6.98 (m, 3H), 6.81-6.76 (m, 2H), 6.66-6.61 (m, 1H), 6.53-6.47 (m, 2H), 4.95 (d, *J* = 4.8 Hz, 0.4H), 4.77 (d, *J* = 6.1 Hz, 0.6H), 4.59 (d, *J* = 5.0 Hz, 0.4H), 4.53 (brs, 1H), 4.46 (d, *J* = 6.2 Hz, 0.6H), 3.77 (s, 1.2H), 3.75 (s, 1.8H), 2.58 (brs, 0.6H), 2.32 (brs, 0.4H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 159.2, 159.1, 147.3, 146.8, 140.2, 138.7, 132.6, 131.9, 129.02, 128.99, 128.4, 128.2, 127.9, 127.8, 127.7, 127.5, 127.4, 127.3, 117.81, 117.78, 114.1, 113.9, 113.6, 113.5, 77.6, 76.8, 64.7, 63.6, 55.19, 55.17; **HRMS** (ESI) calculated for C₂₁H₂₂NO₂ [M+H]⁺ m/z 320.1645, found 320.1645.

1-(4-Fluorophenyl)-2-phenyl-2-(phenylamino)ethan-1-ol (49)

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (109.1 mg, 0.60 mmol, 1.0 equiv), 4-fluorobenzaldehyde (193 μ L, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel

column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **49** as colorless oil (96.7 mg, 52%). The diastereomeric ratio is 1.2:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.25-7.14 (m, 5H), 7.11-6.99 (m, 4H), 6.95-6.91 (m, 2H), 6.67-6.63 (m, 1H), 6.54-6.50 (m, 2H), 5.02 (d, *J* = 4.4 Hz, 0.46H), 4.79 (d, *J* = 6.2 Hz, 0.54H), 4.61 (d, *J* = 6.2 Hz, 0.46H), 4.51 (brs, 1H), 4.44 (d, *J* = 6.2 Hz, 0.54H), 2.72 (brs, 0.54H), 2.40 (brs, 0.46H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 162.33 (d, *J*_{C-F} = 244.8 Hz), 162.26 (d, *J*_{C-F} = 244.6 Hz), 147.1, 146.6, 139.9, 138.1, 136.3 (d, *J*_{C-F} = 3.1 Hz), 135.7 (d, *J*_{C-F} = 3.1 Hz), 129.10, 129.07, 128.6, 128.29, 128.26, 128.2, 128.1 (d, *J*_{C-F} = 8.4 Hz), 127.8, 127.6 (d, *J*_{C-F} = 9.2 Hz), 127.2, 118.1, 118.0, 115.0 (d, *J*_{C-F} = 21.3 Hz), 114.1 (d, *J*_{C-F} = 27.6 Hz), 77.4, 76.4, 64.9, 63.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.20, -114.34; HRMS (ESI) calculated for C₂₀H₁₉FNO [M+H]⁺ m/z 308.1445, found 308.1447.

1-(3-Methoxyphenyl)-2-phenyl-2-(phenylamino)ethan-1-ol (50)^[2]

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.9 mg, 0.60 mmol, 1.0 equiv), 3-methoxybenzaldehyde (219 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **50** as colorless oil (122.6 mg, 64%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.24-7.11 (m, 6H), 7.06-7.02 (m, 2H), 6.81-6.49 (m, 6H), 4.99 (d, *J* = 4.5 Hz, 0.5H), 4.78 (d, *J* = 5.8 Hz, 0.5H), 4.63 (d, *J* = 4.7 Hz, 0.5H), 4.55 (brs, 1H), 4.48 (d, *J* = 5.9 Hz, 0.5H), 3.68 (s, 1.5H), 3.62 (s, 1.5H), 2.73 (brs, 0.5H), 2.53 (brs, 0.5H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 159.4, 159.3, 147.2, 146.7, 142.2, 141.6, 140.2, 138.5, 129.14, 129.11, 129.02, 128.96, 128.4, 128.1, 127.8, 127.45, 127.39, 127.2, 118.8, 118.7, 117.80, 117.78, 114.0, 113.9, 113.8, 113.4, 112.0, 111.7, 77.8, 76.9, 64.6, 63.5, 55.1, 55.0; **HRMS** (ESI) calculated for C₂₁H₂₂NO₂ [M+H]⁺ m/z 320.1645, found 320.1648.

2-Phenyl-2-(phenylamino)-1-(o-tolyl)ethan-1-ol (51)^[2]

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.8 mg, 0.60 mmol, 1.0 equiv), 2-methylbenzaldehyde (208 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.7 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **51** as colorless oil (125.6 mg, 69%). The diastereomeric ratio is 1.2:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.68-7.59 (m, 0.55H), 7.30-6.93 (m, 10.45H), 6.66-6.62 (m, 1H), 6.60-6.43 (m, 2H), 5.29 (d, *J* = 4.2 Hz, 0.45H), 5.07 (d, *J* = 6.2 Hz, 0.55H), 4.76 (brs, 1H), 4.62 (d, *J* = 4.8 Hz, 0.45H), 4.51 (d, *J* = 6.2 Hz, 0.55H), 2.41 (brs, 0.45H), 2.27 (s, 1.35H), 2.17 (brs, 0.55H), 1.98 (s, 1.65H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 147.4, 146.7, 140.2, 139.0, 138.4, 138.2, 135.5, 135.1, 130.4, 130.2, 129.1, 129.0, 128.5, 128.14, 128.09, 127.73, 127.70, 127.6, 127.5, 127.1, 126.32, 126.28, 126.15, 125.9, 117.80, 117.78, 114.1, 113.9, 74.1, 73.6, 63.8, 62.2, 19.2, 19.0; **HRMS** (ESI) calculated for C₂₁H₂₂NO [M+H]⁺ m/z 304.1696, found 304.1699.

1-(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)-2-phenyl-2-(phenylamino)ethan-1-ol (52)

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.8 mg, 0.60 mmol, 1.0 equiv), 2,3-dihydrobenzo[*b*][1,4]dioxine-6-carbaldehyde (295.9 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 6:1) to afford the desired product **52** as colorless oil (95.8 mg, 46%). The diastereomeric ratio is 1.5:1 determined by ¹H NMR. ¹H **NMR** (400 MHz, CDCl₃) δ two isomers: 7.28-7.17 (m, 5H), 7.06-7.02 (m, 2H), 6.83 (d, *J* = 1.9 Hz, 0.6H), 6.76-6.73 (m, 1H), 6.68 (dd, *J* = 8.9, 1.9 Hz, 1H), 6.64-6.61 (m, 1H), 6.54 (dd, *J* = 8.3, 2.0 Hz, 0.4H), 6.52-6.47 (m, 2H), 4.85 (d, *J* = 5.1 Hz, 0.4H), 4.74 (d, *J* = 5.6 Hz, 0.6H), 4.56 (d, *J* = 5.3 Hz, 0.4H), 4.52 (brs, 1H), 4.46 (d, *J* = 5.6 Hz, 0.6H), 4.20 (s, 1.6H), 4.19 (s, 2.4H), 2.51 (brs, 0.6H), 2.27 (brs, 0.4H); ¹³C **NMR** (100 MHz, CDCl₃) δ two isomers: 147.2, 146.8, 143.34, 143.25, 143.1, 140.3, 138.9, 134.0, 133.3, 129.00, 128.98, 128.5, 128.3, 127.8, 127.6, 127.4, 127.2, 119.6, 119.5, 117.8, 117.7, 116.93, 116.89, 115.5, 115.4, 114.0, 113.9, 77.4, 76.8, 64.5, 64.3, 64.2, 63.6; **HRMS** (ESI) calculated for C₂₂H₂₂NO₃ [M+H]⁺ m/z 348.1594, found 348.1603.

1,4-Diphenyl-1-(phenylamino)butan-2-ol (53)

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.9 mg, 0.60 mmol, 1.0 equiv), 3-phenylpropanal (237 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **53** as colorless oil (99.7 mg, 52%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.32-7.23 (m, 7.5H), 7.19-7.04 (m, 5H), 6.66-6.51 (m, 2.5H), 4.58 (brs, 1H), 4.39 (d, *J* = 3.9 Hz, 0.5H), 4.32 (d, *J* = 4.5 Hz, 0.5H), 3.96 (d, *J* = 9.0 Hz, 0.5H), 3.83 (dt, *J* = 8.5, 4.3 Hz, 0.5H), 2.88-2.79 (m, 1H), 2.72-2.63 (m, 1H), 2.07-1.77 (m, 2H), 1.61-1.52 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 147.2, 146.9, 141.6, 141.5, 141.0, 138.8, 129.14, 129.10, 128.8, 128.6, 128.43, 128.39, 127.7, 127.6, 127.5, 126.9, 126.0, 125.9, 117.7, 117.6, 113.7, 113.6, 75.1, 73.8, 62.5, 62.3, 35.4, 35.3, 32.2, 32.1; **HRMS** (ESI) calculated for C₂₂H₂₄NO [M+H]⁺ m/z 318.1852, found 318.1854.

1-Cyclohexyl-2-phenyl-2-(phenylamino)ethan-1-ol (54)

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.7 mg, 0.60 mmol, 1.0 equiv), cyclohexanecarbaldehyde (218 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product **54** as colorless oil (101.3 mg, 57%). The diastereomeric ratio is 1.5:1 determined by ¹H NMR. ¹H NMR (300 MHz, CDCl₃) δ two isomers: 7.44-7.25 (m, 5H), 7.15-7.09 (m, 2H), 6.69-6.64 (m, 1H), 6.60-6.55 (m, 2H), 4.73 (brs, 1H), 4.62 (d, *J* = 3.9 Hz, 0.4H), 4.57 (d, *J* = 3.4 Hz, 0.6H), 3.73-6.63 (m, 0.4H), 3.56 (dd, *J* = 7.3, 3.3 Hz, 0.6H), 2.10-1.61 (m, 7H), 1.28-1.06 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ two isomers: 147.1, 146.8, 141.6, 139.1, 129.11, 129.09, 128.8, 128.6, 128.0, 127.5, 127.2, 126.9, 117.3, 117.1, 113.31, 113.26, 80.5, 78.8, 58.6, 58.3, 40.0, 39.5, 30.0, 29.4, 29.0, 28.3, 26.4, 26.3, 26.0, 25.9, 25.8, 25.7; **HRMS** (ESI) calculated for

C₂₀H₂₆NO [M+H]⁺ m/z 296.2009, found 296.2009.

4,4-Dimethyl-1-phenyl-1-(phenylamino)pentan-2-ol (55)

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.8 mg, 0.60 mmol, 1.0 equiv), 3,3-dimethylbutanal (226 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.7 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 9:1) to afford the desired product **55** as colorless oil (109.8 mg, 65%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.34-7.21 (m, 5H), 7.09-7.05 (m, 2H), 6.65-6.61 (m, 1H), 6.56-6.51 (m, 2H), 4.58 (brs, 1H), 4.31 (d, *J* = 4.0 Hz, 0.5H), 4.22 (d, *J* = 4.1 Hz, 0.5H), 3.96 (d, *J* = 6.0 Hz, 0.5H), 3.96-3.93 (m, 0.5H), 1.62-1.46 (m, 2H), 1.11-1.00 (m, 1H), 0.93 (s, 4.5H), 0.89 (s, 4.5H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 147.3, 147.0, 141.4, 139.1, 129.09, 129.07, 128.7, 128.5, 127.7, 127.41, 127.39, 126.9, 117.5, 117.4, 113.6, 113.5, 73.4, 72.1, 64.0, 63.5, 47.6, 47.2, 30.2, 30.1, 29.93, 29.90; HRMS (ESI) calculated for C₁₉H₂₆NO [M+H]⁺ m/z 284.2009, found 284.2015.

tert-Butyl 4-(1-hydroxy-2-phenyl-2-(phenylamino)ethyl)piperidine-1-carboxylate (56)

According to **GP3** with (*E*)-*N*,1-diphenylmethanimine (108.8 mg, 0.60 mmol, 1.0 equiv), *tert*-butyl 4-formylpiperidine-1-carboxylate (384.5 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3:1) to afford the desired product **56** as white soild (171.1 mg, 72%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H **NMR** (400 MHz, CDCl₃) δ two isomers: 7.39-7.24 (m, 5H), 7.10-7.06 (m, 2H), 6.66-6.62 (m, 1H), 6.55-6.51 (m, 2H), 4.64 (brs, 1H), 4.53-4.51 (m, 1H), 4.12 (brs, 2H), 3.69-3.65 (m, 0.5H), 3.53 (d, *J* = 7.3 Hz, 0.5H), 2.63 (brs, 2H), 2.01-1.96 (m, 1H), 1.81-1.73 (m, 2H), 1.67-1.61 (m, 1H), 1.450
(s, 4.5H), 1.445 (s, 4.5H), 1.41-1.19 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 154.7, 146.8, 146.6, 141.1, 138.8, 129.2, 129.1, 128.9, 128.7, 127.9, 127.8, 127.4, 126.8, 117.6, 117.3, 113.3, 79.7, 79.4, 79.3, 77.8, 58.9, 58.0, 38.5, 38.2, 28.9, 28.414, 28.407, 27.5; **HRMS** (ESI) calculated for C₂₄H₃₂N₂O₃Na [M+H]⁺ m/z 419.2305, found 419.2346.

2-(4-Methoxyphenyl)-1-phenyl-2-(phenylamino)ethan-1-ol (57)^[2]

According to **GP3** with (*E*)-1-(4-methoxyphenyl)-*N*-phenylmethanimine (127.4 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu4NBF4 (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **57** as colorless oil (126.5 mg, 66%). The diastereomeric ratio is 1.3:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.25-7.21 (m, 4H), 7.08-7.00 (m, 5H), 6.79-6.71 (m, 2H), 6.65-6.61 (m, 1H), 6.52-6.48 (m, 2H), 4.98 (d, *J* = 3.4 Hz, 0.43H), 4.77 (d, *J* = 6.0 Hz, 0.57H), 4.58 (d, *J* = 4.1 Hz, 0.43H), 4.51 (brs, 1H), 4.44 (d, *J* = 5.9 Hz, 0.57H), 3.72 (s, 1.3H), 3.71 (s, 1.7H), 2.68 (brs, 0.57H), 2.38 (brs, 0.43H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 158.9, 158.8, 147.3, 146.8, 140.6, 140.1, 132.0, 130.2, 129.02, 128.97, 128.89, 128.3, 128.1, 127.85, 127.76, 126.6, 126.5, 117.82, 117.76, 114.2, 113.9, 113.8, 113.6, 78.0, 77.1, 64.1, 63.0, 55.1; **HRMS** (ESI) calculated for C₂₁H₂₂NO₂ [M+H]⁺ m/z 320.1645, found 320.1645.

2-(4-Fluorophenyl)-1-phenyl-2-(phenylamino)ethan-1-ol (58)^[2]

According to **GP3** with (*E*)-1-(4-fluorophenyl)-*N*-phenylmethanimine (119.9 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 μ L, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash

silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **58** as colorless oil (96.1 mg, 52%). The diastereomeric ratio is 1.1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.26-7.23 (m, 3H), 7.17-7.15 (m, 1H), 7.11-7.00 (m, 5H), 6.90-6.85 (m, 2H), 6.67-6.63 (m, 1H), 6.50-6.47 (m, 2H), 5.01 (d, *J* = 4.3 Hz, 0.48H), 4.71 (d, *J* = 6.5 Hz, 0.52H), 4.59 (d, *J* = 4.5 Hz, 0.48H), 4.54 (brs, 1H), 4.44 (d, *J* = 6.5 Hz, 0.52H), 2.68 (brs, 0.52H), 2.42 (brs, 0.48H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 162.1 (d, *J*_{C-F} = 244.0 Hz), 162.0 (d, *J*_{C-F} = 244.1 Hz), 147.1. 146.5, 140.3, 139.8, 135.7 (d, *J*_{C-F} = 3.0 Hz), 133.9 (d, *J*_{C-F} = 3.1 Hz), 129.4 (d, *J*_{C-F} = 8.0 Hz), 129.1, 129.0, 128.8 (d, *J*_{C-F} = 8.0 Hz), 128.23, 128.20, 128.0, 126.6, 126.4, 118.0, 117.9, 115.3 (d, *J*_{C-F} = 21.4 Hz), 115.0 (d, *J*_{C-F} = 21.3 Hz), 114.1, 113.8, 78.1, 76.9, 64.1, 62.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -114.98, -114.98; HRMS (ESI) calculated for C₂₀H₁₉FNO [M+H]⁺ m/z 308.1445, found 308.1449.

2-((4-Fluorophenyl)amino)-1,2-diphenylethan-1-ol (59)

According to GP3 with (E)-N-(4-fluorophenyl)-1-phenylmethanimine (119.8 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and nBu4NBF4 (197.7 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product 59 as colorless oil (132.6 mg, 72%). The diastereomeric ratio is 1.1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.28-7.19 (m, 7H), 7.17-7.15 (m, 1H), 7.10-7.05 (m, 2H), 6.77-6.71 (m, 2H), 6.45-6.40 (m, 2H), 5.01 (d, J = 4.8 Hz, 0.47H), 4.80 (d, J = 6.2 Hz, 0.53H), 4.57 (d, J = 4.8 Hz, 0.47H), 4.41 (d, J = 6.2 Hz, 0.53H), 4.34 (brs, 1H), 2.66 (brs, 0.53H), 2.40 (brs, 0.47H); ¹³C **NMR** (100 MHz, CDCl₃) δ two isomers: 156.1 (d, $J_{C-F} = 234.2$ Hz), 156.0 (d, $J_{C-F} =$ 234.1 Hz), 143.6 (d, $J_{C-F} = 1.8$ Hz), 143.1 (d, $J_{C-F} = 1.8$ Hz), 140.5, 140.0, 139.9, 138.3, 128.6, 128.4, 128.3, 128.1, 128.0, 127.9, 127.7, 127.6, 127.4, 126.64, 126.57, 115.7 (d, $J_{C-F} = 5.9$ Hz), 115.4 (d, $J_{C-F} = 5.9$ Hz), 115.1 (d, $J_{C-F} = 7.4$ Hz), 114.9 (d, $J_{C-F} = 7.4$ Hz), 78.1, 77.2, 65.6, 64.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -127.331, -127.334; **HRMS** (ESI) calculated for $C_{20}H_{19}FNO [M+H]^+ m/z$ 308.1445, found 308.1446.

2-((4-Methoxyphenyl)amino)-1,2-diphenylethan-1-ol (60)^[8]

According to **GP3** with (*E*)-*N*-(4-methoxyphenyl)-1-phenylmethanimine (126.9 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu4NBF4 (197.9 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **60** as colorless oil (115.8 mg, 60%). The diastereomeric ratio is 2.3:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.25-7.05 (m, 10H), 6.68-6.60 (m, 2H), 6.54-6.43 (m, 2H), 5.00 (d, *J* = 4.5 Hz, 0.30H), 4.78 (d, *J* = 6.5 Hz, 0.70H), 4.58 (d, *J* = 4.7 Hz, 0.30H), 4.39 (d, *J* = 6.5 Hz, 0.70H), 4.30 (brs, 1H), 3.65 (s, 3H), 2.88 (brs, 0.70H), 2.5 (brs, 0.3H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 152.6, 152.5, 141.3, 140.8, 140.6, 140.2, 140.1, 138.8, 128.5, 128.3, 128.21, 128.19, 128.0, 127.91, 127.86, 127.6, 127.5, 127.4, 126.7, 126.6, 115.8, 115.5, 114.71, 114.69, 78.1, 77.2, 66.2, 64.7, 55.69, 55.68; HRMS (ESI) calculated for C₂₁H₂₂NO₂ [M+H]⁺ m/z 320.1645, found 320.1645.

4,8-Dimethyl-1,1-diphenylnon-7-ene-1,2-diol (61)

According to **GP1** with benzophenone (109.7 mg, 0.60 mmol, 1.0 equiv), 3,7-dimethyloct-6-enal (324 µL, 1.80 mmol, 3.0 equiv), and nBu_4NBF_4 (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 9:1) to afford the desired product **61** as white solid (189.7 mg, 93%). The diastereomeric ratio is 1:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.62-7.56 (m, 2H), 7.45-7.39 (m, 2H), 7.34-7.15 (m, 6H), 5.07 (q, *J* = 7.1 Hz, 1H), 4.67 (d, *J* = 9.6 Hz, 1H), 3.05 (brs, 1H), 1.97-1.81 (m, 3H), 1.68 (s, 1.5H), 1.65 (s, 1.5H), 1.60-1.53 (m, 1H), 1.58 (s, 1.5H), 1.57 (s, 1.5H), 1.49-1.28 (m, 1H), 1.26-0.97 (m, 3H), 0.88 (d, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 145.9, 145.8, 143.8, 143.8, 131.2, 131.1, 128.6, 128.5, 128.1, 127.1, 126.68, 126.67, 126.10, 126.09, 125.52, 125.21, 124.8, 124.7, 80.25, 80.18, 73.8, 73.4, 38.0, 37.5, 37.2, 35.6, 29.6, 29.0, 25.71, 25.68, 25.5,

25.2, 20.6, 18.8, 17.7, 17.6; **HRMS** (ESI) calculated for $C_{23}H_{30}O_2Na [M+Na]^+ m/z$ 361.2138, found 361.2138.

(*E*)-2-(4-((3,7-Dimethylocta-2,6-dien-1-yl)oxy)phenyl)-1,1-diphenylethane-1,2-dio l (62)

According to **GP1** with benzophenone (109.6 mg, 0.60 mmol, 1.0 equiv), (*E*)-4-((3,7-dimethylocta-2,6-dien-1-yl)oxy)benzaldehyde (465.5 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **62** as white solid (146.3 mg, 55%). ¹H NMR (300 MHz, CDCl₃) δ 7.71-7.61 (m, 2H), 7.41-7.36 (m, 2H), 7.31-7.26 (m, 1H), 7.16-7.05 (m, 5H), 7.01-6.91 (m, 2H), 6.72-6.64 (m, 2H), 5.56 (d, *J* = 3.0 Hz, 1H), 5.44 (t, *J* = 6.1 Hz, 1H), 5.09 (t, *J* = 5.9 Hz, 1H), 4.45 (d, *J* = 6.5 Hz, 2H), 3.14 (s, 1H), 2.39 (d, *J* = 3.1 Hz, 1H), 2.13-2.03 (m, 4H), 1.70 (s, 3H), 1.68 (s, 3H), 1.60 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.3, 145.1, 143.5, 141.0, 131.8, 130.8, 129.1, 128.4, 127.6, 127.3, 126.9, 126.6, 126.1, 123.8, 119.4, 113.7, 80.7, 77.5, 64.7, 39.5, 26.3, 25.7, 17.7, 16.6; HRMS (ESI) calculated for C₃₀H₃₄O₃Na [M+Na]⁺ m/z 465.2400, found 465.2416.

3-((1*S*,5*R*)-6,6-Dimethylbicyclo[3.1.1]hept-2-en-2-yl)-1,1-diphenylpropane-1,2-dio l (63)

According to **GP1** with benzophenone (109.5 mg, 0.60 mmol, 1.0 equiv), 2-((1*S*,5*R*)-6,6-dimethylbicyclo[3.1.1]hept-2-en-2-yl)acetaldehyde (295.8 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **63** as white solid (97.8 mg, 47%). ¹H **NMR** (300 MHz, CDCl₃) δ 7.65-7.61 (m, 2H), 7.41-7.32 (m, 4H), 7.26-7.20 (m, 3H), 7.14-7.08 (m, 1H), 5.33 (dd, *J* = 9.1, 2.6 Hz, 1H), 5.23 (dt, *J* = 9.1, 2.1 Hz, 1H), 3.20 (s, 1H), 2.55-2.22 (m, 4H), 1.92-1.65 (m, 4H), 1.34-1.26 (m, 1H), 1.10 (s, 3H), 0.14 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 149.2, 145.8, 143.8, 128.3, 127.9, 127.1, 126.6,

126.5, 125.8, 118.9, 79.7, 71.5, 52.6, 40.5, 40.4, 27.3, 25.8, 23.5, 21.5, 19.7; **HRMS** (ESI) calculated for C₂₄H₂₈O₂Na [M+Na]⁺ m/z 371.1982, found 371.1996.

3-(4-Isobutylphenyl)-1,1-diphenylbutane-1,2-diol (64)

According to **GP1** with benzophenone (109.6 mg, 0.60 mmol, 1.0 equiv), 2-(4-isobutylphenyl)propanal (342.7 mg, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.7 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **64** as colorless oil (101.3 mg, 45%). ¹**H NMR** (400 MHz, CDCl₃) δ 7.57-7.50 (m, 2H), 7.49-7.44 (m, 2H), 7.31-7.24 (m, 4H), 7.20-7.15 (m, 2H), 7.04-6.99 (m, 4H), 4.69 (dd, *J* = 4.0, 2.5 Hz, 1H), 3.07 (s, 1H), 2.86-2.81 (m, 1H), 2.42 (d, *J* = 7.2 Hz, 2H), 1.97 (d, *J* = 4.2 Hz, 1H), 1.88-1.78 (m, 1H), 1.30 (d, *J* = 7.1 Hz, 3H), 0.89 (d, *J* = 6.6 Hz, 6H); ¹³**C NMR** (100 MHz, CDCl₃) δ 146.5, 144.1, 143.7, 139.6, 129.2, 128.3, 128.2, 127.2, 127.0, 126.7, 126.2, 125.6, 80.9, 78.5, 45.0, 39.6, 30.2, 22.4, 14.5; **HRMS** (ESI) calculated for C₂₆H₃₀O₂Na [M+Na]⁺ m/z 397.2138, found 397.2157.

Ethyl

2-(11-hydroxy-11-(hydroxy(phenyl)methyl)-6,11-dihydrodibenzo[b,e]oxepin-2-yl) acetate (65)

According to **GP1** with ethyl 2-(11-oxo-6,11-dihydrodibenzo[*b*,*e*]oxepin-2-yl)acetate (178.5 mg, 0.60 mmol, 1.0 equiv), benzaldehyde (183 µL, 1.80 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.60 mmol, 1.0 equiv). The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 5:1) to afford the desired product **65** as white solid (128.6 mg, 53%). The diastereomeric ratio is 1.8:1 determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.88 (dd, J = 7.7, 1.3 Hz, 0.36H), 7.66 (d, J = 2.1 Hz, 0.64H), 7.31-6.84 (m, 11H), 5.95-5.94 (m,

1H), 5.55 (d, J = 15.6 Hz, 0.36H), 5.46 (d, J = 15.6 Hz, 0.64H), 5.09 (d, J = 15.6 Hz, 0.36H), 5.04 (d, J = 15.6 Hz, 0.64H), 4.11 (q, J = 7.1 Hz, 1.28H), 3.99 (q, J = 7.1 Hz, 0.72H), 3.78 (s, 0.64H), 3.71 (s, 0.36H), 3.58 (s, 1.28H), 3.33 (d, J = 3.0 Hz, 0.72H), 2.69 (d, J = 3.5 Hz, 0.64H), 2.52 (d, J = 3.9 Hz, 0.36H), 1.24 (t, J = 7.2 Hz, 1.92H), 1.13 (t, J = 7.1 Hz, 1.08H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 171.8, 171.4, 154.7, 153.7, 140.5, 138.8, 138.6, 138.5, 137.60, 137.56, 135.0, 134.8, 130.4, 130.3, 130.2, 129.7, 128.4, 127.7, 127.5, 127.4, 127.3, 127.2, 127.12, 127.07, 127.0, 126.74, 127.73, 126.4, 126.1, 125.0, 121.8, 121.1, 79.7, 79.3, 78.2, 77.6, 73.9, 73.4, 60.9, 60.6, 40.8, 14.13, 14.05; **HRMS** (ESI) calculated for C₂₅H₂₄O₅Na [M+Na]⁺ m/z 427.1516, found 427.1537.

Investigation of other electrophiles:

10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-one **66** (108 µL, 0.6 mmol, 1.0 equiv), 1-(1*H*-imidazol-1-yl)ethan-1-one **67** (198.5 mg, 1.8 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 20:1) to afford product **68** (59.9 mg, 40%).

1-(5-Hydroxy-10,11-dihydro-5*H***-dibenzo[***a***,***d***][7]annulen-5-yl)ethan-1-one: white solid; ¹H NMR (300 MHz, CDCl₃) \delta 7.43-7.40 (m, 2H), 7.23-7.18 (m, 4H), 7.17-7.13 (m, 2H), 4.84 (s, 1H), 3.23-3.04 (m, 4H), 1.98 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) \delta 207.0, 140.9, 138.2, 130.4, 128.5, 128.1, 126.6, 84.8, 35.4, 24.9; HRMS** (ESI) calculated for C₁₇H₁₆O₂Na [M+Na]⁺ m/z 275.1043, found 275.1071.

10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-one **66** (108 µL, 0.6 mmol, 1.0 equiv), 2*H*-chromen-2-one **69** (263.3 mg, 1.8 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 3:1) to afford product **70** (109.2 mg, 51%).

3'-(2-Hydroxyphenyl)-3',4',10,11-tetrahydro-5'*H*-spiro[dibenzo[*a,d*][7]annulene-**5,2'-furan]-5'-one**:^[9] white solid; ¹**H** NMR (300 MHz, DMSO-*d*₆) δ 9.78 (brs, 1H), 7.68-7.54 (m, 1H), 7.47-7.38 (m, 1H), 7.29-7.20 (m, 3H), 7.05-6.98 (m, 2H), 6.93-6.85 (m, 3H), 6.73-6.62 (m, 1H), 6.52-6.47 (m, 1H), 4.77 (brs, 1H), 3.84-3.74 (m, 1H), 3.42-3.30 (m, 1H), 3.03-2.91 (m, 2H), 2.72-2.63 (m, 1H), 2.38 (d, *J* = 17.6 Hz, 1H); ¹³**C** NMR (75 MHz, DMSO-*d*₆) δ 176.2, 154.2, 141.5, 138.6, 137.0, 136.5, 132.0, 130.1, 128.2, 127.9, 127.5, 126.3, 126.1, 125.4, 125.0, 123.0, 118.7, 115.3, 91.5, 36.7, 31.6, 31.0; **HRMS** (ESI) calculated for C₂₄H₂₁O₃ [M+H]⁺ m/z 357.1485, found 357.1505.

Derivatization of products:

2-Azido-1,2,2-triphenylethan-1-ol (72):^[10]

1,1,2-Triphenylethane-1,2-diol **3** (58.1 mg, 0.2 mmol, 1.0 equiv), B(C₆F₅)₃•H₂O (1.0 mg, 0.002 mmol, 0.01 equiv), and TMSN₃ (116 μL, 0.6 mmol, 3.0 equiv) were placed in a 10 mL Schlenk tube. Then MeNO₂ (1.0 mL) was added with a syringe, and the reaction mixure was stirred for 3.5 h at room temperature. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford product **72** as pale yellow solid (59.8 mg, 95%). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 2H), 7.41-7.33 (m, 3H), 7.22-7.11 (m, 6H), 7.07-7.05 (m, 2H), 6.96-6.94 (m, 2H), 5.68 (d, *J* = 3.0 Hz, 1H), 2.48 (d, *J* = 3.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 140.8, 140.1, 139.0, 128.7, 128.3, 127.93, 127.89, 127.84, 127.82, 127.5, 127.4, 79.0, 75.9; HRMS (ESI) calculated for C₂₀H₁₇N₃ONa [M+Na]⁺ m/z 338.1264, found 338.1292.

2-Hydroxy-1,2,2-triphenylethan-1-one (75):^[11]

1,1,2-Triphenylethane-1,2-diol **3** (58.4 mg, 0.2 mmol, 1.0 equiv), SbBr₃ (14.6 mg, 0.04 mmol, 0.2 equiv), PTAB (300.9 mg, 0.8 mmol, 4.0 equiv), and pyridine (65 μ L, 0.8 mmol, 4.0 equiv) were placed in a 10 mL Schlenk tube. Then MeOH (6.0 mL) was added with a syringe, and the reaction mixure was stirred for 48 h at room temperature. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford product **75** as white solid (50.5 mg, 87%). ¹H **NMR** (300 MHz, CDCl₃) δ 7.73-7.70 (m, 2H), 7.46-7.39 (m, 5H), 7.36-7.24 (m, 8H), 5.01 (s, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 200.7, 141.8, 135.0, 132.9, 130.8, 128.3, 128.2, 128.1, 128.0, 85.0; **HRMS** (ESI) calculated for C₂₀H₁₆O₂Na [M+Na]⁺ m/z 311.1043, found 311.1079.

2-(2-(3,3-Diphenyloxiran-2-yl)ethyl)-5-methylfuran (76):

4-(5-Methylfuran-2-yl)-1,1-diphenylbutane-1,2-diol **29** (101.9 mg, 0.3 mmol, 1.0 equiv), *n*Bu₃P (80 µL, 0.315 mmol, 1.05 equiv), and DIAD (65 µL, 0.315 mmol, 1.05 equiv) were placed in a 10 mL Schlenk tube. Then CH₂Cl₂ (1.0 mL) was added with a syringe, and the reaction mixure was stirred for 6.5 h at room temperature. After completion of the reaction, the solvent was removed under reduced pressure, and the residue was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 50:1) to afford product **76** as white solid (52.8 mg, 55%). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.25 (m, 10H), 5.86-5.78 (m, 2H), 3.47-3.44 (m, 1H), 2.79-2.67 (m, 2H), 2.21 (s, 3H), 1.82-1.73 (m, 1H), 1.66-1.57 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 152.8, 150.5, 141.0, 137.5, 128.2, 128.1, 127.9, 127.7, 127.5, 127.0, 106.0, 105.9, 66.4, 65.7, 28.2, 24.7, 13.5; HRMS (ESI) calculated for C₂₁H₂₁O₂ [M+H]⁺ m/z 305.1536, found 305.1560.

Larger-scale synthesis:

Electroreductive cross-coupling of **1** with **2** has been conducted on a preparative scale (3.6 mmol). Conditions for scale-up to **3** (each reaction): benzophenone **2** (109.8 mg, 0.6 mmol, 1.0 equiv), benzaldehyde **1** (183 μ L, 1.8 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, the six reaction mixures were combined. Then H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the desired product **3** (0.73 g, 70%).

Electroreductive cross-coupling of 1 with 71 has been conducted on a preparative Conditions scale (3.6)mmol). for scale-up to **46** (each reaction): (E)-N,1-diphenylmethanimine 71 (109.5 mg, 0.6 mmol, 1.0 equiv), benzaldehyde 1 (183 µL, 1.8 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, the six reaction mixures were combined. Then H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 10:1) to afford the desired product 46 (0.69 g, 66%, dr = 2.3:1).

Mechanistic studies

1) Radical trapping experiments:

Benzophenone 2 (109.5 mg, 0.6 mmol, 1.0 equiv), benzaldehyde 1 (183 μ L, 1.8 mmol, 3.0 equiv), 1,1-diphenylethylene (212 μ L, 1.2 mmol, 2.0 equiv), and *n*Bu₄NBF₄ (197.9 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After

completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford product **3** (98.9 mg, 57%).

(*E*)-*N*,1-Diphenylmethanimine **71** (108.8 mg, 0.6 mmol, 1.0 equiv), benzaldehyde **1** (183 μ L, 1.8 mmol, 3.0 equiv), 1,1-diphenylethylene (212 μ L, 1.2 mmol, 2.0 equiv), and *n*Bu₄NBF₄ (197.6 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford product **46** (85.3 mg, 49%).

2) Radical clock experiments:

Benzophenone **2** (109.6 mg, 0.6 mmol, 1.0 equiv), cyclopropanecarbaldehyde **80** (135 μ L, 1.8 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA

at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the corresponding product **81** (92.9 mg, 61%). In this reaction, the ring opening of cyclopropyl group was not observed.

2-Cyclopropyl-1,1-diphenylethane-1,2-diol: white solid; ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.57 (m, 2H), 7.43-7.40 (m, 2H), 7.36-7.32 (m, 2H), 7.27-7.22 (m, 3H), 7.20-7.16 (m, 1H), 3.85 (dd, J = 8.2, 2.7 Hz, 1H), 3.24 (s, 1H), 1.98 (d, J = 2.9 Hz, 1H), 1.17-1.09 (m, 1H), 0.48-0.41 (m, 1H), 0.33-0.27 (m, 1H), 0.15-0.08 (m, 1H), -0.18--0.25 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.6, 143.8, 128.3, 127.7, 127.1, 126.7, 126.6, 126.1, 80.2, 79.7, 12.9, 4.7, 1.8; **HRMS** (ESI) calculated for C₁₇H₁₈O₂Na [M+Na]⁺ m/z 277.1199, found 277.1201.

(E)-N,1-Diphenylmethanimine **71** (108.8) mg, 0.6 mmol, 1.0 equiv), cyclopropanecarbaldehyde 80 (135 µL, 1.8 mmol, 3.0 equiv), and nBu₄NBF₄ (197.6 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N_2 for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford the corresponding product 82 (74.9 mg, 49%). The diastereomeric ratio is 1.9:1 determined by ¹H NMR. In this reaction, the ring opening of cyclopropyl group was not observed.

1-Cyclopropyl-2-phenyl-2-(phenylamino)ethan-1-ol: colorless oil; ¹H NMR (400 MHz, CDCl₃) δ two isomers: 7.42-7.20 (m, 5H), 7.10-7.04 (m, 2H), 6.65-6.52 (m,

3H), 4.77 (brs, 1H), 4.51 (d, J = 3.6 Hz, 0.35H), 4.47 (d, J = 4.5 Hz, 0.65H), 3.23 (dd, J = 8.7, 3.6 Hz, 0.35H), 3.08 (dd, J = 8.5, 4.5 Hz, 0.65H), 2.02 (brs, 0.65H), 1.78 (brs, 0.35H), 1.17-1.09 (m, 0.65H), 0.71-0.62 (m, 0.35H), 0.57-0.39 (m, 2H), 0.37-0.31 (m, 1H), 0.25-0.20 (m, 0.35H), 0.12-0.06 (m, 0.65H); ¹³C NMR (100 MHz, CDCl₃) δ two isomers: 147.3, 146.9, 141.2, 139.0, 129.1, 129.0, 128.5, 128.3, 127.9, 127.4, 127.3, 127.0, 117.4, 113.6, 113.5, 80.4, 79.0, 62.7, 61.9, 15.0, 14.3, 3.2, 3.1, 2.84, 2.76; **HRMS** (ESI) calculated for C₁₇H₂₀NO [M+H]⁺ m/z 254.1539, found 254.1564.

3) Control experiments:

Benzaldehyde **1** (61 µL, 0.6 mmol, 1.0 equiv) and nBu_4NBF_4 (197.8 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 4:1) to afford product **84** (45.9 mg, 71%).

3-Phenylpropanal **83** (79 μ L, 0.6 mmol, 1.0 equiv) and *n*Bu₄NBF₄ (197.5 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. This reaction provided traces of the homopinacol coupling product **85**.

4) Deuteration labeling experiments:

Benzophenone 2 (109.5 mg, 0.6 mmol, 1.0 equiv), D₂O (217 µL, 12 mmol, 20.0 equiv)

and nBu_4NBF_4 (197.8 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford product **[D]-88** (86.8 mg, 78%).

(*E*)-*N*,1-Diphenylmethanimine **71** (108.9 mg, 0.6 mmol, 1.0 equiv), D_2O (217 µL, 12 mmol, 20.0 equiv) and nBu_4NBF_4 (197.8 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with

anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 20:1) to afford product **[D]-89** (81.6 mg, 74%).

Ethyl 2-oxo-2-phenylacetate **86** (96 μ L, 0.6 mmol, 1.0 equiv), D₂O (217 μ L, 12 mmol, 20.0 equiv) and *n*Bu₄NBF₄ (197.9 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room

temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 7:1) to afford product **[D]-90** (74.9 mg, 69%).

2-Methylisoindoline-1,3-dione **87** (96.7 mg, 0.6 mmol, 1.0 equiv), D₂O (217 μ L, 12 mmol, 20.0 equiv) and *n*Bu₄NBF₄ (197.8 mg, 0.6 mmol, 1.0 equiv) were placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, H₂O (10.0 mL) was added, and the mixture was extracted by EtOAc (3x10.0 mL). The combined organic layer was dried over anhydrous Na₂SO₄, filtered, and concentrated by rotary evaporation. The

crude reaction mixture was purified by flash silica gel column chromatography (petroleum ether/EtOAc = 1:1) to afford product [**D**]-91 (22.8 mg, 23%) and [**D**]-92 (38.8 mg, 43%) as an inseparable mixture.

5) Divided-cell electrolysis experiments:

The divided-cell electrolysis was conducted in a H-type divided cell with one stirring bar at each chamber. The zinc plate was used as the anode (2.0 cm x 0.2 cm x 0.8 cm) and the magnesium plate was used as the cathode (2.0 cm x 0.2 cm x 0.8 cm), which were separated by а cation exchange membrane (CMI-7000 membrane). Benzophenone 2 (109.7 mg, 0.6 mmol, 1.0 equiv), benzaldehyde 1 (183 µL, 1.8 mmol, 3.0 equiv), and nBu₄NBF₄ (329.3 mg, 1.0 mmol, 0.1 M) were only added into the anodic chamber, while in another reaction the same substrates were only added into the cathodic chamber. Then anhydrous DMF (10.0 mL) was added with a syringe. After degassing with a stream of N₂ for 10 min, the two reactions were stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, the solution was treated by the standard procedure. The desired 1,2-diol product 3 was isolated in 22% yield (38.3 mg) from the reaction in which 1 and 2 were only added into the cathodic chamber. In contrast, no 1,2-diol product was observed from the reaction in which 1 and 2 were only added into the anodic chamber.

The divided-cell electrolysis was conducted in a H-type divided cell with one stirring

bar at each chamber. The zinc plate was used as the anode (2.0 cm x 0.2 cm x 0.8 cm) and the magnesium plate was used as the cathode (2.0 cm x 0.2 cm x 0.8 cm), which separated by a cation exchange membrane (CMI-7000 membrane). were (E)-N,1-diphenylmethanimine 71 (108.8 mg, 0.6 mmol, 1.0 equiv), benzaldehyde 1 (183 µL, 1.8 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (329.5 mg, 1.0 mmol, 0.1 M) were only added into the anodic chamber, while in another reaction the same substrates were only added into the cathodic chamber. Then anhydrous DMF (6.0 mL) was added with a syringe. After degassing with a stream of N₂ for 10 min, the two reactions were stirred and electrolyzed at a constant current of 10 mA at room temperature for 6 h. After completion of the reaction, the solution was treated by the standard procedure. The desired β -amino alcohol product **46** was isolated in 16% yield (27.8 mg) from the reaction in which 1 and 71 were only added into the cathodic chamber. In contrast, no β -amino alcohol product was observed from the reaction in which 1 and 71 were only added into the anodic chamber.

Figure S2 Reaction setup for divided cell electrolysi

6) Zn^0 reduction control experiments:

Entry 1: Benzophenone 2 (109.5 mg, 0.6 mmol, 1.0 equiv), benzaldehyde 1 (183 μ L, 1.8 mmol, 3.0 equiv), zinc power from a fresh opened bottle (117.9 mg, 1.8 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.7 mg, 0.6 mmol, 1.0 equiv) were placed in a 10 mL Schlenk tube equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. After degassing with a stream of N₂ for 10 min, and the reaction mixture was stirred at room temperature for 12 h. In this reaction, no product **3** was observed.

Entry 2: nBu_4NBF_4 (197.6 mg, 0.6 mmol, 1.0 equiv) was placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 3 h. After the electrolysis, benzophenone **2** (109.9 mg, 0.6 mmol, 1.0 equiv), benzaldehyde **1** (183 µL, 1.8 mmol, 3.0 equiv) were added, and the reaction mixture was stirred at room temperature for 12 h. In this reaction, no product **3** was observed.

Entry 1: (*E*)-*N*,1-diphenylmethanimine **71** (108.9 mg, 0.6 mmol, 1.0 equiv), benzaldehyde **1** (183 μ L, 1.8 mmol, 3.0 equiv), zinc power from a fresh opened bottle (117.9 mg, 1.8 mmol, 3.0 equiv), and *n*Bu₄NBF₄ (197.8 mg, 0.6 mmol, 1.0 equiv) were placed in a 10 mL Schlenk tube equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. After degassing with a stream of N₂ for 10 min, and the reaction mixture was stirred at room temperature for 12 h. In this reaction, no product **46** was observed.

Entry 2: nBu_4NBF_4 (197.9 mg, 0.6 mmol, 1.0 equiv) was placed in an ElectraSyn undivided cell (10.0 mL) equipped with a stiring bar. Then anhydrous DMF (6.0 mL) was added with a syringe. The ElectraSyn vial cap equipped with anode (Zn, 4.0 cm x 0.2 cm x 0.8 cm) and cathode (Mg, 4.0 cm x 0.2 cm x 0.8 cm) was inserted into the mixure. After degassing with a stream of N₂ for 10 min, the reaction mixture was stirred and electrolyzed at a constant current of 10 mA at room temperature for 3 h. After the electrolysis, (*E*)-*N*,1-diphenylmethanimine **71** (109.1 mg, 0.6 mmol, 1.0 equiv), benzaldehyde **1** (183 µL, 1.8 mmol, 3.0 equiv) were added, and the reaction mixture was stirred at room temperature for 12 h. In this reaction, no product **3** was observed.

7) Determination of Faradaic efficiency:

The Faradaic efficiency (FE) was determined according to the methods reported in the literature.^[12]

The Faradaic efficiency for product **3** (isolated yield = 75% on a 0.6 mmol scale) is calculated using the following equation:

8) Cyclic voltammetry analysis:

The cyclic voltammogram was carried out with a Shanghai Chenhua CHI620E workstation. Cyclic voltammetry was performed in a three-electrode cell at room temperature. The working electrode was a glassy carbon (GC) electrode, the counter electrode was a platinum wire, and the reference electrode was saturated calomel electrode (SCE). A DMF solution (10.0 mL) of sample including 0.02 M of each sample and 0.1 M of nBu_4NBF_4 was prepared as an electrochemical solution. The spectra were recorded with the scan rate of 100 mVs⁻¹.

Figure S3 Cyclic voltammograms for blank experiment

Figure S4 Cyclic voltammograms for benzaldehyde

Figure S5 Cyclic voltammograms for hexanal

Figure S6 Cyclic voltammograms for benzophenone

Figure S7 Cyclic voltammograms for ethyl 2-oxo-2-phenylacetate

Figure S8 Cyclic voltammograms for isoindoline-1,3-dione

Figure S9 Cyclic voltammograms for (*E*)-*N*,1-diphenylmethanimine

Figure S10 Cyclic voltammograms for 1-(1H-imidazol-1-yl)ethan-1-one

Figure S11 Cyclic voltammograms for benzaldehyde $(1) + Zn(BF_4)_2$

Figure S12 Cyclic voltammograms for benzophenone $(2) + Zn(BF_4)_2$

References:

- [1] U. Scheffler, R. Stößer, R. Mahrwald, Adv. Synth. Catal. 2012, 354, 2648.
- [2] M. Takeda, A. Mitsui, K. Nagao, H. Ohmiya, J. Am. Chem. Soc. 2019, 141, 3664.
- [3] T. Liang, Z. Zhang, J. C. Antilla, Angew. Chem. Int. Ed. 2010, 49, 9734.
- [4] N. García-Delgado, A. Riera, X. Verdaguer, Org. Lett. 2007, 9, 635.
- [5] G. Mladenova, G. Singh, A. Acton, L. Chen, O. Rinco, L. J. Johnston, E. Lee-Ruff, J. Org. Chem. 2004, 69, 2017.
- [6] N. Kise, S. Isemoto, T. Sakurai, Tetrahedron 2012, 68, 8805.
- [7] N. Kise, Y. Kawano, T. Sakurai, J. Org. Chem. 2013, 78, 12453.
- [8] A. Mitsui, K. Nagao, H. Ohmiya, Org. Lett. 2020, 22, 800.
- [9] N. Kise, Y. Hamada, T. Sakurai, J. Org. Chem. 2016, 81, 11043.
- [10] J. M. Lee, D. Y. Bae, J. Y. Park, H. Y. Jo, E. Jee, Y. H. Rhee, J. Park, Org. Lett. 2020, 22, 4608.
- [11] T. Song, Z. Ma, P. Ren, Y. Yuan, J. Xiao, Y. Yang, ACS Catal. 2020, 10, 4617.
- [12] Y. Qiu, L. Xin, D. J. Chadderdon, J. Qi, C. Liang, W. Li, Green Chem. 2014, 16, 1305.

170

--98 -100 -116 f1 (ppm) -118 -120 -134 -102 -104 -106 -108 -110 -112 -114 -122 -124 -126 -128 -130 -132

S128

S130

S136

S160

-114.00 -114.05 -114.10 -114.15 -114.20 -114.25 -114.30 -114.35 -114.40 -114.45 -114.50 -114.55 -114.60 -114.65

¹³C NMR (100 MHz, CDCl₃)

— 35.358

68 ¹³C NMR (75 MHz, CDCl₃)

